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of various functions are depicted in Fig. 1, and the heat-
transfer ratio is found to be

&/(**)« = o = 0.08025/0.08027 » 1

which indicates negligible spinning effect on convective heat
transfer for flows in the stagnation-point region under hyper-
sonic flight conditions. This result was predicted by Scala
and Workman,3 and experimentally verified by Whitesel.5

Another interesting case is that concerning small but finite
crossflow for which the higher-order terms in g, a, Ki, and
their lateral derivative d/df are neglected. Then, Eqs.
(16-18) become (for Pr = 1)

/' " + (l + -~ + K2\ ff" + 0(6 - n = 0 (22)

f ' 2 - 6) -

/V = 0 (23)

2m 2) fB' = 0 (24)

If we multiply Eq. (23) by e* and substitute (e^Y = V(ii)G(Q'
therein, we obtain

G

(0 - n (25)
U"

It is noted that Eqs. (22, 24, and 25) are essentially those
obtained by Beckwith1 except for the coefficient constants.

Finally, for the case of similar flows in the plane of sym-
metry of an inclined axisymmetric body with zero stream-
wise pressure gradient and insulated walls, the following con-
ditions prevail: e\ = 1, e» = r(x), KI = 0, ft = 0, and dgr/d^
= 0. In order to transform the resulting equations into
a familiar form, we first differentiate Eq. (14) with respect
to f *, which is defined as rf * = f. Then, with the aid of
the following definitions:

F = (1 +

we obtain

rZ

F'" + (F + CiG)F" = 0 (26)

G'" + (F + CiG)G" + K* (p./p) - <7i£'2 - CJFG' = 0
(27)

which are the governing equations for supersonic flows in
the plane of symmetry of a yawed cone with insulated surface.6
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Large Amplitude Vibration of Buckled
Beams and Rectangular Plates
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Nomenclature
a, b, h = plate width, length, and thickness (x, y, z directions),

respectively
r = a/b, plate aspect ratio
/ = time ; ^
u, v, w = displacements in the x, y, z directions, respectively
D = plate flexural rigidity, M3/12(1;;1- ^2)
El = beam flexural rigidity
F = stress function ] ,; ( , ;,M , ,. .> . , . . . . . . ; ^
p = mass density
v = Poisson's ratio

' > ; . ' . ] •• j, •. '; '. -:

Introduction < v

IN recent years, a number of investigations of the large
amplitude vibration of beams1"4 and flat rectangular

plates5"8 have been reported in which the ends of the beams
and the edges of the plates have been assumed to remain a
fixed distance apart during vibration. In particular, Bur-
green2 has considered the free vibration of a simply supported
beam that has been given an initial end displacement, and the
author8 has considered free and forced vibration of simply
supported and clamped beams and rectangular plates for
which initial end and edge displacements have been, prescribed.
In both reports, a one-degree-of-freedom representation of
the equations of motion is used. Results are obtained for
edge displacements in the postbuckling as well as the pre-
buckling region. In the case of forced motion, however, the
results were restricted to symmetrical motion about the
flat position of the beam or plate. For the buckled beam or
plate, it is also- possible toi have vibration about the static
buckled position. This has been discussed for free vibration
in the foremen tioned reports, and it is the purpose of the
following remarks to extend the discussion to a case of forced
motion.

Equations of Motion

The differential equation of motion for a beam of unit width
s

(EIW,yy),yy ~

T }o + 1 JT (w^dy
where v0 represents an initial axial displacement measured
from the unstressed state. For a plate, the dynamic von
Karmdn equations are

(2)
E(W,Xy2 —— W,XXW,yy)

- h(F,yyWjXX + F}XXW)Vy ~ 2F,XyW,Xy) +

phw)tt = P(x, y, t)

where

are the membrane stresses. When a single mode is assumed
and Galerkin's method is applied, the problem reduces to
the solution of a single ordinary differential equation in
time.
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Fig. 1 Free vibration.

In the case of a simply supported beam, for example, we
assume

w(y, t) = 6f (0 sin(7n//6) (3)
and obtakTthe following equation in nondimensional form :

£,rr + Pf + <?£3 = /(T) (4)

where

= 12 72(1 "" X)

The parameter X is a measure of the initial axial displacement
and is defined as

= VQ/V0ci (5)

where v0cr is the axial displacement that produces the buck-
ling load. Thus X > 1 refers to the postbuckling region.
An equation of the same form is obtained for other beam
boundary conditions and for plates as well. The coeffi-
cients p and q for simply supported and clamped beams and
rectangular plates are given in Ref. 8. The remarks that
follow apply to these cases as well as others that may be
denned.

To study the motion about the static buckled position, it
is convenient to change to the variable

d = f - ft (6)

where ft is the static buckle amplitude and d is the variation
from that position. If Eq. (6) is substituted into Eq. (4), it
follows that for harmonic forcing

d,TT + co0
2<5 = / coscor (7)

where

c2 = = q
Note that co0 is the linear vibration frequency about the
buckled position. The problem of small amplitude vibration
of a buckled plate has been more fully discussed elsewhere.9' 10

This equation is of similar form to an equation derived for
the vibration of initially curved plates and shells.11"13 The
Linstedt-Duffing perturbation technique11-13 used in two of
the preceding reports may be applied here. Let

8 = 50 + adi + a^2 + c*3<53 + . . .
co2 = w0

2 + acoi2 + aW + aW + . . . (8)
J = /o + a/i + a% + a% + . . .

where the initial conditions on Eq. (7) are taken to be

6(0) = a 6,T(0) = 0 (9)
from which it follows that

WO) = 1 5o(0) = 52(0) - <53(0) = . . . = 0 (10)

It is convenient to introduce the forcing function as
follows: let

?0 = /I = /2 = 0 (11)

so that
/ = «3/3 (12)

Then it follows that when Eqs. (8) are substituted into Eq.
(7) and terms are collected according to the power of a, a
series of equations are obtained. The first is

a°: d0,TT + co250 + cA2 + c8«o8 = 0 (13)
which has as its solution, in view of Eqs. (10),

«O(T) = 0 (14)
and next

a1: 3i,Tr + co25x = 0 (15)

which has as its solution
5i (r) = coscor (16)

Continuing, we obtain

a.2: d2)TT + co252 = — (c2/2) + coi2 coscor —
(ca/2) cos2cor (17)

To insure a periodic solution, it is necessary that

co!2 = 0 (18)
thus the solution to Eq. (17) becomes

&(r) = (c2/6co2)(-3 + 2 coscor + cos2cor) (19)
Finally,

a:
6 co2

/3JCOSCOT - —^ cos2cor - ( j^ + | j cos3cor(20)

Once again, to insure a periodic solution, it is necessary
that

5 c2
2 3c3 -

= - - — + —- - /36 co2 4 (21)

(22)

which, from Eqs. (8) and (12), may be written

2 , 2 (^ 5 «? Aco2 = co0
2 + a2 ( — - - —- - J- \

V 4 6 co2 a)
It is worth noting that the Ritz-Galerkin and related

methods as they are commonly applied are inadequate for
obtaining an approximate solution to Eq. (7). It is common
practice to use the solution of the corresponding linear equa-
tion as an assumed solution of the nonlinear equation. The
frequency-amplitude relation is obtained by means of a cer-
tain time integration over a cycle of the motion which
minimizes the error introduced by this assumption. Un-
fortunately the restriction imposed by the assumed solution
is such that all contributions of the term c2<52 are lost in the
integration, regardless of its actual influence. If, however,
more care is used in the selection of an assumed function, this
difficulty may be overcome.

In our case, let
<5(r) = A + B coscor + C cos2cor (23)

and proceed with the Ritz-Galerkin method as described, for
example, in Ref. 14. We then obtain four algebraic equations
in the four unknowns co2, A, B, and (7, but because of the
complexity of the equations, no general algebraic solution is
possible. If, in addition, we let

co2 = co0
2 +

A = aAi +
B = aBl +

+ a2co2
2 + . . .

2 + «3A3 + . . .
(24)
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Fig. 2 Forced vibration.

and solve the resulting equations, we arrive at the identical
frequency-amplitude relation given by Eq. (22).f

Free Vibration
The relation for free vibration may be obtained by setting
= 0 in Eq. (22). An exact solution for free vibration is

also possible in this case in terms of elliptic functions. It is

0(T) = (a + fji)dn(uT} k) - ju (25)
where

^ 3c3 2 co2

The initial conditions are

§(0) = a 5,T(0) = 0 (26)

where a is positive and subject to the condition

_2 < (?*=_«g < _ ! (27)

Physically this restricts consideration to motion about the
buckled position on one side of the flat position. The period
of the motion is given by the elliptic integral

T = : _ _ _ = ?. f */2 _____

CO CO JO 1 — k2 sin20 (28)

It should be noted that Eq. (25) is not a general solution
to Eq. (7) for arbitrary values of the coefficients coo2, c2, and
Cs but only for free motion when the relation

9co0
2c3 - 2c2

2 = 0 (29)

holds. This condition is satisfied in this case because Eq. (7)
was obtained from Eq. (4). An exact solution in terms of
elliptic functions is still possible, however, as described in
Ref. 12, for example.

Numerical Results
Numerical results have been obtained from Eqs. (22) and

(28) for the special case of a buckled beam with X = 2 and
7 = 0.005 and are presented in Fig. 1 for free motion. In
this figure, the amplitude is given in terms of the number
of beam thicknesses and the frequency in terms of the square
of the ratio of the nonlinear to the linear frequency. Since
for the exact solution the motion is not symmetrical about
the undeflected position, the curve for a negative initial
condition differs from that for a positive initial condition.
A typical deflection curve for a cycle of the motion is shown
in the lower right of the figure. The negative amplitude a'
is related to a by

a' = (a (30)

In Fig. 2, the dynamic response of the same beam to har-
monic forcing is shown as obtained from Eq. (22).
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Approximate Absorption Coefficients
for Vibrational Electronic Band Systems

EDWARD P. FRENCH*
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Introduction

IT is frequently necessary to calculate both spectral and
total gas radiation arising from the shock layers, boundary

layers, wakes, or exhaust plumes associated with hypersonic
vehicles. Such calculations may be required in order to
assess radiant heat transfer to vehicle surfaces, interference
with onboard optical devices, or detection by remotely located
instruments. In addition, gas radiation emission may be
used as a diagnostic device in hypervelocity testing.

There are a number of sources of detailed spectral absorp-
tion or emission data for the major constituents of equilib-
rium air.1"3 Similar information about other gas composi-
tions such as air-ablation product mixtures, rocket exhausts,
and extraterrestrial atmospheres is not so readily available,
however. It is the purpose of this note to describe an ap-
proximate method by which spectral radiation can be esti-
mated rapidly for an important class of radiators, namely,
vibrational-electronic band systems of diatomic molecules.

Detailed Spectral Absorption Estimates

Meyerott et al.2 present the radiative contributions from
individual band systems in terms of average spectral ab-
sorption coefficients from which spectral emission may be
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