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The effectiveness of surrogate modeling of helicopter vibrations, and the use of the
surrogates for optimization of helicopter vibration are studied. The accuracies of kriging,
radial basis function interpolation, and polynomial regression surrogates are compared. In
addition, the surrogates for the vibratory hub shears and moments are used to generate
an objective function which is employed in an optimization study. The design variables
consist of the cross-sectional dimensions of the structural member of the blade and the
non-structural masses. The optimized blade is compared with a baseline rotor blade which
resembles an MBB BO-105 blade. The results indicate that: (a) the kriging surrogates are
the best for approximating vibratory hub loads over the entire design space and (b) and
the surrogates can be used effectively in helicopter rotor vibration reduction studies.

Nomenclature

c Blade chord
CW Helicopter weight coefficient
Cd0 Blade profile drag coefficient
Cdf Flat plate drag coefficient
D Vector of design variables
E Young’s modulus
f(x) Assumed polynomials which account for the ‘global’ behavior in kriging
F4X , F4Y ,

F4Z 4/rev hub shears, non-dimensionalized by m0Ω2R2

F̂4X , F̂4Y ,

F̂4Z Surrogates for the non-dimensional 4/rev hub shears
g(D) Constraints
h Height of the blade cross-section
J Objective function
Ĵ Surrogate objective function
JP Mass polar moment of inertia of the rotor
m0 Mass per unit length at the blade root
mns Non-structural mass located at the elastic axis
M4X ,M4Y ,

M4Z 4/rev hub moments, non-dimensionalized by m0Ω2R3

M̂4X , M̂4Y ,

M̂4Z Surrogates for the non-dimensional 4/rev hub moments
Nb Number of rotor blades
Nc Number of behavior constraints
Ndv Number of design variables
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Nsp Number of sample points
Ntp Number of test points
pk, ϑk Fitting parameters in kriging corresponding to the kth design variable
R Blade radius
Rkrg Spatial correlation matrix used in kriging
Rkrg(·) Spatial correlation function in kriging
rkrg(x) Spatial correlation vector in kriging
t1, t2, t3 Thicknesses of the blade cross-section, see Fig. 3
w Vector of coefficients in RBF interpolation, with elements wi

x(i) ith sample point
x1, x2 Cross-sectional dimensions, see Fig. 3
XFA, ZFA Longitudinal and vertical offsets between rotor hub and helicopter aerodynamic center, see

Fig. 6
XFC , ZFC Longitudinal and vertical offsets between rotor hub and helicopter center of gravity, see

Fig. 6
y(x) Unknown function to be approximated
y(i) output response at x(i)

y Vector of observed function outputs
ŷ(x) Approximation of y(x)
Z(x) Realization of a stochastic process in kriging
αd Flight descent angle, see Fig. 6
β Constant used in kriging
β̂ Generalized least squares estimate of β
β0, βi, βij Fitting coefficients in polynomial regression
βp Blade precone angle
εpr Approximation error in polynomial regression
ε Absolute percent error of surrogate predictions
λk Hover stability eigenvalue for kth mode
ζk, ωk Real and imaginary parts of λk, respectively
µ Advance ratio
ν Poisson’s ratio
Ω Rotor angular speed
ωF1, ωL1, ωT1 Fundamental rotating flap, lead-lag and torsional frequencies, /rev
ωL, ωU Lower and upper bounds for frequency constraints, /rev
φRBF(·) Spatial correlation function in RBF interpolation
ΦRBF Spatial correlation matrix in RBF interpolation
φφφRBF(x) Spatial correlation vector in RBF interpolation
ρfiller Material density for non-structural filler mass
ρstruct Material density for the structural member of the blade
σ Rotor solidity
σ2

var Variance of the Gaussian process Z(x)
σ̂2

var Generalized least squares estimate of σ2
var

τ Fitting parameter in RBF interpolation
θpt Blade built-in pre-twist angle

I. Introduction

Vibration is one of the most critical concerns in the design of modern rotorcraft. Stricter demands for
enhanced performance, comfort, and customer acceptance require designs with reduced vibration levels.

In helicopters, the dominant source of vibrations is the rotor, which transfers vibrations to the rotor hub
and fuselage at harmonics that are predominantly Nb/rev, where Nb is the number of blades.

During the last 25 years, two principal approaches to vibration reduction have emerged. The first
approach is passive and uses structural/multidisciplinary optimization for reducing vibrations,1–4 while the
second approach utilizes active control methods.5,6 This paper focuses on the passive approach. In the
passive approach the vibration reduction problem is formulated as a mathematical optimization problem

2 of 21

American Institute of Aeronautics and Astronautics



subject to appropriate constraints. The objective function consists of a suitable combination of the Nb/rev
hub shears and moments that are computed from an aeroelastic response code; the constraints are blade
stability margins, frequency constraints, an autorotation constraint, and constraints associated with the blade
geometry. The design variables can be dimensions of the blade cross-section, mass and stiffness distributions
along the span, or geometrical parameters which define advance geometry tips. Typical levels of vibration
reduction achieved with passive approaches have been in the range of 50-60%.

Due to the complex aerodynamic environment in the rotary-wing problem, aeroelastic response simula-
tions needed for vibratory load calculations are computationally expensive and therefore numerous evalua-
tions of the vibration objective function are costly. Therefore, direct combination of the objective function
generated by the aeroelastic response simulation with traditional optimization algorithms is computationally
very expensive. Moreover, traditional optimization search algorithms can converge to local optima, which
are known to occur in this class of problems.

To overcome these obstacles, approximation concepts have been used. A widely used approach to ap-
proximating the vibration objective function and constraints is to use Taylor series expansions about local
design points.7 The derivatives needed for the Taylor series are calculated using difference formulas, or
analytical sensitivity derivatives. These approximations to the objective function and constraints are used
to replace the actual problem with an approximate one that is used in conjunction with the optimizer to
obtain an optimal design. This method was used in Refs. 2 and 8 to study vibration reduction of composite
rotor blades with advanced geometry tips in forward flight. The disadvantages of this method are that it
is a local approximation in the vicinity of a design point and a local search procedure is used. Even when
augmenting this method with move limits or a trust region strategy,9,10 convergence is only guaranteed to
a local optimum.

An alternative to the local Taylor expansion method is to use global approximation methods; i.e. methods
which try to capture the behavior of a function over the entire design space. In one such vibration reduction
study, Ganguli11 used a 2nd order polynomial global approximation of the vibration objective function and
obtained 30% vibration reduction. The 2nd order polynomial was found to be accurate only in the vicinity of
the baseline design. In addition to polynomials, there is a class of global approximation methods based on a
stochastic process, which yield probabilistic measures of the uncertainty in the approximation (or surrogate)
and can be used in a global search of the design space.12 The advantages of surrogate-based optimization
(SBO) with stochastic process based global approximations are threefold: fewer “true” function evaluations
(thus fewer expensive aeroelastic simulations), the formulation is conducive to parallel computing, and
facilitation of a more “global” search of the design space. Illustrative examples of the benefits of SBO can
be found in the studies by Sóbester et al.13 and Booker et al.14

In Ref. 13, surrogate methods and conventional methods – i.e. no approximations of the objective
function combined with genetic algorithms and gradient based search methods – were used to find the
optima of closed form five-dimensional test functions. The test functions were not computationally expensive
to evaluate, and were only used for the purposes of testing the surrogate based optimization (SBO) method.
In addition, Sóbester et al. took advantage of the opportunities for parallel computing afforded by SBO.
Not only did SBO converge to the optima in less time, but the optimum yielded by SBO was superior to
the optimum obtained from conventional optimization algorithms which do not use approximations of the
objective function. Sóbester employed a stochastic process based approximation method known as radial
basis function (RBF) interpolation.

In Ref. 14, surrogate methods were applied to minimization of helicopter vibration, using as few as 10
and as many as 56 design variables to characterize the rotor blade. The cross-sectional design variables were
mass, center of gravity offset from the elastic axis, and the blade stiffnesses. The analysis code Tech0115 was
used to generate hub shears and moments. In Ref. 14, the stochastic process based method known as kriging
interpolation was used to approximate the objective function. A more optimal design compared to results
obtained using conventional search methods (genetic algorithms, for example) was achieved, and with fewer
objective function evaluations. It is important to note that the principal focus of Ref. 14 was the effectiveness
of surrogate objective functions, and therefore accurate modeling of the aerodynamic environment of a rotor
blade during flight was not considered to be important. Consequently, accurate free wake models were
sacrificed for a computationally less expensive prescribed wake model. Thus, the model of the helicopter
vibratory loads was not sufficiently reliable to produce a realistic blade design.

An important feature of the surrogate based optimization approach using interpolation is that the method
is computationally effective when the number of design variables is relatively small (less than 50). Fortunately,
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this is compatible with helicopter rotor blade optimization problems where the number of important design
variables can be limited to this range. The overall objective of this paper is to examine the applicability of
global approximation methods to the rotor blade vibration reduction problem in forward flight. To achieve
this objective, the suitability of three methods for generating approximate representations of the problem
are considered:

1. Polynomial Regression

2. Kriging

3. Radial basis functions (RBF’s)

The effectiveness of these methods is compared by considering a rotor vibration reduction problem in forward
flight.

II. Overview of the Aeroelastic Response and Stability Analysis

The simulation code used in this study is based on a comprehensive aeroelastic analysis code.6,16–21 The
aeroelastic response analysis can represent the behavior of hingeless rotor blades as shown in Fig. 1, with
actively controlled flaps; as well as blades with advanced geometry tips shown in Fig. 2. The key ingredients
of the aeroelastic response analysis are: (1) the structural dynamic model, (2) the unsteady aerodynamic
model and (3) a coupled trim/aeroelastic response procedure that is required for the computation of the
steady state blade response. The aeroelastic response analysis and an overview of the aeroelastic stability in
hover calculation are described next.

Coupled
Flap-Lag-Torsion

Dynamics

Swashplate

Rotor Hub

Pitch Link

Figure 1. Helicopter rotor blade with trailing edge
flaps.

ψ

Ω

knr, kr

jr

jnr

inr

ir

VF

Figure 2. A blade with advanced geometry tip.

A. Structural Dynamic Model

The structural dynamic model is based on an analysis developed by Yuan and Friedmann2,8 which is capable
of modeling composite blades with transverse shear deformations, cross-sectional warping, and swept tips.
This study is limited to the behavior of isotropic blades with spanwise varying properties. The equations
of motion are formulated using a finite element discretization of Hamilton’s principle, with the assumption
that the blade undergoes moderate deflections. The beam type finite elements used for the discretization
have 23 nodal degrees of freedom. Normal modes are used to reduce the number of structural degrees of
freedom. In this study, eight modes are used: the first 3 flap modes, first 2 lead-lag modes, first 2 torsional
modes, and the first axial mode.

B. Aerodynamic Model

The attached flow blade section aerodynamics are calculated using a rational function approach (RFA).18,22

The RFA approach is a two-dimensional unsteady time-domain theory that accounts for compressibility
as well as variations in the oncoming flow velocity. This two-dimensional aerodynamic model is linked to
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an enhanced free-wake model which provides a non-uniform inflow distribution at closely spaced azimuthal
steps.23–25 Although the simulation code can also account for dynamic stall at high advance ratios,20 dynamic
stall was not considered in this paper because the vibration levels being approximated are those due to blade
vortex interaction (BVI), which occurs at low advance ratios.

C. Coupled Trim/Aeroelastic Response

The combined structural and aerodynamic equations form a system of coupled ordinary differential equations
that are cast into first order state variable form18 and integrated in the time domain using the Adams-
Bashforth predictor-corrector algorithm. A propulsive trim procedure, where six equilibrium equations
(three forces and three moments) are enforced, is used in this study.16,26 The trim equations are solved
in a coupled manner with the aeroelastic equations of motion. The vibratory hub shears and moments are
found by integrating the distributed inertial and aerodynamic loads over the entire blade span in the rotating
frame, then transforming these loads to the hub-fixed non-rotating system, and summing the contributions
from each blade.8 In the process, cancellation of various terms occurs and the primary components of the
hub shears and moments have frequency of Nb/rev, which is known as the blade passage frequency.

D. Aeroelastic Stability in Hover

The process for determining the hover stability of the blade is similar to that used by Yuan and Friedmann,8

and is described below:

1. The non-linear static equilibrium solution of the blade is found for a given pitch setting and uniform
inflow, by solving a set of nonlinear algebraic equations. Note that uniform inflow is used only in the
hover stability calculation. The forward flight analysis employs a free-wake model for inflow calculation.

2. The governing system of ordinary differential equations are linearized about the static equilibrium solu-
tion by writing perturbation equations and neglecting second-order and higher terms in the perturbed
quantities. The linearized equations are rewritten in first-order state variable form.

3. The real parts of the eigenvalues of the first-order state variable matrix, λk = ζk + iωk, determine the
stability of the system. If ζk ≤ 0 for all k, the system is stable.

The linearization process in Ref. 8 is modified to account for the aerodynamic states introduced by the RFA
model. Details on the linearization process with RFA aerodynamics are provided in Appendix A.

III. Formulation of the Blade Optimization Problem

The formulation of the blade optimization problem in forward flight consists of several ingredients: the
objective function, design variables, and constraints. The mathematical formulation of the optimization is
stated below.

Find the vector of design variables D which minimizes the objective function, i.e. J(D) → min, where
the objective function consists of a combination of the Nb/rev oscillatory hub shears and moments. For a
four bladed rotor, the objective function is given by

J = KS

√
(F4X)2 + (F4Y )2 + (F4Z)2 + KM

√
(M4X)2 + (M4Y )2 + (M4Z)2 (1)

where KS and KM are appropriately selected weighting factors.
The vector of design variables D consists of the thicknesses t1, t2, t3, and the non-structural mass mns

located on the elastic axis (shear center) shown in Fig. 3 and specified at several spanwise locations. The
design variables have side constraints to prevent them from reaching impractical values; these are stated as

D(L)
j ≤ D ≤ D(U)

j , j = 1, 2, ..., Ndv. (2)

In addition, three types of behavior constraints, given by

gi(D) ≤ 0, i = 1, 2, ..., Nc, (3)
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t2
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h = 0.12c
mns

c

Figure 3. Simplified model of the blade structural member.

are placed on the design variables. The first type of behavior constraints are frequency placement constraints,
which are prescribed upper and lower bounds on the fundamental flap, lag, and torsional frequencies of the
blade. The frequency placement constraints on the fundamental flap frequency are written as

gflap(D) =
ωF1

ωU
− 1 ≤ 0 (4)

and
gflap(D) = 1− ωF1

ωL
≤ 0 (5)

where ωU and ωL are the prescribed upper and lower bounds on the fundamental flap frequency. Similar
constraints are placed on the lag and torsional frequencies, i.e. glag and gtorsion. In addition, all blade
frequencies must differ from integer multiples of the angular velocity – 1/rev, 2/rev, 3/rev, ... , etc. – to
avoid undesirable resonances.

Another behavior constraint is an autorotational constraint, which ensures that mass redistributions
produced during the optimization do not degrade the autorotational properties of the rotor. Although there
are several indices which can be used to represent the autorotational properties of the blade, the one used
in this study is to require that the mass polar moment of inertia of the rotor be at least 90% of its baseline
value.27 Mathematically, this is expressed as

g(D) = 1− JP

0.9JP0
≤ 0 (6)

where JP is the mass polar moment of inertia of the rotor when it is spinning about the shaft, and JP0 is
the baseline value.

The last behavior constraints are aeroelastic stability margin constraints, expressed mathematically as

gk(D) = ζk + (ζk)min ≤ 0, k = 1, 2, ..., Nm (7)

where Nm is the number of normal modes, ζk is the real part of the hover eigenvalue for the kth mode, and
(ζk)min is the minimum acceptable damping level for the kth mode. It should be noted that the most critical
modes for stability are usually the first and second lag modes.

IV. Global Approximation Methods

The goal in using global approximation, or surrogate, methods is to replace the true objective function
with smooth functional relationships of acceptable accuracy that can be evaluated quickly. In order to
construct the surrogate, the objective function must first be evaluated over a set of design points. The
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surrogate is then generated by fitting the initial design points. Although function evaluations, which come
from the expensive helicopter simulations, are needed to form the approximation, the initial investment
of computer time associated with function evaluations is significantly reduced compared to global searches
using non-surrogate based optimization methods. Once the surrogates have been obtained, they are used
to replace the more expensive “true” objective function in the search for the optimum. In this study, the
vibratory hub shears and moments in Eq. 1 are replaced by surrogates, which results in an approximate
objective function expressed as

Ĵ = KS

√
(F̂4X)2 + (F̂4Y )2 + (F̂4Z)2 + KM

√
(M̂4X)2 + (M̂4Y )2 + (M̂4Z)2. (8)

Descriptions of several methods for constructing such approximations are given below.

A. Design of Computer Experiments

When the initial data set is produced by a deterministic computer code (as is the case in the vibration
reduction problem), the term “design of computer experiments,” is more appropriate than design of exper-
iments.28,29 The distinction is necessary because in physical experiments there is measurement error and
other random sources of noise that cannot be controlled, and this affects the choice of the design point.
However, in computer experiments, there is no random error; i.e., for a deterministic computer code, a given
input will always yield the same output. Thus, the design of computer experiments need only be space-filling.
Figure 4 illustrates the difference between a conventional design of experiment and a space-filling design. In
the figure, locations of design points where experiments are to be conducted, which in this case represent
design points where aeroelastic response simulations are performed, are illustrated for a design space which
has two design variables.

X1 X1

X2X2

Design for Physical Experiments
• account for variability

Design for Computer Experiments
• space filling

Figure 4. Design of physical experiment vs. design of computer experiment

A commonly used space-filling design is Latin hypercube sampling (LHS).30 In LHS, each design variable
is partitioned into Nsp equally spaced sections, or strata. Every design variable Di, where i = 1, 2, ..., Ndv, is
sampled once in each strata, which forms Ndv vectors of size Nsp. The components of the Ndv vectors are then
randomly combined to form an Nsp ×Ndv matrix known as a Latin hypercube, where each row corresponds
to a design point at which a computer experiment is performed. A major disadvantage of Latin hypercube
sampling is that design points can cluster together due to the random process by which design points are
created. To prevent this, Optimal Latin hypercube (OLH)31 sampling is used in this study to ensure a more
uniform (or space-filling) design of computer experiment. Optimal Latin hypercube sampling creates a more
uniform design than conventional LHS by maximizing a spreading criteria, rather than randomly creating
design points from the samples. Details on the OLH algorithm used in the present study can be found in
Ref. 32. Figure 5 illustrates the difference between a conventional Latin hypercube and an optimal Latin
hypercube.

Methods for fitting the data points in the OLH are described next.

B. Polynomial Regression

Suppose a deterministic function of Ndv design variables, that needs to be approximated, has been evaluated
at Nsp sample points. Sample point i is denoted x(i) = (x(i)

1 , ..., x
(i)
Ndv

) and the associated response is given
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X1 X1

X2X2

Conventional Latin Hypercube
• design points may cluster

Optimal Latin Hypercube
• more uniform design points

Figure 5. Conventional LH vs. Optimal LH in two dimensional design space.

by y(i) = y(x(i)) for i = 1, ..., Nsp. A polynomial regression approximation to y(x) can be written as

y(x) = ŷ(x) + εpr (9)

where ŷ(x) is the function chosen to approximate the true response y(x), and εpr is the error associated with
the approximation. It is important to note that the errors are assumed to be independent; i.e. the errors at
two points close together will not necessarily be close. This assumption will be revisited when considering
kriging. In this study, 2nd order polynomials are used for ŷ(x). The least squares regression approximation
is given as33

ŷpr = β0 +
Ndv∑
i=1

βixi +
Ndv∑
i=1

Ndv∑
j=1,i<j

βijxixj +
Ndv∑
i=1

βiix
2
i . (10)

C. Kriging

Kriging is based on the fundamental assumption that errors are correlated, which is in contrast to the
assumption of independent or uncorrelated errors made in polynomial regression. This implies that one
assumes the errors at two points close together will be close. In fact, the assumption that the errors are
uncorrelated is only appropriate when the sources of error are random, such as in the case of measurement
error or noise. In the case of deterministic computer simulations, there is no source of random error.
Therefore, it is more reasonable to assume that the error terms will be correlated and that this correlation
is higher the closer two points are to each other. In kriging, the unknown function y(x) is assumed to be of
the form

y(x) = f(x) + Z(x) (11)

where f(x) is an assumed function (usually polynomial form) and Z(x) is a realization of a stochastic (ran-
dom) process which is assumed to be a Gaussian process with zero mean and variance of σ2

var (i.e. Z(x)
follows a normal, or Gaussian, distribution).12,34 The function f(x) can be thought of as a global approx-
imation of y(x), while Z(x) accounts for local deviations which ensure that the kriging model interpolates
the data. The covariance matrix of Z(x), which is a measure of how strongly correlated two points are, is
given by

Cov[Z(x(i)), Z(x(j))] = σ2
varRkrg (12)

where each element of the Nsp ×Nsp correlation matrix Rkrg is given by

(Rkrg)ij = Rkrg(x(i),x(j)) (13)

and Rkrg(xi,xj) is a correlation function which accounts for the effect of each interpolation point on every
other interpolation point. This function is called the spatial correlation function (SCF) and is chosen by the
user. The most commonly used SCF is the Gaussian correlation function,

Rkrg(x(i),x(j)) = exp

[
−

Ndv∑
k=1

ϑk|xk
(i) − xk

(j)|pk

]
, (14)
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which is also employed in this study. The Gaussian SCF is dependent on the distance between two points.
As two points move closer to each other, |xk

(i) − xk
(j)| → 0 and Eq. 14 approaches unity, which is the

maximum value of the Gaussian SCF. In other words, the Gaussian SCF recovers the intuitive property that
the closer two points are to each other, the higher the correlation between the points.

The fitting parameters ϑk and pk are unknown correlation parameters which need to be determined.
In order to determine these parameters, the form of f(x) needs to chosen. The most common choice for
f(x) is f(x) = β where β is a constant. Previous studies have found that modeling with the SCF is so
effective, that using a constant for the global behavior results in little loss of fidelity.12,28,34,35 Another
common simplification, is to fix all pk = 2. When this simplification is combined with the constant global
approximation, the approximation method is known as ordinary kriging. In the present study, kriging models
where pk are not fixed at 2 will be compared with ordinary kriging models. In order to find ϑk and pk, the
generalized least square estimates of β and σ2

var, denoted by β̂ and σ̂2
var respectively, are employed:12,34

β̂ = (1T(Rkrg)−11)−11T(Rkrg)−1y (15)

and

σ̂2
var =

(y − 1β̂)T(Rkrg)−1(y − 1β̂)
Nsp

(16)

where 1 is a vector populated by ones and y is a vector of observed function outputs at the interpolation
points; both vectors are of length Nsp. With σ̂2

var and β̂ known, ϑk and pk are found such that a likelihood
function12,34,36 is maximized. The likelihood function, given in Eq. 17, is a measure of the probability of
the sample data (or interpolation data) being drawn from a probability density function associated with a
Gaussian process. Since the stochastic process associated with kriging has been assumed to be a Gaussian
process, one seeks the set of ϑk and pk that maximize the probability that the interpolation points have been
drawn from a Gaussian process.

−
[
Nsp ln(σ̂2

var) + ln |Rkrg|
]

2
(17)

The maximum likelihood estimates (MLE’s) of ϑk and pk represent the “best guesses” of the fitting param-
eters. Any values of ϑk and pk would result in an interpolating surrogate, but the “best” kriging surrogate
is found by optimizing the likelihood function. This auxiliary optimization process can result in significant
fitting time depending on the size of the system. Due to the optimization process needed to create the
kriging surrogate, kriging is only appropriate when the time needed to generate the interpolation points is
much larger than the time to interpolate the data – which is the case in the helicopter vibration problem.
The UMDIRECT global optimization algorithm34,37 is used to find the optimal set of the fitting parameters.
With all parameters known, the kriging approximation to a function y(x) can be written as12,28,34,35

ŷkrg = β̂ + rkrg(x)T(Rkrg)−1(y − 1β̂) (18)

where
rkrg(x) =

[
Rkrg(x,x(1)), Rkrg(x,x(2)), ..., Rkrg(x,x(Nsp))

]T

(19)

The column vector rkrg(x) of length Nsp is the correlation vector between an arbitrary point x and the
interpolation points, x(1), ... , x(Nsp)

D. Radial Basis Function Overview

Radial basis function (RBF) interpolation is similar to kriging in the sense that they are based on Gaussian
correlation functions. However, in this paper RBF interpolation refers to an approximation method based on
Gaussian correlation functions that does not include a constant global approximation term, unlike kriging.
The method of RBF interpolation used in this study is based on the method employed in Ref. 13. A brief
description of the methodology for generating the RBF surrogate is described next.

In RBF surrogates, the approximate response is a weighted sum of basis functions:

ŷ =
Nsp∑
i=1

wiφRBF

(∥∥∥x− x(i)
∥∥∥)

(20)
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where φRBF(∗) is typically a non-linear function depending on the Euclidean distance (denoted by
∥∥x− x(i)

∥∥)
between two design points. The coefficients, wi, must be found such that the surrogate interpolates the initial
data points. Thus, the following condition must be satisfied for j = 1, ..., Nsp:

ŷ(x(j)) =
Nsp∑
i=1

wiφRBF

(∥∥∥x(j) − x(i)
∥∥∥)

(21)

By defining the vectors w = [w1, w2, ..., wNsp
]T, y = [y1, y2, ..., yNsp

], and the Nsp ×Nsp matrix ΦRBF with
elements (ΦRBF)ij = φRBF

(
|x(i) − x(j)|

)
, Eq. (21) can be rewritten as

ΦRBFw = yT (22)

If the inverse of ΦRBF exists, then the weighting coefficients are

w = (ΦRBF)−1yT (23)

and the RBF surrogate is
ŷRBF (x) = φφφRBFw = φφφRBF(ΦRBF)−1yT (24)

where
φφφRBF =

[
φRBF

(∥∥∥x− x(1)
∥∥∥)

, φRBF

(∥∥∥x− x(2)
∥∥∥)

, ..., φRBF

(∥∥∥x− x(Nsp)
∥∥∥)]

. (25)

As stated above, Eq. (24) shows that the RBF surrogate does not include a constant global approximation
term, unlike Eq. (18) which includes β̂. Gaussian correlation functions of the form given by Eq. 26 are used
for the basis functions in Eq. 20.

φRBF(η) = exp(−η2/2τ2) (26)

In this case, the dummy variable η would be
∥∥x− x(i)

∥∥. As described in Ref. 13, the fitting parameter τ is
found by leave-one-out cross validation. This process is described below:

1. The design variables are scaled to vary from 0 to 1. The possible values of τ are then spread over the
domain [10−2, 101] on a logarithmic scale, which is an appropriate domain when the design variables
are scaled as mentioned.13

2. For each value of τ , Nsp RBF models are created, leaving one interpolation point out each time, as if
only Nsp − 1 interpolation points exist. Therefore, for each value of τ , Nsp evaluations of Eq. 24 are
required and each evaluation involves the inversion of the Nsp × Nsp matrix ΦRBF. Since a large set
of τ can lead to an excessive number of evaluations of Eq. 24, only 15 values for τ were considered so
that the RBF remains computationally tractable.

3. The difference between the true response at the left out point and the response predicted at the left
out point by the RBF model based on Nsp − 1 points is computed.

4. The value of τ that minimizes the sum of these residuals is selected as the fitting parameter.

V. Results

This section presents the accuracies of the approximation methods that have been described together
with vibration reduction results using surrogate objective functions. The helicopter configuration used in all
computations is given in Table 1. The simulations are conducted at an advance ratio of 0.15 and descent
angle of 6◦, where high vibration levels due to strong blade vortex interaction (BVI) are encountered.38

Figure 6 illustrates a helicopter in descent; this figure is also employed for the propulsive trim calculation.
In addition to the information provided in Table 1, additional information is needed on the baseline

design, the objective function, the constraints, and specific locations of the spanwise stations where the
design variables are specified. This information is provided below.

The baseline design was determined by tuning x1, x2, t1, t2, t3 and mfiller such that the baseline blade
has fundamental frequencies similar to an MBB BO-105 blade, while assuming aluminum material properties.
The baseline blade was assumed to have uniform spanwise properties, and the non-structural mass at the
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Table 1. Rotor and helicopter parameters needed for the computations.

Dimensional Data
R = 4.91 m Ω = 425rpm

Non-Dimensional Data
Nb = 4 c = 0.05498R

βp = 0.0◦ Cdo = 0.01
θpt = 0◦ αd = 6◦

µ = 0.15 CW = 0.005
σ = 0.07 Cdf = 0.01
XFA = 0.0 ZFA = 0.3
XFC = 0.0 ZFC = 0.3

α

Shaft Axis

αd

k

i

ˆ

ˆ

Figure 6. Helicopter in descent flight condition.

Table 2. Fixed parameters defining the structure and root section.

Aluminum Material Properties
E = 70.7 GPa
ν = 0.33
ρstruct = 2700 kg/m3

Non-structural Filler Mass Density
ρfiller = 237.4 kg/m3

Baseline Cross-Sectional Parameters
x1 = 65.4 mm x2 = 111.6 mm
t1 = 4.66 mm t2 = 8.48 mm
t3 = 2.21 mm mns = 0
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Table 3. Comparison of baseline fundamental frequencies to MBB BO-105 values.

Frequency MBB BO-105 Baseline Blade % Difference
ωF1 1.125/rev 1.080/rev -4.0%
ωL1 0.732/rev 0.729/rev -0.4%
ωT1 3.176/rev 3.173/rev -0.09%

elastic axis was assumed to be zero. The material properties and the baseline cross-sectional design are given
in Table 2, and a comparison of the baseline fundamental frequencies with the MBB BO-105 fundamental
frequencies is given in Table 3. It is not surprising that all three frequencies could not be fit exactly because
the MBB BO-105 blade is a composite blade, while the current study is based on an isotropic blade model.

The weighting factors in the objective function, KS and KM , are selected to be 1. These weighting
factors result in an objective function which represents the sum of the 4/rev oscillatory hub shear resultant
and the 4/rev oscillatory hub moment resultant in the hub-fixed non-rotating frame. For this study, the
following side constraints are enforced:

1.0 mm ≤ t1 ≤ 8.0 mm (27)

1.0 mm ≤ t2, t3 ≤ 12.0 mm (28)

0.0 ≤ mns/m0 ≤ 0.25 (29)

The upper and lower bounds used for the frequency placement constraints are given in Table 4, and are
similar to those used in Ref. 39, which also used cross-sectional dimensions as design variables.

Table 4. Upper and lower bounds on the fundamental frequencies (/rev).

Flap Lag Torsion
ωU 1.20 0.80 6.50
ωL 1.05 0.60 2.50

In the aeroelastic stability constraints given by Eq. 7, the minimum acceptable damping for all modes,
(ζk)min, is chosen to be 0.01, as in Ref. 8. Additionally, the constraints are modified for the 2nd lag mode,
which can sometimes be slightly unstable. To prevent this situation, a small amount of structural damping
is added to this mode, as in Ref. 2. For this study, 0.5% structural damping is added to stabilize the 2nd lag
mode of the baseline blade.

The rotor blade was discretized into the 6 finite elements shown in Fig. 7 and the design variables were
defined at two nodal locations – the 68% and tip stations – resulting in a total of 8 design variables. These
two blade stations were chosen because previous studies have shown that (a)non-structural masses are most
effective for vibration reduction when they are distributed over the outboard 1/3 of the blade40,41 and (b) a
similar configuration has been used successfully for vibration reduction in Ref. 27. The root cross-sectional
variables were fixed at the baseline values and the cross-sectional variables were assumed to vary linearly
between stations. The non-structural mass at the elastic axis inboard of the 68% station was set to zero.

A. Surrogate Accuracy Results

In order to test the predictive capability of the approximation methods discussed in Section IV the surrogates
for the hub shears and moments (see Eq. 8) were used to predict vibratory loads at 45 design points spread
throughout the design space. Four surrogate methods were compared, including 2nd order polynomials,
RBF, ordinary kriging where p is fixed at 2, and kriging where p is not fixed. The predicted vibratory loads
from the surrogates were then compared to the “actual” vibratory loads, which were obtained by conducting
helicopter simulations at 45 test points. The error measures used to quantify accuracy were average percent
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0 %                             20 %                  36 %                52 %                68 %                 84 %             100 %

R

Figure 7. Finite element discretization of the blade.

error, maximum percent error, and minimum percent error. The absolute percent error is simply

εi =
|y(i) − ŷ(i)|

y(i)
(30)

where y(i) is the “actual” response computed by the helicopter simulation for a blade design defined by x(i)

and ŷ(i) is the response predicted by the surrogate at x(i). The average percent error, maximum percent
error, and minimum percent error are:

εavg =
∑Ntp

i=1 εi

Ntp
(31)

εmax = Max{ε1, ..., εNtp} (32)
εmin = Min{ε1, ..., εNtp} (33)

where Ntp is the number of test points. The minimum and maximum percent errors represent the best and
worse predictive errors respectively. These error measures are localized since they only represent one point
of the 45 test points. However, the average percent error is a more global representation of a surrogate’s
predictive capability since all 45 test points are included.

Two optimal Latin hypercubes(OLH’s) were used to create the fitting points for the surrogates – an 80
point OLH and a 250 point OLH. Since the computational cost of evaluating the actual constraints is low,
the constraints at each point in the OLH were evaluated first. Designs that violated the constraints were
removed from the data set so that expensive forward flight simulations would not be wasted. From the 80
point OLH, 61 points were feasible and had converged trim solutions; while out of the 250 point OLH, 151
points were feasible with converged trim solutions.

One of the advantages of surrogate based optimization with design of computer experiments is that each
simulation corresponding to a design point in the OLH can be run independently of the other design points,
and therefore the simulations can be run in parallel. The helicopter simulations were run on a parallel
cluster with 1.8 Ghz Opteron processors. The simulation time was about 4 hours per simulation and 10
to 20 simulations were run simultaneously. Results for the error measures for each surrogate are given in
Figs. 8a- 8c for the 61 point design of computer experiment, and Figs. 9a- 9c for the 151 point design of
computer experiment.

High maximum fitting errors, particularly for the horizontal and vertical hub shear components F4X and
F4Z , can be seen in Figure 8a for the 61 point data set with all four surrogate approaches. This suggests
that there are localized regions in the design space where the surrogates may not be reliable. Although the
2nd order polynomials are clearly the least accurate, none of the surrogates distinguish themselves as being
the best approximation method in terms of maximum and minimum percent errors. Figure 8c shows that
the kriging models are superior in terms of average errors, which range from 10-55% for the kriging models.
The results for average error shows that both kriging models are superior in terms of accurately modeling
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Figure 8. Surrogate errors in percentage for the 61 point data set.

vibrations over the entire design space. By comparison, the two kriging models seem to provide predictions
with similar degrees of accuracy.

When 151 data points are used, all three error measures for each surrogate are reduced compared to the
61 point errors. However, Figure 9a shows that all of the surrogates still produce poor predictions in certain
localized regions of the design space, although they are noticeably better compared to Fig. 8a (Note the
difference in scales on the vertical axes between Fig. 9 and Fig. 8). Similar to the 61 point case observed
earlier, Figure 9c shows that both kriging models are superior at approximating the vibratory loads over the
entire design space, with average errors of 5-37%. In addition, it is not evident that one kriging model is
superior to the other when using 151 interpolation points. Overall, it can be concluded from Figures 8- 9 that
2nd order polynomials are the worst of the surrogate methods and kriging is the best method for capturing
the behavior of the vibratory loads over the entire design space. Furthermore, there is no clear advantage
in fitting accuracy in the more general kriging method, i.e. where p is not fixed at 2, compared to ordinary
kriging.

B. Optimization Results

The surrogate based optimization (SBO) conducted in this study is non-adaptive, otherwise known as the
“one-shot” approach, which means that the surrogate is not updated with objective function evaluations
as the optimization progresses. While it is important to use an adaptive method so that the optimization
process does not lead to regions of high uncertainty in the surrogate, the focus of this study was on the
effectiveness of the approximation techniques and not on the search algorithm. The optimization of the
surrogate objective function was conducted with the iSIGHT42 software package using the Multi-Island
Genetic Algorithm for a global search of the surrogate, followed by a local gradient based search. Only
the surrogates based on 151 data points were used for optimization since they were the most accurate. In
addition, optimization results based on kriging when p is not fixed at 2 are not shown because they were
identical to the ordinary kriging optimization results.

14 of 21

American Institute of Aeronautics and Astronautics



F4X F4Y F4Z M4X M4Y M4Z

 %
 e

rr
or

s

F4X F4Y F4Z M4X M4Y M4Z

F4X F4Y F4Z M4X M4Y M4Z

a) Maximum Errors b) Minimum Errors

c) Average Errors

2nd order PR

RBF

Ordinary Krg.

Kriging %
 e

rr
or

s
0

1

2

3

4

5

6

0

100

200

300

400

500

600

0

10

20

30

40

50

60

70

Figure 9. Surrogate errors in percentage for the 151 point data set.

In Table 5, the predicted vibration reductions at the SBO optimal designs are compared with the “actual”
vibration reductions computed by the helicopter simulation at the SBO optimal designs. Note that vibration
reductions are computed relative to the vibration levels of the baseline blade, and each surrogate generates
a different optimal design. The results in Table 5 clearly show that the kriging model leads to the most

Table 5. Comparison of predicted vibration reductions vs “actual” vibration reductions.

Surrogate Predicted % Vibration Reduction Actual % Vibration Reduction
(relative to baseline) (relative to baseline)

2nd order poly. 42.84 % 41.77 %
RBF 79.31 % 74.03 %
Ordinary krg. 84.27 % 83.71 %

optimal design. Furthermore, the 2nd order polynomial is inferior compared to the kriging and RBF methods.
The significant levels of vibration reduction shown in Table 5 obtained using the RBF and ordinary kriging
surrogates suggest that the baseline blade may not be a good design in terms of vibrations. The choice
of a baseline blade is revisited later in this section. The results in Table 5 are deceiving since they may
lead one to believe that the surrogates are extremely accurate at the optimal designs, because the vibration
reductions predicted by the surrogates are close to the actual vibration reductions computed by the helicopter
simulations. However, the surrogates were not fit to the vibration objective function directly; rather they
were fit to the individual hub shears and moments which form the objective function (see Eq. 8). Therefore, a
more appropriate measures of the surrogate accuracies at the optimal designs are obtained by comparing the
approximated hub shears and moments to the actual hub shears and moments computed by the helicopter
simulation. This comparison is shown in Fig. 10, which shows that surrogate predictions at their respective
optimal designs are not as accurate as Table 5 suggests. In fact, for F̂4X and F̂4Y the 2nd order polynomial
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predicts negative values, which also occurs for the RBF prediction of M̂4Z (Note that the negative values are
not reflected in Fig. 10 since absolute errors are plotted). Negative values are not possible since the quantities
being modeled represent the amplitudes of the 4/rev hub loads. Therefore it is advisable to model the sine
and cosine components of the oscillatory hub loads and then compute the amplitudes based on the surrogate
components in order to guarantee positive amplitudes. Although Figure 10 shows that the surrogates at
the optimal designs are not as accurate as Table 5 suggests, the amount of vibration reduction shown in
Table 5 demonstrates that enough of the behavior of the objective function has been captured such that the
surrogates predict regions of improved design.
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Figure 10. Absolute % errors of the hub loads predicted by the surrogates relative to the actual hub loads at
the optimal designs.

Figure 11 shows the optimal hub loads computed by the helicopter simulation at the optimum design from
each surrogate, along with the baseline hub loads. From this figure, it is clear that all surrogates effectively
reduce all of the vibratory load components. Moreover, ordinary kriging results in the lowest values of each
hub shear and moment, except M4Y where the RBF surrogate is only slightly better, which further supports
the argument that ordinary kriging is the most effective surrogate for producing reduced vibration designs.
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Figure 11. Comparison of optimal vibratory loads with baseline values

The optimal and baseline designs summarized in Table 6 show that the RBF and kriging optimal designs
are similar in all the design variables, except t3 at both the 68% and tip stations. This suggests that the
optimal designs obtained by RBF and kriging surrogates fall in a general region of the design space with
reduced vibrations, and that the kriging method is capable of identifying a better solution within the region.

As mentioned earlier, the baseline blade seems to have poor vibration characteristics. Therefore a more
accurate representation of an MBB BO-105 blade, which has better vibration characteristics than the baseline
blade, is used for comparison against the optimal hub loads. The more accurate MBB BO-105 blade design
reproduces all of the fundamental frequencies given in Table 3 exactly, which could not be done with the
baseline design in this study. The cross-sectional properties of the blade resembling an MBB BO-105 were
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Table 6. Optimal and baseline designs.

Design Variable Baseline 2nd order poly. RBF Ordinary krg.
t1 @ 68% R (mm) 4.657 3.029 1.568 1.971
t2 @ 68% R (mm) 8.482 5.717 2.916 2.709
t3 @ 68% R (mm) 2.214 5.161 5.165 3.342
mns/m0 @ 68% R none 0.135 0.242 0.222
t1 @ 100% R (mm) 4.657 5.158 6.739 7.035
t2 @ 100% R (mm) 8.482 7.050 10.500 9.235
t3 @ 100% R (mm) 2.214 5.465 3.218 7.773
mns/m0 @ 100% R none 0.172 0.246 0.239

input directly into the helicopter simulation rather than calculate them from cross-sectional dimensions and
material properties. Table 7 compares the actual levels of vibration reduction obtained from the helicopter
simulation using the optimal blade designs of Table 6 with the vibration levels of the blade resembling an
MBB BO-105 blade. Even relative to the better blade design, the RBF and ordinary kriging surrogates still
produce significant levels of vibration reduction. By contrast, the optimal design produced by the 2nd order
polynomial is worse than the MBB BO-105 blade.

Table 7. Comparison of actual % vibration reductions relative to the MBB BO-105 values.

Surrogate Vibration Reduction
2nd order poly. 17.39% increase
RBF 47.65 %
Ordinary krg. 67.16 %

The 4/rev vibratory hub loads are shown in Fig. 12 for the optimal designs and the blade resembling an
MBB BO-105. All of the optimal designs have significantly reduced the dominant vertical shear component,
though all the other vibratory components are somewhat increased. However, these components are not
substantially increased by the optimum designs, with the exception of the 2nd order polynomial case.

0

0.0005

0.001

0.0015

0.002

0.0025

F4X F4Y F4Z M4X M4Y M4Z

No
nd

im
en

sio
na

l 4
/r

ev
 V

ib
ra

to
ry

 H
ub

 Lo
ad

s

2nd order poly.

MBB BO105

RBF

Ordinary krg.

Figure 12. Hub loads for the optimal designs, and the MBB BO-105 blade.
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VI. Conclusions

The results in this paper demonstrate that stochastic process based approximation methods like kriging
and RBF’s can lead to blade designs with reduced vibration levels. Even with localized regions in the design
space where the prediction based on the surrogates is poor, they still captured enough of the behavior over
the entire design space such that they could be used to find regions of improved design. The principal results
from this study are summarized below.

1. Among the methods considered, kriging was the most effective method for approximating vibratory
loads over the entire design space, and for locating an optimum blade design. Although the average
accuracies of kriging were the best, the surrogate was susceptible to extremely high errors at certain
design points. The 2nd order polynomial was the worse approximation method considered.

2. Allowing the parameters p to vary in the kriging fitting process does not offer any clear advantages
over ordinary kriging.

3. Using ordinary kriging and RBF surrogates, vibration reductions relative to an MBB BO-105 blade
model of 67% and 48%, respectively, could be achieved.

4. The high maximum errors suggest that kriging and RBF surrogates cannot be used for precise predic-
tions of vibrations everywhere in the design space (at least without adding more interpolation points),
although they are still useful in finding optimal designs.

Appendix A

The development of the perturbation equations used in the linearized stability analysis are given in this
appendix. The process used in Ref. 8 has been modified to take into account the RFA aerodynamic model.
In Ref. 8, the blade equations of motion were only a function of the blade response and trim parameters,
i.e.,

fb(qb, q̇b, q̈b,qt) = 0 (34)

where qb is the vector of generalized modal coordinates representing the blade degrees of freedom and qt

is the vector of trim parameters which are uniform inflow and collective pitch for hover. In this study, the
blade equations of motion are written as

fb(qb, q̇b, q̈b,xa,qt) = 0 (35)

where xa is the vector of aerodynamic states introduced by the RFA aerodynamic model. Correspondingly,
there is a set of governing ODE’s for the aerodynamic state vector,

ẋa = ga(qb, q̇b, q̈b,xa,qt). (36)

Equations 35 and 36 represent the coupled set of ordinary differential equations that govern the rotor blade
system. The components of Eqs. 35 and Eqs. 36 are formed numerically as part of the helicopter simulation,
and detailed equations for the components can be found in Refs. 22 and 43. Since these equations are
coupled, the combined system must be linearized. The linearization process is now discussed.

Following the development in Ref. 22, Eq. 35 is rewritten as

fb = gb(qb, q̇b,xa,qt) + M(qb,qt)q̈b = 0 (37)

where
M ≡ ∂fb

∂q̈b
. (38)

Dependence on q̈b is eliminated by substituting Eq.( 38) into Eq.( 36), yielding

ẋa = gaR(qb, q̇b,xa,qt). (39)

Perturbing Eq.( 35) about the static equilibrium and neglecting higher order terms gives[
∂fb
∂q̈b

]
y0

∆q̈b +
[

∂fb
∂q̇b

]
y0

∆q̇b +
[

∂fb
∂qb

]
y0

∆qb +
[

∂fb
∂xa

]
y0

∆xa = 0 (40)
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where y0 is the static equilibrium vector and is given by

y0 =

 qb0

q̇b0

ẋa0

 (41)

The “0” subscript denotes static equilibrium solution.
From Eq. 37, [

∂fb
∂q̇b

]
y0

=
[
∂gb

∂q̇b

]
y0

(42)

[
∂fb
∂qb

]
y0

=
[
∂gb

∂qb

]
y0

(43)

[
∂fb
∂xa

]
y0

=
[

∂gb

∂xa

]
y0

. (44)

Substituting Eqs.( 42- 44) and Eq.( 38) into Eq.( 40) gives

[M]y0
∆q̈b +

[
∂gb

∂q̇b

]
y0

∆q̇b +
[
∂gb

∂qb

]
y0

∆qb +
[

∂gb

∂xa

]
y0

∆xa = 0 (45)

Solving for ∆q̈b yields

∆q̈b = −M−1

[
∂gb

∂q̇b

]
y0

∆q̇b −M−1

[
∂gb

∂qb

]
y0

∆qb −M−1

[
∂gb

∂xa

]
y0

∆xa. (46)

Similarly, Eq. 39 can be linearized, yielding

∆ẋa =
[
∂gaR

∂q̇b

]
y0

∆q̇b +
[
∂gaR

∂qb

]
y0

∆qb +
[
∂gaR

∂xa

]
y0

∆xa. (47)

Combining Eqs.( 46) and ( 47) with the trivial perturbation equation ∆ẏb = ∆ẏb into first-order state space
form gives

ż = [A(y0)]z (48)

where

[A(y0)] =


0 I 0

−M−1
[

∂gb

∂qb

]
y0

−M−1
[

∂gb

∂q̇b

]
y0

−M−1
[

∂gb

∂xa

]
y0[

∂gaR

∂qb

]
y0

[
∂gaR

∂q̇b

]
y0

[
∂gaR

∂xa

]
y0

 (49)

and

z ≡ ∆y =

 ∆qb

∆q̇b

∆xa

 (50)

As mentioned, the stability of the system is determined by the eigenvalues of A.
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