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1 Introduction 

The ability of conservative, dissipative difference 
schemes to  capture shocks in discrete flow solutions is 
much appreciated and fairly well understood. Some un- 
resolved issues in shock capturing concern the existence 
and uniqueness of steady shock structures [1,2], numer- 
ical noise radiated by captured shocks [3,4,5], and ro- 
tationally invariant shock capturing [6,7]. All of these 
arise from pursuing the narrowest possible shock pro- 
file under all circumstances, and hardly detract from 
the utility of the technique. 

Less understood, but no less of a miracle, is the abil- 
ity of difference schemes to  capture sonic points in dis- 
crete solutions, especially in steady solutions, where 
the transition through a sonic point marks a bifurca- 
tion. In quasi-one-dimensional nozzle flow, for exam- 
ple, the transonic solution is an isolated solution of the 
boundary-value problem: perturbing the inflow Mach 
number renders the solution either fully subsonic or un- 
steady. 

Steady numerical solutions containing sonic points 
may exhibit a variety of oddities. If the discrete scheme 
does not recognize the entropy condition, i.e., if it ad- 
mits expansion shocks, an arbitrarily large jump may be 
found where one expects a smooth transition through 
the sonic point [8]; if it does, the solution may still 
exhibit a jump of magnitude O(Ax) [9], or a twecell 
plateau (see below), or anything in between, in addition 
t o  being non-unique and slow to converge. The small 

the transonic puzzle have been carried on by others, 
viz. Harten [12], Roe (as reported in [8]), and Good- 
man and LeVeque [13]; the missing piece is produced 
here. The secret of success lies in treating the source 
term in the same way as the flux-derivative term; this 
has the appearance of applying an entropy fix to  the 
source term. In reality all that is done is balancing the 
flux derivative and the source term in both forward- 
and backward-moving parts of the transonic expansion 
fan. 

2 Basic upwind scheme 

Our starting point is the first-order upwind-differencing 
scheme of Roe[l4] and Van Leer [8] for a hyperbolic 
system of equations incorporating a source term: 

t o  fix our thoughts we shall think of this equation as 
representing the quasi-one-dimensional Euler equations 
for flow in a duct with a variable cross-section D(x).  A 
steady transition from subsonic t o  supersonic flow can 
only occur when D1(x) = 0, D1'(x) > 0, i.e., in a throat. 

The difference scheme can be written as 

- 

transonic Jump, in particular, can be found in -in which the numerical flux f~lnction fi+$ is defined as 
ous published flow solutions obtained with first-order 
upwind methods [3,10]; higher-order upwind methods, fi++ -- f ( ~ i ,  ~ i + l )  
though, if patterned after the MUSCL scheme [ l l ] ,  are 
insensitive to  the presence of a sonic point. 1 

= - [ f ( ~ i ) + f ( ~ i + ~ ) ]  
In what follows we shall derive and test a proto- 2 

type scheme that produces perfectly smooth transonic 1 
solutions to  nozzle-flow problems, without recourse to -- [ l ~ l i + $  (%+I - ui) - l i l i + + ~ x ]  ; (3) 2 
heavy-duty artificial dissipation. Most of the pieces of 

the notation requires further explanation. 
Professor, Member AIAA 

t Graduate Research Assistant dfldu = A = RARdl, where A r diag(ak) carries 
t Assistant Professor, Member AIAA the characteristic speeds in the diagonal; 

Copyright @ American Institute of Aeronautics and 
Astronautics, Inc., 1989. All rights reserved. 

176 



t r, 

0 IAl = R ~ A ~ R - '  with - dx - A 6a 0 A - 
d t  - a - 7  a- a a+ 

diag (Iakl) ; (4) 

also useful are the definitions 

A* = RA*R-', A* = diag ( a t )  , (5) 

and the relations 

A + + A - = A ,  A+-A-=IAI ;  (6) x I 2 s  XI++ xI+1 x 

0 I S [  = C Jzk lRk follows after writing s = Rz = Figure la :  Geometry of transonic expansion fan: space- 
zkRk,  i.e., expressing s in terms of the right time diagram. 

eigenvectors of A; other useful definitions are 

with 
s+ + s- = S, s+ - s- = IsI; (8) 

A. 1 E A(ui+l) ,  where u. 1 .ir(ui, ui+') is the '+ a '+ a 
Roe average [14] of ui and ui+l; similarly, i .  A E '+ a 

s(Gi++). 

With the above flux function the full scheme (2) can be 
written in a form that shows its upwind character: 

for each k a t  each interface x j+ l .  
The scheme thus formulated does not contain an "en- 

tropy fix", i.e., a special measure t o  break down expan- 
sion shocks. Suppose that in cell I there is a sonic point 
in the k-th characteristic field, i.e. 

then the vk-component in UI, i.e., the component along 
Rk ,  is not updated, as seen from (10). This is the reason 
why an initially present expansion discontinuity may 
not decay. In the next section we shall discuss how 
to  modify the flux function in order to  prevent such 
unphysical behavior. 

3 Satisfying the Entropy Condi- 
t ion 

Note that both the flux difference and the source term To satisfy the entropy condition we merely have to  build 
are split t o  achieve upwind bias. Although a first-order into the flux formula the model of a smooth transonic 
time-stepping scheme, (9) becomes second-order accu- expansion wave; this will generate a small artificial vis- 
rate when the solution becomes steady: each flux differ- cosity of a special functional form. 
ence is centered on the same interval as the source term Assume, therefore, we have a characteristic field with 
that  must balance it. Eq (9) can further be expanded a sonic point between XI and x ~ + l ;  we shall approxi- 
as mate the spatial variation of the characteristic speed 

u;+l = by a linear distribution, as shown in Figure 1. In the 
following derivation, the subscript k is suppressed for 
clarity. In the transonic expansion fan between 

-E (x [hk ( b k ~ v k  - XI and xI+l various average characteristic speeds can 
Ax d k t O  

I- + be recognized: 

0 6 the average characteristic speed in the entire 

+ x [a (hAvk  - fan ; 
8 k < O  h 

0 a+ the average positive characteristic speed in 
here we have introduced the characteristic variables v the fan; 
defined by 

dv = Rdu. 
A 

(111 a- E the average negative characteristic speed in 
, , 

the fan. 
In a steady state without shocks we have 

Because the averaging operation comes after taking the 
h 

(bkAvk - 2 k A ~ ) ~ + +  = 0 (12) positive/negative part of a ,  the quantities a* do not 



Figure lb :  Geometry of transonic expansion fan: a ver- 
sus 2. 

relate to 13 as usual, i.e., 
A h  

a+ # 6+ max(a, 0), a- # ii- E min(&,O), (14) 

but we still have 
h h  

a + + a -  = a ,  (15) 

and we may introduce a consistent absolute value by 
defining 

which, however, does not equal the true average ab- 
solute characteristic speed in the fan. Introducing the 
spread 6a of the characteristic speed across the fan, i.e., 

we have the following expressions, 

valid in the transonic case ax < ci < ax+l, or 

We shall now determine the change of the characteristic 
quantity v across the forward- and backward-moving 
portions of the fan. Conservation and symmetry re- 
quirements dictate the following constraint: 

Assuming that v changes linearly through the fan, 
we take Av in proportion to the width of the for- 
wardlbackward part of the fan, i.e., 

Figure 2: Functions of ii and 6a. 

2a- - -- - Av. 
6 a 

Using (21) to eliminate (AV)*, we may rewrite the 
splitting (20) as 

this, by construction, is an identity. The quantities 
a* * may be called the effective forward and backward 
characteristic speeds in the fan. As seen from (22), they 
still add up to 2, 

and we may again introduce an effective absolute value: 

This is precisely the form of the modified absolute value 
proposed by Harten [12] as a replacement for 161 in Eq. 
(4), in order to circumvent the vanishing of 161 in a 
transonic expansion wave, which would mean vanishing 
dissipation and the possibility of an expansion shock. 
Harten's choice was simply a smooth fit to  the standard 
absolute-value function (see Figure 2); the uniqueness 
of this choice, suggested by the above derivation, ap- 
parently has not been appreciated until now. 



Even more surprising is that Godunov's [15] flux 
function, known to satisfy the entropy condition, can 
be implemented exactly, or in close approximation, by 
using (25). To understand this, we do best to consider 
the special case of the inviscid Burgers equation, 

in which the characteristic speed a equals u itself. 
Godunov's flux is taken from the solution of Rie- 

mann's problem at the cell interface; in a transonic 
expansion this yields 

Using our modified flux function 

with 

( % ~ + i  = UI+I - UI,  

we find the same result: 

This flux function, as mentioned in the Introduction, 
produces a small jump across the sonic point. In an 
attempt to remedy this, Roe, as reported in [8], derived 
a transonic flux for Burgers' equation that is negative: 

This formula, combined with the standard upwind flux 
away from the sonic point, achieves that 

which is exactly how a transonic expansion wave would 
evolve in reality, in the absence of a source. 

The flux function (33) reaches its minimum when the 
sonic point falls exactly at xI++, i.e., when 

the minimum flux value equals 

The same level of dissipation can be reached by the 
modified flux (28) if we artificially double the spread of 
the expansion 'fan, by redefining 

This leads to the transonic flux 

its minimum value is reached in the case of (35) and is 
given by (36). 

At this point it is instructive to investigate how the 
standard upwind flux (3), without entropy fix, com- 
pares to (27) and (33) or (38). In the absence of a 
source term it reads 

- 1 
- min ($:, 5u:+l) (40) 

and reaches a maximum in case (35): 

If we measure the amount of dissipation in a transonic 
flux as the difference between that flux and the above, 
dissipation-free reference flux (39), in the worst case 
(35), we see that Roe's formula (33), and the smooth 
version (38), have twice as much dissipation as Go- 
dunov's formula (27). 

The amount of dissipation in (33) or (38) is still not 
enough to get a smooth transition through the sonic 
point; it needs to be doubled once more, as shown by 
Goodman and LeVeque [13]. In their analysis, the cru- 
cial point is to make the scheme for the transonic region 
consistent with a higher-order equation derived from 
the inviscid Burgers equation: 

Expanding the second term yields 

the second right-hand term can be neglected near the 
sonic point: 



Calling the unknown transonic flux f t ,  and using the 
standard upwind flux a t  21- 4 and XI+;, we find that 
the first-order upwind scheme approximates (43) as 

\ I 

Numerical Fluxes for Inviscid Burgers' Equation 

upon comparing (45) with (44) we see that the former 
will be a consistent approximation to the latter if the 
transonic flux is chosen as 2.00 

1 
ft = -,(.? + .:+I) + u1.1+1. (46) 1.00 

The minimum of this flux again is reached in the case 0.00 
of (35), and equals 4 

3 2 -1.00 
ft(-W+1' UI+I) = - p + 1 ,  (47) 

-2.00 four times as far away from the dissipation-free flux 
(39) as Godunv's flux (27), and twice as far as (33) 
or (38). The same dissipation level can be reached -3.00 

with our generic formula (28) by artificially doubling 
the spread of the transonic fan once more, i.e., by re- 0.00 T 

0 
defining 

( ~ u ) I + +  = 4(ur+i - UI). (48) 

A compact, scale-free way to represent flux formulas Figure 3: Dimensionless numerical fluxes for the invis- 
for Burgers' equation, due to Roe,is to define the angle B~~~~~~ equation. 
variable 0, 

1. Standard upwind flux, Eq. (39), away from tran- 
(494  sonic expansions and compressions 

2. Godunov, Eq. (27), equivalent to Eqs. (28-30) 

Ui+l with 6u = Au 
sin(Oi++) = ,I-' (49b) 3. Osher 

v 
4. Roe, Eq. (33) . . 

and normalize the upwind flux by the central- 5. Modified transonic flux, Eqs. (28-30)' with 6u = 
differencing flux: 2Au 

f (ui, ui+l) 6. Goodman and LeVeque, Eq. (46) 
4(0i++) = 

4 ( 4  +u?+1)' 
(50) 7.  Modified transonic flux with 6u = 4Au 

8. Dissipation-free transonic flux, Eq. (39) 
Figure 3 summarizes all the transonic fluxes mentioned 
before, the standard upwind flux, and two distinct 
fluxes used in a transonic compression shock (ur > 0 > 
u ~ + ~ ) ,  namely, Godunov's and Osher's [lo]. From the 
viewpoint of implicit differencing it is desirable to  have 
a numerical flux function that is differentiable with re- 
spect to  the input states; this condition is met through- 
out by Osher's flux, and by the transonic fluxes of the 
family (28). 

It has been known for some time [16] that Godunov's 
flux represents the border-line of fluxes satisfying the 
entropy condition. To understand this, consider a flux 



of the form (28), with an artificially reduced spread of 
the expansion fan: 

Then there is always some location of the sonic point 
with respect to the cell boundaries for which the cell 
containing the sonic point does not receive any flux con- 
tributions; specifically, this is the case when 

This will lead to  an expansion shock of some finite 
strength. 

4 Treatment of the Source Term 

None of the transonic fluxes derived above will yield a 
good approximation of a steady transonic expansion if 
one fails to treat the source term properly. The most 
dissipative scheme, i.e., the one including (48) as the 
fan's spread, merely seems to smooth an underlying 
roughness of the solution over a few cells (see numerical 
example in next section). 

The question is, how to properly split the source 
term. To answer this, we must go back t o  the geometry 
of Figure 1. Assume that z, just as a ,  varies linearly 
in the transonic region; we may then define a linear 
mapping of z onto a: 

where z, is the source value in the sonic point (see Fig- 
n - 

ure 4). We may define averages i, z+ and Z- on the 
full fan, its forward and its backward part, in the same 

n n 

way as previously a ,  a+  and a-.  This yields, in the 
first place, 

to  be used to eliminate z,; furthermore, 

note that 
A h  

z+ + 2- = z, + 2, (58) 

unlike anything we have seen before. 
In the steady state, the flux difference must be bal- 

anced by the source integral, approximated by i A x  (see 
Eq. (12)); we shall split this term in analogy to (20): 

Here (AX)& denotes the portion of the mesh (xI, XI+  1) 
from which the forwardlbackward characteristics in the 
fan depart. We therefore have 

and we may rewrite the splitting (59) as 

i A x  = z+*(Ax) + z-* (Ax), (61) 

The quantities zf * may be called the effective source 
terms for the forwardlbackward characteristics in the 
fan; as usual, they add up to i; 

z+* + z-* = i .  (63) 

We may now define Izl* as needed to replace li[ in the 
flux function (3): 

Note that if z, = 0, which means that the sonic point 
already lies in the throat of the channel, we have 

therefore. 

which is the same formula as for lal*, cf. Eq. (25). 
The significance of the general formula (64), for 

z, # 0, is illustrated in Figure 4. As long as the steady 
state has not been reached, one will in general find the 
sonic point away from the throat, i.e., z does not vanish 
where a vanishes. The splitting of i according to (64) 
guarantees that ,  when the sonic point approaches its fi- 
nal position, the flux difference and source integral over 
the positive/negative part of the fan smoothly approach 
a perfect balance. Another way to achieve detailed bal- 
ance is to split the source term similarly, but only in 
the throat, regardless of the position of the sonic point. 
This also works but is somewhat clumsy, as one still has 
to define some kind of splitting of i near a sonic point, 
for use in the flux formula (3). Moreover, this approach 
will be harder to generalize to multi-dimensional flow, 
as it requires examining the shape of streamtubes. 

5 Numerical Verification 

The combination of Eqs. (25) and (64) in the flux func- 
tion (3), i.e., 



Figure 4: The Entropy Bypass: synchronous splitting 
of source and characteristic speed near a sonic point. 
Grid points on the x-axis are suppressed; the grid can 
be arbitrarily shifted with respect to the sonic point. 

with 6ak = 4Aak, 6rk = 4&k, performed flawlessly in 
computing steady solutions of both the inviscid Burgers 
equation and the one-dimensional Euler equations with 
source terms. The choice 6ak = 2Aak, 6zk = 2Azk, 
performed equally well in the simple cases we studied, 
and yielded almost the identical solutions. Using 6ak = 
Auk, 6zk = Ark ,  however, made the scheme lose a 
great deal of robustness: unless starting from initial 
values very close to  the correct steady state, the results 
tended toward an incorrect solution featuring a sonic 
plateau. 

Figure 5 shows the steady solution obtained for Burg- 
ers' inviscid equation with a source term, namely, 

1 7r 
Ut + (-u2), = --sin [271.(x - z,) 1 ,  (68) 2 2 

and periodic boundary conditions on the interval (0, l ) .  
The grid is uniform and has 32 cells. The sonic point is 
given by x, = 0, which coincides with a cell face. The 
numerical values in the adjacent cells yield a discrete 
value for d u l d z  of 3.1482, close to  the correct value 7r. 
Repeating the calculation on finer grids confirms the 
point-wise second-order accuracy of the solution. The 
convergence history for the computation of Figure 5 is 
shown in Figure 6. In all the computations reported in 
this section, local time-stepping was used. 

Figures 7 and 8 show solutions of similar quallity, ob- 
tained for different sub-cell locations of the sonic point, 
namely, x, = Ax14 (Figure 7) and x, = Ax12 (Figure 

8). 
Figure 9 shows what happens in using Godunov's flux 

Inviscid Burgers Equation with Source Term 

Computed versus Exact Solutions 

1,251 . .Computed 
- Exact 

10 

Figure 5: Steady transonic solution of Burgers' equa- 
tion with source term. Modified transonic flux, with 
Sa = 4Aa, Sr = 4Az. The sonic point, at  z,  = 0, lies 
exactly a t  a cell face. 

Convergence History 

1.0 

Iterations 

Figure 6: Convergence history for the computation of 
Figure 5. 



Inviscid Burgers Equation with Source Term 
Computed versus Exact Solutions 

1.~~1 , ,Computed 
- Exact 

1 

Inviscid Burgers Equation with Source Term 
Computed versus Exact Solutions 

1 Figure 9: Same as Figure 5, but with Sa = Aa, 6.2 = 
Az. The results converge slowly to  an incorrect solution 
with a sonic plateau. 

Figure 7: Same as Figure 5, but with x, = Ax/4. 

with proper treatment of the source term, i.e., 6ak = 
Auk, 6zk = Azk,  starting from zero initial values. The 
steady solution with the plateau is very hard to  reach, 
as seen from the convergence history in Figure 10; this 
suggests that there may actually not be an exact steady 
discrete solution. The computation may end in a limit 
cycle (not checked). 

Some Euler results are shown in Figures 11-17, for 
flow in a channel with cross-section . .Computed 

- Exact 3 1 
D(x) = - - - cos(wx), -1 5 x 5 1; (69) 2 2 

Inviscid Burgers Equation with Source Term 
Computed versus Exact Solutions 

1.~~1 
the cross-section is constant (=2) outside the interval 
(- 1 , l ) .  Figures 11 and 12 show the Mach-number dis- 
tribution and convergence history for the flux function 
incorporating bak = 4Aak,  6zk = 4Azk, for the non- 
linear characteristic families, i.e., k = 1, 3. Again, the 
agreement with the exact solution is point-wise second- 
order. 

The robustness of the Entropy Bypass is shown in 
Figures 13 and 14, in which oscillatory initial con- 
ditions, with multiple sonic-points, are given. The 
method converges rapidly to the exact solution. 

10 
Figure 15 shows what one loses if the source term is 

not treated according to  Eq. (64). In this case we used 2 

Figure 8: Same as Figure 5, but with x, = Ax, / '. 
with considerable loss of accuracy. 

Finally, Figure 16 is based on the Godunov-like 
flux, with proper source-term treatment, i.e., 6ak = 
Auk, bzk = Ark, k = 1,3. The linear initial- 
value distribution indicated in the figure ended up, 



Convergence History 

Iterations 

Convergence History 

Iterations 

Euler Equations for Channel Flow 

, .Computed 
- Exact 
-- Initial 

Figure 11: 'llansonic solution of the Euler equations 
for flow in a converging-diverging channel; shown are Figure 13: Same as Figure 11, but with multiple sonic- 
Mach-number distributions. Modified flux, with Sak = points in the initial distribution. 
4 h k ,  6zk = 4A.%k, k = 1, 3. 



Euler Equations for Channel Flow 

Mach Number in Channel 

Convergence History 

. .Computed 
- Exact . .Initial 

i0 

Figure 16: Same as Figure 11, but with 6ak = 
Aak, 6zk = Azk, k = 1, 3. Starting from straight-line 
initial values, an incorrect solution with a sonic plateau 

Figure 14: Convergence history for the computation of is slowly established. 
Figure 13. 

Euler Equations for Channel Flow 

as for Burgers' equation, in a solution with a sonic 
plateau. The associated slow convergence can be seen 
from Figure 17. If, on the other hand, one provides 
this Godunov-like scheme with the steady solution from 
Figure 11 as initial-value distribution, it will essentially 
preserve it. 

. .Computed 
- 6 Conclusions and Perspective . .Initial 

The analysis in Sections 2-4 has, among other things, 
yielded the following results: 

0 a numerical flux function for use near a sonic point, 
based on a full model of a transonic expansion 
wave; 

0 a matched treatment for the source term. 

Figure 15: Same as Figure 11, but with incorrect 
source-term splitting, viz.: lil := i(2iilSa). 

The flux formula turns out to  be identical to Harten's 
[12] ad hoc formula. It  contains a free parameter by 
which the rate of spreading of the expansion fan, i.e., 
the dissipation, can be controlled. For optimal robust- 
ness in time marching, this parameter should be given 
a value equal to four times the nominal value that fol- 
lows from the model; this follows from the analysis of 
Goodman and LeVeque [13]. 

Numerical results confirm the correctness of the anal- 
ysis. With the proper flux splitting and source split- 
ting, the first-order upwind scheme of Roe [14] and 
Van Leer [8] produces pointwise second-order-accurate 
steady transonic solutions of the Burgers and Euler 
equations, without transonic jumps or plateaus. 



Iterations 

Figure 17: Convergence history for the computation of 
Figure 16. 

It must be emphasized that the above analysis ap- 
plies exclusively to finite-volume schemes for comput- 
ing steady solutions. For such schemes, what matters 
most is the proper balance, near a sonic point, of flux- 
differences and source terms. This yields the desired 
accuracy in the steady state; for the sake of robustness 
we've had t o  concern ourselves to some extent with tem- 
poral accuracy near a sonic point. The transonic flux 
derived, however, is not the full answer to the question 
of designing a scheme that maintains temporal accu- 
racy in the vicinity of a sonic point; this was pointed 
out by Roe [17]. Future publications of Roe and the 
present authors may address this question in detail. 

The extension of the one-dimensional analysis to 
multi-dimensional flows appears straightforward, if an 
auxiliary flow-aligned coordinate system is adopted. 
The two-dimensional Euler equations, for instance, can 
be written as 

ut + fS + grl = 0, (71) 

where < measures length in the streamwise direction 
and 77 in the normal direction; the 77-derivative of the 
normal flux g may be regarded here as a source term 
that determines the cross-section of the streamtube, 
and may be treated as in the one-dimensional case. 
One thus ends up with fluxes in a coordinate system 
rotated with respect to the grid lines; the fluxes needed 
for advancing the solution on the grid are then obtained 
by the inverse of this rotation. Implementation of this 
quasi-one-dimensional technique is presently under way. 

It has been observed that multi-dimensional flows are 
more forgiving as regards the numerical treatment of 
sonic points than one-dimensional flows. An expan- 
sion shock, for instance, is easily generated in a one- 

Figure 18: Convergence history for two-dimensional 
computations of transonic channel flow, (a) using an 
entropy-violating flux, (b) using an entropy-satisfying 
flux. 

dimensional calculation through the use of a numeri- 
cal flux function like (39), violating the entropy condi- 
tion. In two dimensional calculations, though, expan- 
sion shocks appear to be destroyed by transverse waves. 
Yet, the desire of the numerical solution to derail may 
be evident from a deterioration of the convergence to- 
ward the steady state. An example of loss of conver- 
gence because of an "entropy-violating" flux function 
is given in Figure 18. The flow computed is the two- 
dimensional equivalent of the case of Figure 11, i.e., 
transonic flow in a converging-diverging channel. The 
entrance Mach number for the case was M,  = 0.47. 
The channel had a 20% constriction, and the grid was 
45 x 15. The stagnating residual-convergence curve 
is for the entropy-violating flux; the fully converging 
residual corresponds to the numerical flux function dis- 
cussed in Section 3 (no source term included). 

The example of Figure 18 suggests that there is a lot 
to gain from extending the present analysis to multi- 
dimensional flows. That,  of course, will be the subject 
of a sequel paper. 
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