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Abstract

The thermal conductivities of quartz and the
siliceous zeolites sodalite, faujasite and zeolite-A have
been calculated using molecular dynamics simula-
tions. The predicted thermal conductivities range
over one order of magnitude at room temperature,
and the quartz values are in reasonable agreement
with the available experimental data. Evidence of
phonon scattering is found by considering the lat-
tice statics and dynamics. The lattice pores in ze-
olites are found to distort the SiO4 tetrahedra, and
decrease the thermal conductivity. The integration
of the heat current autocorrelation function in the
calculation of the thermal conductivity is done in fre-
quency space, allowing the contributions of different
vibrational bands to be identified.

Introduction

Advances in nanoscale technology have led to
the possibility of designing and synthesizing materi-
als at the atomic level. Molecular dynamics (MD)
simulations allow for the prediction of the proper-
ties of potential materials, and for optimization of
the design before synthesis is attempted.

Many applications require low thermal conduc-
tivity materials. While the thermal conductivity of a
solid can be reduced by introducing porosity1,2, this
also reduces the strength of the material. Amor-
phous materials also have low thermal conductivi-
ties, but in some cases it may be necessary to use a
crystalline solid.

The wide range of structures that can be built
from the SiO4 tetrahedra present an opportunity to
examine how the atomic level assembly of a solid can
lead to a wide range of thermal transport properties.
To do this, MD simulations have been used to an-
alyze the thermal transport in quartz and siliceous
zeolites. After reviewing the basic theory of ther-
mal transport in dielectrics, and examining the ana-
lytic and numerical methods available for predicting
their thermal conductivities, the results of such sim-
ulations are presented. The thermal conductivity
trends are explained both qualitatively and quan-
titatively. Evidence of phonon scattering and local-
ization is found through analysis of the bond lengths

and angles, and the vibrational spectra of the struc-
tures. Suggestions for the design of new, low thermal
conductivity materials are presented.

Background

Nanoscale Thermal Transport

Heat is transferred in dielectric solids through
the transport of phonons, quanta of energy asso-
ciated with lattice vibrations. A harmonic crys-
tal infinite in extent will have an infinite thermal
conductivity, as there are no mechanisms through
which phonons will interact (i.e., scatter). The ther-
mal conductivity can be reduced through the intro-
duction of phonon scattering centers, which may be
impurities, grain boundaries or local distortions of
the lattice. Phonon scattering also occurs in three
phonon interactions, which result from anharmonici-
ties in the interatomic potential. In solid conductors
(metals), electrons also figure into the thermal trans-
port. In the current work, we focus on the phonon
(lattice) contribution to the thermal conductivity.

From the gas kinetic theory, the thermal con-
ductivity k is predicted to be3

k =
1
3
Cuλ, (1)

where C is the volumetric specific heat, u is the mean
phonon speed and λ is the phonon mean free path.
It is from this phenomenological model that much
of the understanding of phonon thermal conductiv-
ity has been derived.

Analytical Predictions of

Thermal Conductivity

The atomic level analytic techniques available
for predicting the phonon thermal conductivity can
be grouped into two types: those for ordered crys-
tals, and those for disordered crystals and amor-
phous solids. The general approach for both tech-
niques will be presented.

In a crystalline solid, the phonon transport is
phenomenologically represented using a relaxation
time, τ , which is related to the phonon mean free
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path and speed through

τ =
λ

u
. (2)

Different scattering mechanisms (e.g., at defects, at
grain boundaries, three phonon interactions) are as-
signed relaxation times that may depend on frequency,
temperature and/or lattice parameters. Starting from
Eq. (1), and using the Debye model for the specific
heat, the temperature dependence of the thermal
conductivity is predicted to be3

k =
1
3
u2

∫ TD/T

0

τ(x)C(x)dx (3)

where

C(x) =
3kB

2π2u3

(
kB

h̄

)3

T 3 x4ex

(ex − 1)2
(4)

and

x =
h̄ω

kBT
. (5)

In these equations, T is temperature, TD is the De-
bye temperature, kB is the Boltzmann constant, h̄
is the Planck constant divided by 2π and ω is an-
gular frequency. The function τ(x) is an effective
relaxation time at a given frequency. The nature of
the different scattering mechanisms determines how
they contribute to τ(x)3. Use of this model requires
the specification of many parameters associated with
the relaxation times, many of which must be fit from
experimental data. This relaxation time method has
been used to model the thermal conductivities of di-
electrics such as germanium4, silicon5 and alumina6.

Cahill and Pohl7,8 have proposed a model for
the thermal conductivity of disordered crystals and
amorphous solids, given by

kmin =
(π

6

)1/3

kBn2/3
∑

i

[
ui

(
T

Ti

)2

(6)

∫ Ti/T

0

x3ex

(ex − 1)2
dx

]
,

where Ti is defined as ui(h̄/kB)(6π2n)1/3, n is the
number density of atoms, and the summation is over
the three sound modes of the solid. This model is
an extension of the Einstein thermal conductivity9.
The derivation also starts from Eq. (1) and uses
a Debye model for the specific heat. Due to the
disordered structure, lattice waves do not propa-
gate and the thermal transport is localized. The
phonon mean free path is determined based on an

assumption of random walks of energy between an
atom and a limited number of its nearest neighbors.
The predictions of the randon-walk model have been
interpreted as a high phonon scattering limit, or
a minimum thermal conductivity10. Experimental
measurements of a range of disordered crystals and
amorphous solids have not yielded any thermal con-
ductivities significantly below kmin

8. In the high
temperature limit, the value of kmin becomes con-
stant, i.e.,

lim
T→∞

kmin =
(π

6

)1/3 kBn2/3

2

∑
i

ui. (7)

For amorphous silica, kmin reaches 92% of this value
at a temperature of 400 K.

Molecular Simulations Predictions

of Thermal Conductivity

Molecular simulations can be used to predict
phonon thermal conductivity using equilibrium or
non-equilibrium methods. While some of the tech-
niques have been available for a number of decades,
it has not been until the last ten years that comput-
ers have become powerful enough to run simulations
using realistic potentials over sufficient time scales.

In the equilibrium approach, a Green-Kubo for-
malism is used to predict that the thermal conduc-
tivity will be given by11

k =
1

3kBV T 2

∫ ∞

0

〈q(t) · q(0)〉dt, (8)

where V is the volume of the simulation cell, t is
time and q is the heat current, defined as

q =
d

dt

∑
i

riEi. (9)

In Eq. (9), the summation is over the i particles
in the system, r is the location of a particle and
E is its total energy (kinetic and potential). For
computational ease, Eq.(9) can be recast as

q =
∑

i

Eivi +
1
2

∑
i,j

(Fij · vi)rij , (10)

where v is the velocity of a particle and rij and
Fij are the distance and force between particles i
and j. The first term in Eq. (10) corresponds to
the contributions of convection, and the second term
corresponds to conduction. The integrand of Eq.
(8), 〈q(t) · q(0)〉, is the heat current autocorrelation
function (HCACF). A large number of time origins
within the ensemble average are required for good
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convergence. As well, for a given set of independent
variables (e.g., mass, volume and energy), multiple
runs are required with different initial conditions to
get a proper sampling of phase space12.

The heat current is a vector that indicates the
magnitude and direction of the flow of heat in a sys-
tem. At equilibrium, the heat current will oscillate,
and over time average to zero. The Green-Kubo ap-
proach relates the thermal conductivity to how long
it takes for these oscillations to uncorrelate. Pre-
vious work using this approach has calculated the
thermal conductivity of materials such as β-silicon
carbide12, diamond13, amorphous silica14 argon15,
and Lennard-Jones nanofluids16.

Equation (8) can also be recast as17

k =
1

3kBV T 2 [Q(ω)]|ω=0, (11)

where Q(ω) is the Fourier transform of the heat
current. This approach has been used to calculate
the conductivity of amorphous17 and crystalline18

silicon. Non-equilibrium techniques have also been
developed19−25.

The agreement between the MD thermal con-
ductivity predictions and experimental results varies.
The main source of discrepancy is the interatomic
potential used. Many potential functions have been
developed using elastic properties, with no consider-
ation to thermal transport. For example, the Lennard-
Jones potential, widely used in the modelling of No-
bel gases, underpredicts the thermal conductivity of
Argon by a factor of two15. In some cases12,17,18,
the use of quantum corrections has been found to
improve predictions at low temperatures.

Molecular Simulations

Silica Structures

Silica structures are constructed from SiO4 tetra-
hedra. Under ambient conditions, quartz and amor-
phous silica can be thought of as upper and lower
bounds to the thermal conductivity of silica struc-
tures. The quartz structure has a high degree of
order, while the amorphous material is completely
disordered.

Other materials constructed from the SiO4 tetra-
hedron are found naturally and can be synthesized.
Among these are the zeolites26, a class of crystal
characterized by Angstrom sized pores and chan-
nels. One length scale up from the SiO4 tetrahe-
dra, zeolites can be described by secondary build-
ing units (SBUs). In Figs. 1 and 2, a number of
SBUs are shown in the zeolites sodalite, faujasite
and zeolite-A. The SBUs are named based on their

geometry. For example, a 6R SBU is a ring struc-
ture made from 6 oxygen atoms and 6 silicon atoms.
Zeolites are used in industrial applications as des-
iccants, molecular sieves, and catalysts. Typically,
the zeolite framework also contains aluminum atoms
in place of some of the silicon atoms, and the struc-
ture is filled with non-framework anions and diffus-
ing species such as water. In the present simulations,
the focus will be on all silicon-oxygen frameworks,
also known as siliceous zeolites. Initial coordinates
for the structures are taken from Wycoff27.

The four crystals studied using MD are α-quartz
(Q) and the zeolites sodalite (SOD), faujasite (FAU)
and zeolite-A (LTA). The structures are shown in
Figs. 1 and 2. All three zeolites are constructed
from sodalite cages, which can be thought of as a
structure one length scale above the SBUs. In SOD,
the sodalite cages are directly joined at the 4R rings
to form a cubic arrangement of cages. In FAU, the
sodalite cages are joined by oxygen bridges at the 6R
rings, resulting in a diamond arrangement of cages.
LTA is a cubic arrangement of sodalite cages joined
by oxygen bridges at the 4R rings. The complex
zeolite structures lead to the existence of distinct
oxygen positions in the crystal lattice. These are in-
dicated in Fig. 2 for LTA.

Interatomic Potential

The atomic interactions are modeled with the
BKS potential28,29, where the potential energy Uij

between atoms i and j is given by

Uij =
qiqj

rij
+ Aij exp(−bijrij) − cij

r6
ij

, (12)

where q is an atomic charge and A, b and c are con-
stants specified by the types of atoms i and j. The
interatomic force is then calculated from

Fij = −∂Uij

∂rij
. (13)

The BKS potential has been used to predict the ther-
mal conductivity of amorphous silica with reason-
able accuracy22, and in a more limited case, the ther-
mal conductivity of quartz and the siliceous forms of
FAU and LTA21. Parameters are also available for
the inclusion of aluminum, potassium and sodium in
the simulation cell28,29.

The electrostatic interactions are modeled using
the Wolf method30, where the first term in Eq. (12)
is calculated as

qiqj

rij
� qiqjerfc(αrij)

rij
. (14)
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(b) Sodalite (SOD)

a = 8.88 A

(a) Quartz

Unit Cell
a = 

4.91 A

Figure 1: Simulation cells for (a) quartz and (b) so-
dalite. For quartz, the c-direction is perpendicular to
the plane of the figure.

Using the Wolf method instead of the traditional
Ewald sum is advantageous in that it significantly
reduces the required computational time. The Wolf
method is essentially equivalent to ignoring the long
range electrostatic interactions. When the full Ewald
sum was used in the current simulations, the long
range force and energy contributions were on the or-
der of one percent of the short range terms. This
type of behavior has been reported previously31,32.

The parameter α in Eq. (14) provides the damp-
ing necessary to make the electrostatic interaction
short range, and must be specified. Demontis et al.33

suggest choosing a value of 4/L , where L is the size
of the simulation cell. They show that for a range of
crystals, including some zeolites, this value gives the
closest agreement with the full Ewald sum. For the
current simulations, a constant value of α is used so
that the potential is the same for the different crys-
tals studied. A value of 0.223 Å−1 is chosen, which
corresponds to a typical 4/L for the SOD structure.

6 Member
Oxygen 
Bridge
(6R2 SBU)

Sodalite Cage 4R SBU 6R SBU

4 Member
Oxygen 
Bridge
(4R2 SBU)

Silicon

Oxygen 1

SiO4 
Tetrahedron

(b) Zeolite A (LTA)

Oxygen 2
Oxygen 3

8R SBU

a = 12.05 A

(a) Faujasite (FAU)

Figure 2: (a) A portion of the faujasite simulation cell.
Two sodalite cages are shown, joined by a six member
oxygen bridge The connection points of the other cages
on the right cage are indicated with bold lines. The
dashed line indicates that the connection point is in the
rear of the cage. The FAU structure also contains a 12R
SBU. (b) The simulation cell for zeolite-A.

Simulation Procedure

All reported data corresponds to simulations in
the NV E (constant mass, volume and energy), or
micro-canonical, ensemble. The time step used is
0.9 fs. The equations of motion are integrated with
a Verlet leap-frog algorithm. The temperatures con-
sidered are between 100 and 350 K and the simu-
lations are run at zero pressure. The interactions
are truncated and shifted at a radius Rc that is one
half of the shortest side length of the simulation cell.
Specifics of the simulations for each of the four crys-
tals are given in Table 1. In the table, N is the
number of atoms in the simulation cell and ρ is den-
sity.

To determine the zero pressure cell size, simula-
tions were run in the NPT (constant mass, pressure

4
American Institute of Aeronautics and Astronautics



Table 1: MD simulation parameters. Dimensions
and density are at 300 K.

Structure Unit Cell, Atoms/ N ρ,
Å Unit Cell kg/m3

Q 4.91(a) 9 576 2589
5.52(c)

SOD 8.88 36 288 1705
FAU 24.72 576 576 1266
LTA 12.05 72 576 1368

and temperature) ensemble in increments of 50 K be-
tween 100 and 350 K. The temperature and pressure
were controlled using a Nose-Hoover thermostat and
barostat. To account for the cutoff of the potential,
the pressure was corrected by34

Ptail =
2π

3

(
N

V

)2 ∫ ∞

Rc

r3F (r)dr, (15)

which assumes that the local density beyond Rc is
uniform (i.e., the radial distribution function is equal
to unity). For the quartz structure, the pressure was
independently controlled in the x, y and z directions
to allow for the proper relaxation of the non-cubic
unit cell. For the zeolites, the ratio of the three
lengths was fixed at unity. After an initialization
period of 2 × 105 times steps (0.18 ns), data was
collected and averaged over 4× 105 time steps (0.36
ns). The simulation cell size was determined at each
temperature, and a second order polynomial was fit
to the data. The resulting curve is used to specify
the cell size in all subsequent simulations. Consis-
tent with previous experimental and numerical work,
LTA and FAU were found to contract with increasing
temperature21, while quartz and SOD were found to
expand. The size of the unit cell for each structure at
300 K is given in Table 1. Using the results of these
simulations, the temperature dependence of the sys-
tem potential energy was found. This result will be
used in the temperature setting procedure.

For all subsequent simulations discussed, an ini-
tialization period of 5× 105 time steps (0.45 ns) has
been used. The system is run in the NV T (con-
stant mass, volume and temperature), or canonical,
ensemble for 3 × 105 time steps. The potential en-
ergy of the system is then monitored every time step.
When it reaches a value within 10−4% of the fit po-
tential energy-temperature function, the ensemble is
switched to NV E, and the system is run until the
total number of time steps is 5 × 105. This proce-
dure allows the temperature to be set within about
1 K of the desired value. The number of time steps

required to get a potential energy within this tol-
erance is typically less than 1000. This method is
advantageous in that it is passive, as compared to
brute-force temperature scaling procedures. While
running in the NV E ensemble, the total energy is
conserved to with 0.005%.

For the structural data reported, a further 105

time steps (90 ps) are run beyond the initialization
period. The atomic coordinates are extracted at
three instants in time over this period, and the rel-
evant parameters (i.e. bond lengths and angles) are
calculated and averaged over the structure and over
time.

All simulations used in thermal conductivity cal-
culations consist of an additional 106 time steps (0.9
ns) over which the heat current is calculated every 5
time steps. A correlation length of 50,000 time steps
(45 ps) with 2 × 105 time origins is used to extract
the value of the thermal conductivity.

The specification of the integral in Eq.(8) is not
trivial. In theory, the HCACF should decay to zero.
This is not found. Instead, noise is present in the
long time behavior. In some cases, this noise makes
it difficult to determine the converged value of the in-
tegral. In some materials, such as β-silicon carbide12

and argon15, the HCACF decays essentially mono-
tonically. Oscillations are small compared to the ini-
tial value, and the HCACF can be fit with an expo-
nential function, allowing for a direct specification
of the integral. In other cases, such as the current
silica structures, the oscillations in the heat current
are large, and an exponential fit is not suitable. This
type of decay has been attributed to relative oscilla-
tions between bonded atoms with different masses13.

We propose and implement the following scheme.
For each thermal conductivity value reported, five
simulations were performed with different initial con-
ditions. The resulting HCACFs were averaged, and
the resulting function was integrated using the trape-
zoidal rule. The HCACF and its integral for the a-
direction of quartz at 250 K are shown in Fig. 3.
The oscillations in the integral are large, but it does
converge. To establish where the convergence oc-
curs, the integral is average in overlapping blocks of
2500 time steps. This curve is also shown in Fig.
3(b). A region of at least 5000 time steps is chosen
over which the integral is deemed to have converged.
The value of the integral is averaged over this region,
and that is the value used to determine the thermal
conductivity. This method was found to give bet-
ter results that specifying the integral for each in-
dividual HCACF, and then averaging the resulting
thermal conductivity values.

In some cases, the above method was not vi-
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Figure 3: The (a)HCACF and (b)its integral (the ther-
mal conductivity) for quartz(a) at 250 K. This is an
example of a well converged value of the thermal con-
ductivity. The integral is averaged over the indicated
region.

able. As mentioned previously, noise in the HCACF
can cause the integral to diverge. An example of
this behavior is shown for the c-direction of quartz
at 200 K in Fig. 4. To deal with these conditions,
we note that the oscillations in the integral always
reach a minimum (i.e., the integral necks) before
the integral starts to diverge. This is shown in Fig.
4(b). By comparing to the cases where the integral
clearly converges [e.g, Fig. 3(b)], it is found that the
HCACF function beyond this point does not make a
significant contribution to the integral. An average
of the integral is taken over 1000 time steps around
the neck, and this is the value used in the calcula-
tion of the thermal conductivity. The consistency
in the calculated thermal conductivity values gives
support to this method.

Results and Discussion

Thermal Conductivity

A plot of the calculated thermal conductivities
for the four crystals as a function of temperature is

k,
 W

,m
-K

t, ps

0 40302010
0

10

30

20

t, ps
0 40302010

H
C

A
C

F

0

40

80

-40

-80

Neck 
Regime

(a)

(b)

Quartz(c), T = 200 K

Quartz(c), T = 200 K

Raw
Running 
Average

Figure 4: The (a)HCACF and (b) its integral (the ther-
mal conductivity) for quartz(c) at 200 K. This is an ex-
ample of an integral that does not converge. The value
of the integral is taken in the indicated neck regime.

shown in Fig. 5. The values are also presented in Ta-
ble 2. Also included in the figure are experimental
results for quartz and amorphous silica35, and the
predictions of the high-scatter limit, Eq. (6). The
amorphous silica parameters are taken from Cahill et
al.8 For quartz, which is anisotropic, only the ther-
mal conductivity in the c-direction is shown in the
figure. The a-direction data are included in Table
2. The error bars are an indication of the error in
specifying the integral in Eq. (8). This is taken as
10% of the calculated value. Least squares power
law fits are added for the three zeolites.

There is very little experimental or computa-
tional data available for zeolite thermal conductivity.
Murashov21 investigated LTA and FAU using MD,
but appears not have run enough tests to get statis-
tically meaningful results. The data are included in
Table 2. The current MD calculations for LTA are
in good agreement with Murashov’s results, while
the FAU values are higher. Griesinger et al.36 have
measured the effective thermal conductivity of ze-
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Figure 5: Predicted, experimental and theoretical ther-
mal conductivities.

olite powders with various filling gases. They also
present a network model for the prediction of the
thermal conductivity that shows reasonable agree-
ment with the experimental data. We note that
the current work is concerned with bulk properties,
which can be difficult to extract from powder data.

The experimental and MD results for the c-direc-
tion of quartz show agreement to within an average
of 10%. In the a-direction, the MD results are on av-
erage 40% higher than the experimental data. Based
on other MD work that has used a Green-Kubo ap-
proach to calculate thermal conductivity12,18, this
agreement is good. This gives confidence to the abil-
ity of the BKS potential to model thermal transport
in silica structures. None of the crystals has a con-
ductivity below the amorphous value, although the
LTA curve is approaching the amorphous curve as
the temperature increases. The high scatter limit
falls below all of the experimental and MD results.

Of the simulated structures, quartz has the high-
est conductivity, followed by SOD, FAU and LTA.
The general trend of the calculated conductivities
can be thought of in terms of the overall stiffness of
each of the structures. With its high density, quartz
will be the stiffest. For the zeolites, consideration of
the joining mechanisms between the sodalite cages
suggests that SOD (where the cages are directly at-
tached) will be the stiffest, followed by FAU (where
the oxygen bridges contain six elements), followed
by LTA (where the oxygen bridges contain four ele-
ments). This is consistent with the thermal conduc-

Table 2: The predicted thermal conductivities from the

MD simulations. The numbers in square brackets under

the quartz data correspond to experimental values from

Ref. 35. The numbers in square brackets under the FAU

and LTA data are the MD results from Ref. 21. Those

simulations also predict quartz thermal conductivities of

16/8.2 W/m-K at 300 K.

Structure Q(c/a) SOD FAU LTA
T , K k, W/m-K
100 40.7/26.2 7.1 3.0 1.4

[39/20.8] [1.4] [1.2]
150 27.4/17.2 5.3 2.7 1.6

[23.1/13]
200 17.4/14.2 4.7 2.3 1.6

[16.4/9.5] [1.3] [1.5]
250 15.5/12.0 4.0 2.2 1.7

[12.7/7.5]
300 10.3/8.2 3.6 2.1 1.7

[10.4/6.2] [0.6] [1.3]
350 10.3/8.5 3.1 2.0 1.6

[8.8/5.3]

tivity trend.
Of interest are the trends within each struc-

ture and between the structures. Both directions
for quartz, SOD and FAU show the expected de-
crease in the thermal conductivity above one-tenth
of the Debye temperature37, which for quartz is 290
K 2. We assume that the zeolites have a comparable
value. The exponent of the power law fit decreases
between the structures in the direction of decreasing
conductivity. For LTA, all of the calculated ther-
mal conductivities are within a range of 0.3 W/m-K,
which approaches the resolution of the predictions.
A slight increase in the conductivity over the tem-
perature range considered is discernable.

A possible interpretation of this result is that
LTA is displaying the thermal conductivity trend of
an amorphous solid or disordered crystal, as pre-
dicted by Eq. (6). A maximum phonon scatter-
ing (or complete localization) condition has been
reached. The decrease in the exponent of the power
law fits in the other structures is consistent with a
transition from the crystalline behavior to the amor-
phous behavior.

In the low temperature limit, experimental mea-
surements of crystalline thermal conductivity reach
a maximum, and then decrease to zero. At low tem-
peratures, phonon scattering is dominated by impu-
rities and boundary effects. These scattering mech-
anisms are not present in the current simulations,
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Figure 6: The tetrahedral angles found using MD in the
zeolites. The angles can be grouped based on the SBU
with which they are associated.

and it would be expected that the thermal conduc-
tivities will continue to increase as the temperature
is decreased due to the increasingly harmonic nature
of the atomic interactions. Also, at lower tempera-
tures, quantum effects will become important, and
it would not be expected that the MD calculations
will be in as good agreement with the experimental
data.

In the next two sections, we search for evidence
of phonon scattering in the lattice statics and dy-
namics, and for indications of what about the struc-
tures of the different crystals leads to their different
thermal conductivities.

Lattice Structure

The thermal conductivity trends can be seen in
the simulations by considering the root mean square
(RMS) displacement of the atoms or the standard
deviation of the bond length and angle distributions.
A higher RMS or standard deviation will correspond
to larger motions away from the equilibrium posi-
tions, and more anharmonic interactions. This trend
is observed for increasing temperature for all the
structures considered, and is consistent with the de-
creasing thermal conductivity found for quartz, SOD
and FAU. In LTA, there is no effect on the thermal
conductivity because the high scatter limit has been

Table 3: Comparison of the distortion of the tetrahedra
in the four structures and their thermal conductivities
at 300 K.

Structure O-Si-O, Mean Dev. k,
Angles, ◦ From Tetra. W/m-K

Angle, ◦

SOD 4 @ 110.7 1.68 3.6
2 @ 106.9

FAU 1 @ 115.8 3.16 2.1
1 @ 111.7
1 @ 110.2
1 @ 107.5
1 @ 106.5
1 @ 104.7

LTA 1 @ 114.3 3.28 1.7
2 @ 111.8
2 @ 106.2
1 @ 105.8

reached.
While the zeolites considered are distinguishable

based on their unit cells, they can also be charac-
terized by the local environment of each Si atom.
As mentioned, the cages in the zeolites distort the
positions of the oxygen atoms away from the per-
fect tetrahedral positions. This can be seen in Fig.
6, where the variation of the O-Si-O bond angles
in each of the zeolites (as calculated from the MD
simulations) is plotted as a function of temperature.
The zeolites can be compared as they are all con-
structed from sodalite cages using different joining
mechanisms. As quartz does not contain SBUs or
sodalite cages, its inclusion in this analysis is not
appropriate.

From Fig. 6, the resulting angles for the three
zeolites can be organized based on their associated
SBU. The largest angles are those associated with
the large inter-cage pores, followed by those in the
6R SBUs. Below the tetrahedral angle, the angles
associated with the 4R SBU and oxygen bridges are
found. In Table 3, the mean deviation of the angles
in a tetrahedron for each of the zeolites is calculated
based on the average bond angle over the temper-
ature range considered. As the deviation increases,
the thermal conductivity decreases. Thus, the dis-
tortion of the small scale structure can be associated
with an increase in phonon scattering.

Murashov21 has investigated the thermal con-
ductivity of LTA when some of the silicon atoms
are replaced with other species. These replacements
lead to a distortion of the tetrahedra (which can also
be shown using radial distribution functions) and an
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accompanying decrease in the thermal conductivity.
Here, we see that the crystal structure itself can have
the same effect.

Vibrational Spectra

Phonon relaxation times can be extracted from
the imaginary part of the infrared spectrum38. The
width of a peak in the spectrum is related to the
reciprocal of the phonon relaxation time for that
mode. Using experimental spectra and some fit-
ting parameters, Hofmeister38 has used this concept
to develop a thermal conductivity model for various
materials found in the earth’s mantle.

A significant amount of work has been done to
relate the spectra of zeolites to their structural feat-
ures39. While some general guidelines have been
suggested, no definitive interpretations of the spec-
tra have been established.

Using MD, the infrared spectrum can be found
by taking the Fourier transform of the dipole mo-
ment autocorrelation function11. We find the loca-
tion of the spectral peaks of the Fourier transform of
the HCACF to be consistent with those of the dipole
moment. This is likely due to the strong contribu-
tion of the electrostatic term in the force and energy
calculations in Eq. (10). As the HCACF is what
is used to determine the thermal conductivity, its
spectrum will be considered in the ensuing analysis.

The power spectra of the HCACF for all the
structures at 300 K are shown in Fig. 7. The spectra
show qualitative agreement with the infrared spectra
found for zeolites in previous MD simulations40,41.
There are some discrepancies in the peak heights and
locations. This may be due to the consideration of
the heat current as opposed to the dipole moment,
and the different interatomic potentials used.

While the location of the peaks is independent
of the length of the time sample used in the Fourier
transform, the width of the peaks is affected. As
the length of the time sample increases, the peaks
get narrower. The advantage of using a longer time
sample is that the peaks are better defined, and it is
possible to resolve more features. All of the spectra
shown in Fig. 7 were formed using the entire 50,000
time steps in the HCACF. We are thus able to com-
pare how the spectra of a given structure change
with temperature, but comparisons between struc-
tures and quantitative analysis are difficult. A plot
of the phonon relaxation times associated with the
quartz a-direction is shown in Fig. 8. As the temper-
ature increases, the relaxation times decrease. The
resulting decrease in the thermal conductivity is con-
sistent with Eq. (3). The phonon relaxation times
are consistent with the decay times of the HCACF

0 1000800600400200 14001200
Frequency, cm-1

Quartz(c)

Quartz(a)

SOD

FAU

LTA

1

5

4
3

2

0 1000800600400200 14001200

Figure 7: The power spectra of the HCACF for the
four structures (including both the a- and c-directions
for quartz). The vertical scale is the same for all five
plots.

[see Figs. 3(a) and 4(a)].
The integration in Eq. (8) can be performed

over frequency as opposed to over time. By tak-
ing the Fourier transform of the HCACF, filtering
out all frequencies beyond a value ω, taking the in-
verse Fourier transform and then integrating up to
the convergence time period identified in the initial
time analysis, the progression of the integral in fre-
quency space can be studied. A sample of the re-
sulting curves for SOD are shown in Fig. 9 along
with the spectrum of the HCACF at 250 K.

To understand the curves in Fig. 9, a mathe-
matical model of the HCACF can be constructed.
Suppose that the HCACF can be expressed as the
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Figure 8: Predicted phonon relaxation times for the
peaks in the HCACF of quartz(a). The peak numbers
refer to those defined in Fig. 7.

sum of a number of exponentially decaying sinusoids:

〈q(t) · q(0)〉 =
∑

i

Ai exp(−t/τi) cos(ωit). (16)

where A, τ , and ω are constants. The summation is
over the i peaks of the spectrum. There are two im-
portant time parameters associated with each term:
τ is the time constant for the decay of the exponen-
tial envelope, and ω is the frequency of the oscilla-
tions. The Fourier transform of each term in Eq.
(16) is a single peak whose height, width and loca-
tion are related to A, τ and ω respectively. Based
on Eqs. (8) and (16), the thermal conductivity will
be given by

k =
1

3kBV T 2

∑
i

Aiτi

1 + τ2
i ω2

i

. (17)

Note that all the terms in the summation are posi-
tive. While the integration generates negative values
at low frequencies, the only significant value of the
conductivity is the final, asymptotic limit (similar to
the interpretation in the time domain). This result
can be interpreted as finding the thermal conduc-
tivity by summing over the contributions of the dis-
tinct frequencies found in the system, which is anal-
ogous to Eq. (3). Large, narrow peaks will make a
larger contribution than small, broad peaks. Thus,
the damping of specific peaks will result in a shorter
relaxation time, and a decrease of the thermal con-
ductivity.

An ideal method for specifying the integral in
Eq.(8) would be to fit the HCACF with a function

0
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40

20

-60

-40

-20

-80

k,
 W

/m
-K

Frequency, cm-1

150 K

350 K

250 K

SOD

Figure 9: The HCACF for sodalite integrated over fre-
quency. The power spectrum at 250 K is also included.

like Eq.(16) and use the result of Eq.(17). In prac-
tice, this is difficult to do for two reasons. First, as
seen in Fig. 7, some of the spectra contain many
peaks, some of which are close together. The math-
ematical task of fitting a function with up to 30 un-
knowns is formidable. Secondly, if the real form of
the HCACF were Eq.(16), then the noise observed
in the MD results would not be present.

The frequency space analysis reveals that the
source of the noise is the very low frequency modes
of the spectra. Filtering out of all frequencies below
around 25 cm−1 results in an integral with definite
convergence. However, filtering out these frequen-
cies will have a significant effect on the value of the
integral, as can be seen in Fig. 9. Attempts to
smooth out the low frequency behavior by fitting it
with low-order polynomials were unable to generate
consistent results.

Conclusion

The MD simulations described in this study have
demonstrated the suitability of the BKS interatomic
potential for predicting the thermal conductivity of
silica structures between temperatures of 100 and
350 K. The thermal conductivity trends are con-
sistent with qualitative and quantitative arguments
based on the crystal structures and phonon scatter-
ing mechanisms. For zeolite-A, the conductivity is
essentially constant over the temperature range con-
sidered. This is interpreted as the attainment of the
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high scattering limit generally associated with amor-
phous materials. The analysis of the lattice statics
and dynamics suggests that the thermal conductiv-
ity of crystalline solids can be lowered through the
introduction of small scale disorder, and by damping
specific structural features.
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