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Solar energetic particles often get accelerated to energies up to few GeV at interplanetary 
shock waves driven by Coronal Mass Ejections (CMEs) and are of considerable importance 
for space weather studies because they can produce radiation hazards for manned or 
unmanned spacecraft. Particles accelerated at the shock wave can escape upstream and 
downstream into the interplanetary medium. As the escaped high-energy particles propagate 
along the interplanetary magnetic field, they are scattered by fluctuations of the turbulent 
magnetic field.  

The Monte-Carlo method has been adopted in this work to study propagation and 
scattering of solar energetic particles. We have demonstrated that high energy particles 
reach the orbit of the Earth before the bulk flow, which due to its high intensity produces 
main hazard. The detection of high energy particles may serve as a precursor of its arrival. 

 

I. Introduction 
The solar energetic particle (SEP) events associated with coronal mass ejections (CMEs) are of particular 

importance for space weather studies. High energy solar protons (~ few GeV) can be accelerated within a short 
period of time (≤1 hr) after the initiation of solar eruptions, which makes them difficult to predict, and pose a serious 
concern for the design and operation of both manned and unmanned space missions. Recent theories and related 
observations1−7 suggest that these high-energy particles are the result of the first-order Fermi acceleration process8 at 
a shock wave driven by a solar eruption, the so-called diffusive shock acceleration (DSA), in the Sun’s proximity 
(2–15 R ).  These theories, however, have been debated within the community9−11 because very little is known 
about the dynamical properties of CME driven shock waves in the inner corona soon after the onset of the eruption 
and whether or not the level of turbulence at the shock is sufficient for this mechanism to work. 

 

II. Energetic Particle Transport and Acceleration 
While diffusing through highly turbulent media in the vicinity of the front of a CME-driven shock wave, solar 

energetic particles suffer scattering due to turbulent fluctuations of the magnetic field. The evolution of the 
distribution function, ( , , )f tx p , of energetic particles can be described12 by the cosmic ray transport equation 
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where is the plasma velocity, U p = p  is the particle momentum, is the diffusion tensor that is determined by 

the spectrum of magnetic fluctuations and 
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is the injection rate. Equation (1) is a good approximation13 
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for energetic ( pp m U )  particles and results in a power law spectrum of isotropic part of canonical distribution 

function of energetic particles, ( )swf p ,  at the front of the shock wave 

( ) q
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3
1

sq
s

=
−

.               (3) 

Here,  and injp maxp are particle injection and maximum momenta,  is the spectral index and  is the 

compression ratio of the shock wave. The fraction, 
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injη , of the post shock solar wind with density  that are 

injected into the cosmic rays depends
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where  is the number density of injected particles. To agree with the particle fluxes observed at 1AU, injn injη  

should be ranging between and few410− 310−× . 
 Energetic particles escaping the front of the shock wave obey the Boltzmann equation  
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Here,  is the mean interplanetary magnetic field approximated by the Parker spiral  B
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where θ  is the co-latitude with respect to the solar rotation axis, 0B  is the interplanetary magnetic field at the co-

rotation radius 0R  ( 0 10R R= , 6
0 1.83 10B T−= × , 400swu km s= , 2 25.4daysπΩ = ). In this work, 

the equatorial plane, where 2θ π= , has been considered. 

 For charged particles propagating through the solar wind, the collision integral, ( )coll
f tδ δ , is due to 

scattering from fluctuations of the interplanetary magnetic field, which can be described in terms of a mean free 
path, λ , that has been adopted4 in the form  
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where p  is the particle momentum, is the rest energy of protons, is the 

turbulent correlation length,  and  

2 938MeVnM c = 6
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0 4.12nTB = ( )
0

22 13.2152 nTxBδ =  are parameters with typical values 

evaluated at a heliocentric distance of 1 AU and C  is a correction factor. For the purpose of practical simulation, 
expression (8) has been reformulated4 in the form   
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Here, 0λ  is an empirical parameter. The parameters α  and β  describe the momentum and the heliocentric 

dependence of the mean free path, respectively. Correspondingly, the probability density, ( )p h , for the distance 

between two consecutive scattering events, h , is taken in the form 

( ) hp h e λ−= .              (10) 
 Between two consecutive pitch angle scatterings, charged particles move through the solar wind plasma gyrating 
about the magnetic field lines (7). 

 
 

III. Monte-Carlo Approach 
  The numerical procedure described below has been developed on the basis on the test particle Monte-Carlo 
method. A test particle can be characterized by its radius vector r  and momentum p . So, the distribution function 
of solar energetic particles is approximated in the form 

( ) ( ) ( ), i i
i

f wδ δ= − − i∑r p r r p p ,          (11) 

where  is a statistical weight of the particle, i.e. the number of real particles represented by a model one. The 
evolution of the distribution function (11) is modeled by tracing trajectories of individual model particles, the time 
of injection, , and initial momentum, , being sampled as described below. 

iw

it ip
 Denoting the position of the shock front as shR and the velocity of its front as shV , the number of real particles 

leaving the shock wave within the time interval  is dt
( ) shdN Q t V dsdt= ,             (12) 

where ( ) 2Q t r−∼  is the injection rate per unit area and 21 rds B r∼ ∼ is the cross section area are of magnetic 

tube. The time of injection, , can be obtained by  solving it
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Here,  is the time instant at which the shock wave reaches the orbit of the Earth and  are random 
numbers. Once the time of injection is determined, the momentum of a real particle should be sampled according to 
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so that the probability for a real particle to have a momentum within the interval of ( ),p p dp+  is 
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For a model particle this probability  time is less w
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One can use , resulting in the choice of  w const=
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However this approach is not efficient for numerical simulation, resulting in a higher level of noise for the high-
energy part of the distribution function. In order to have model particles uniformly distributed over the interval of 
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we chose the weight function ( ) ( ) ( )2
2ln , ,sw model

w E f r p t p d dpξ∼ : 

( )( ) ( )( )2 2

2

, ln , (ln ) , ln , (ln )
(ln )
(ln )

sw sw

model

f r p E t p E f r p E t p E
w dp Ed const

d Edp
ξ

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

       (19) 

The final form of the weight function can be written in the form 
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The particles that escape the shock wave can experience isotropic scattering with the mean free path (9). It is 
assumed that between two consecutive scattering events charged particles move along the magnetic field (7). The 
particle trajectory is traced until either the particle is recaptured by the shock wave or the shock front reaches the 
heliocentric distance of 1AU. 
 

 

IV. Results and Discussions 
Two cases that correspond to an idealized strong shock wave with the compression ratio of  and a model 

of a CME-driven shock wave have been considered.  
4s =

 

A. Strong shock wave 
The velocity profile shown in Figure IV.1 has been taken from [4]. The study of influence of the heliocentric 

distance and momentum dependence of the mean free path on the energetic particle spectrum has been carried out 
by varying parameters α  and β  in the expression (9). The simulation results are presented in Figure IV.2 

( 0α = , 0β = ), Figure IV.3 ( 1 3α = , 0β = ) and Figure IV.4 ( 0α = , 2 3β = ). The characteristic length of 

the mean free path 0 0.4AUλ =  has been used for all three cases.  
 

 
Figure IV.1 Velocity profile of a strong shock wave  
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Figure IV.2 Relative intensity and spectrum of energetic particles at a heliocentric distance of 1 AU for a strong 
shock wave and mean free path (9) parameters 0α = , 0β = , 0 0.4AUλ =  
 
 

 
 
 

          
Figure IV.3 Relative intensity and spectrum of energetic particles at a heliocentric distance of 1 AU for a strong 
shock wave and mean free path (9) parameters 1 3α = , 0β = , 0 0.4AUλ =  
 

 
 

 

           
Figure IV.4 Relative intensity and spectrum of energetic particles at a heliocentric distance of 1 AU for a strong 
shock wave and mean free path (9) parameters 0α = , 2 3β = , 0 0.4AUλ =  
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B. CME-driven shock wave  
The parameters of the shock wave that have been used in this example are the result of a numerical simulation of 

a shock wave propagation that corresponds to the May 2, 1998 event11. The speed and compression ratio of the wave 
are given in Figure IV.5. The spectrum and intensity profiles obtained are given in Figure IV.6 and Figure IV.7. 
They indicate that high energy solar particles (K>51MeV) can reach the orbit of the Earth in a short period of time 
(<1 hr) after initiation of solar eruption. 

 

            
Figure IV.5 Speed and compression ratio of a CME-driven shock wave  

 
 

      
Figure IV.6 Relative intensity and spectrum of energetic particles at a heliocentric distance of 1 AU for a CME-
driven shock wave and mean free path (9) parameters 0α = , 0β = , 0 0.4AUλ =  

 
 

    
Figure IV.7 Relative intensity and spectrum of energetic particles at a heliocentric distance of 1 AU for a CME-
driven shock wave and mean free path (9) parameters 0α = , 0β = , 0 1.6AUλ =  
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