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Diagonal Elements
Differentiate Eq. (A6) to obtain

g @=[B—a)— @+PrIPyP + NN +a+B+1)

—(a+p1py? (B3)

At the internal nodes 7;, 1 < j <N — 1, Pl/\,(“’ﬁ )—0 by definition of
the nodes. Utilizing Eq. (A4), one obtains

N(N +a+ B+ 1P P (z)
(77 -1)

Substituting Egs. (A7), (B3), and (B4) into Eq. (B2) yields

PP (z)) = (B4)

poo_latPrita—p
?i() = 201-2)

J

j=1,...,N—1 (B5)

For the endpoint expressions, differentiate Eq. (A4) to obtain
[NIN+a+B+1) —(a+p+2)]

PYP (1) =

2(B+2)
NN +o+ B+ 1Py (1) B6)
206+1)
PP (1) = [N(N+oa+ /23(1—41:2_) (@+p+2)]
NN Aatp+ PSP (ty) )

2(x+1)

Substituting Eqs. (B6) and (B7), together with Egs. (A8) and (A9),
into Eq. (B3) gives expressions for g”(t) and g”(ty), which may
be substituted into Eq. (B2) to give the remaining matrix elements.
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Interferometric Observatories
in Earth Orbit

I. I. Hussein,* D. J. Scheeres,” and D. C. Hyland*
University of Michigan,
Ann Arbor, Michigan 48109-2140

I. Introduction

E propose a class of satellite constellations that can act as

interferometric observatories in Earth orbit. Based on tech-
niques discussed in Refs. 1-3, the satellite constellation is capable of
forming high-resolution images in timescales of a few hours without
the need for active control beyond that needed for corrective ma-
neuvers. First, we discuss the requirements to achieve these imag-
ing goals. Next, we define a class of constellations that can achieve
these goals. An optimization procedure is also defined that supplies
m pixels of resolution with a minimum number of satellites. For the
example considered, this procedure results in an observatory that
is within 0-2 satellites from a lower bound of /m satellites. The
zonal J, effect is used to scan the observatory across the celestial
sphere. Finally, we discuss the practical implementation of these
observatories.

II. Imaging Requirements

Interferometric imaging is performed by measuring the mutual
intensity (the two-point correlation*) that results from the collec-
tion and subsequent interference of two electric field measurements
of a target made at two different observation points. While mov-
ing relative to each other, the satellites collect and transmit these
measurements, which are later combined at a central node by use of
precise knowledge of their locations and timing of data collection.
A least-squares-error estimate of the image can be reconstructed
given the mutual intensity measurements, parameters of the opti-
cal system, and the physical configuration of the observatory. To
assess the quality of the reconstructed image, the reconstructed im-
age is Fourier transformed into a two-dimensional plane of spatial
frequencies (the wave number plane). At any given point on the
wave number plane, the modulation transfer function (MTF) is de-
fined as the ratio of the estimated intensity to the true image inten-
sity. For an interferometric imaging constellation, the MTF can be
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computed given the measurement history and corresponding rela-
tive position data among the light-collecting spacecraft. In the wave
number plane, a point with a zero MTF value implies that the system
is “blind” to the corresponding sinusoidal pattern, whereas a large
value of the MTF implies that the image signal can be restored at
that wave number via an inverse Fourier transform (see Refs. 1-3).
The MTF, as a measure of the imaging system’s performance, is
a function of both the optical system and the configuration of the
observatory in physical space. In this Note we address the issue of
designing the configuration of an interferometric observatory that
ensures a nonzero value of the MTF within a desired region in the
wave number plane.

For a general satellite constellation, denote the position vector of
satellites i and j by R; and R}, respectively, i, j =0,1,..., N —1,
where N is the number of satellites. Let R;; = R; — R; be the relative
position vector between satellites i and j and r;; be the projection of
R;; onto a plane perpendicular to the line of sight of the observatory.
Let z be the distance from the image plane to the observation plane.
Denote by the term picture frame the angular extent of the intended
image on the image plane. The picture frame is user defined and
has a diameter of length L. When the image plane is pixelated
into an m x m grid, the size of each pixel is L =L/m, and the
resulting angular resolution is 6, = L/z. Additionally, the angular
extent of the desired picture frame is given by 6, = L/z, which leads
to 6, = m#,. Moreover, we assume that 6, is much smaller than the
field-of-view angular extent of the spacecraft apertures.

Dimensions of features in the wave number plane are the recip-
rocals of the corresponding dimensions in the physical plane. Thus,
the resolution disk is a disk of diameter 1/6, and is the region where
we desire the MTF to have nonzero values (henceforth, simply de-
noted by wave number plane coverage). The picture frame region is
a circular disk of diameter 1/6,,. Therefore, the diameter of the res-
olution disk is m times the diameter of the picture frame disk in the
wave number plane (Fig. 1). As the relative position vector of two
spacecraft varies in the physical plane, the picture frame disk moves
in the wave number plane, where its center follows the trajectory of
the vector given by £r;; /A, where A is the imaging wavelength of in-
terest. Each satellite, by itself, will contribute a disk that is centered
at the origin with a diameter of 1/6,,, and each pair of satellites will
contribute two disks of diameter 1/6, located 180 deg apart with a
radius of r;; /A from the center, where r;; = |r;;|. Define the minimum
relative distance between satellites to be dpi, = A /6,,. To cover com-
pletely the resolution disk in the wave number plane, it is sufficient
to have satellites distributed such that there exist pairs with relative
distances dmin, 2dumins - - - » 3 (M — Démin. Let dmax = 3 (m — 1)diin.
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Fig. 1a Three-dimensional view of imaging observatory (not to scale).
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0.8F it .....

(S 1o X-) EETTUR UV

04k I

0.2}

0 2 4 6 8 10 12 14
Wave Number, 1/m x 10"

Fig. 1¢  Q curve for Ny = 3 in the fundamental constellation.

Fig. 1d Physical distribution in the wave number plane for Ny =3,
m =5 (not to scale).

III. Circular Orbit Constellations

We propose a class of very long baseline constellations that
achieve the requirement that the wave number plane be completely
covered. The observatory design we propose here is a natural ex-
tension of very long baseline interferometric (VLBISs) linear, Earth-
based observatories? to space-based, curved array VLBIs. The satel-
lite constellation is placed on a circular arc that is a segment of an
Earth orbit and whose center is located at the center of the Earth
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(Fig. 1). The satellites are distributed such that the second satel-
lite is located at a distance of dp,;, from the first satellite, the third
at 2d,;, from the first, the fourth at 3d,,;, from the first, and so
on. Thus, a constellation of N satellites will have the Nth satel-
lite located at a distance of dp, = (N — 1)dy,. This distribution,
defined as the “fundamental” constellation, implies that there are
m =2N; — 1 pixels and ensures the complete coverage of the wave
number plane, once the constellation is rotated 180 deg, that is, after
half an orbit period. Figure 1 shows the geometry of this configura-
tion for N = 3 satellites (m = 5 pixels). We nominally assume that
the orbit plane is perpendicular to the line of sight to the target.

To compute the precise locations of the satellites in the constella-
tion, we must specify the wavelength of interest, A, and the desired
angular extent of the picture frame 6, = L /z, which is sufficient to
specity diin = A/6,,. Given a number of satellites N, or the number
of pixels m, one then obtains the corresponding angular resolution
6,. The results presented in this Note are valid for all wavelengths and
picture frame sizes such that dyy;, /7, =0.0791 is a low-Earth-orbit
radius, where r, =7200 km. This choice for dp,/r, corresponds
to an entire range of applications from A =10 um, that is, an in-
frared (IR) interferometer, with a picture frame of angular extent
equal to 0, =1.756 x 10'° to a value of A =10 m, that is, a ra-
dio interferometer, with a picture frame of angular extent equal to
0, =1.756 x 107.

Let 2 and j be two orthogonal unit vectors in the orbit plane; the
position vector of the kth satellite, k =0, ..., Ny —1,is

ri (1) = ro({ cos(@n)[1 = (6 /2) (dmin/ )]

— SI(@NK (dmin/To)y/1 — (/2 (dmin/r0)? }i

+ { sin(a)t)[l — (k2/2)(dmin/ro)2]

+ c08(@0k(duin /7o)y 1 = (k/2)X(duin/75)*}3) (1)

where w is the orbit angular velocity of the nominal circular orbit

w=/ufr} )

and r, is the orbit radius. The relative position vector from satellite
[ to satellite k is given by

1 (1) = duin ({ cos (@) (I* = k%) (diin/27)

+ sin(@n) [ —kv/1 = k2(duin/270)* + 13/ 1 = 2(dmin/275)?] }

+{ sin(@t) (1 = k) (dmin/27,)

+ cos(@0)[ky/1 = k2(din/276)> = 1\/1 = 12(dmin/27,)*] }3)
3)

In the wave number plane, the relative position vector is
T =ri /A, a vector emanating from the origin with its tip at the cen-
ter of the picture frame disk. When orbit perturbations are ignored,
the preceding satellite arrangement guarantees that each r; has a
constant magnitude (because they are distributed along the same
circular orbit), which is given by

P = (2roa/x)\/[(i2 — o2 + [12\/1 — (ko)? — f\/l - (ia)z]2

)
where [ =1/(N; —1), k=k/(N;—1), ,Lk=0,1,2,...,N; —1,
and o =dna/2r,. Note that 0 <o <1, where 0 — 0 as either
dmax — 0 or r, — o0o. The latter case arises if the constellation
is placed on an orbit with small curvature. As o — 0, we have
71k = dminlk — [|/A. Note that o =1 only when dy,,x = 2r,, that is,
when the constellation spans 180 deg. On the other hand, note that

for all Ny we have 0 < I R k <1 and that variations in N; do not
induce variations on 7.

Note that all r;; rotate at the same (constant) rate w and that this
constellation will sweep out the resolution disk in the wave number
plane over half an orbit. If the line of sight is tilted away from the
orbit normal by an angle €, coverage of the wave number plane will
range from full resolution 6, to a maximum resolution of 6, / cos €.
Figure 1 shows the wave number plane coverage for N, =3. Note
that imaging in the opposite direction is possible by rotating the
spacecraft 180 deg about the radius vector.

IV. Minimizing Number of Satellites
for a Given Resolution

In the fundamental constellation, we define the fundamental base-
lines by 7y and the bonus baselines by 7, x, [ # 0. By themselves,
the fundamental baselines guarantee complete coverage of the wave
number plane over half an orbit period, and the bonus baselines pro-
vide redundant coverage. For large N/, there will be an excessive
number of multiple coverage areas, which implies that the num-
ber of satellites can be reduced with the resolution disk still being
completely covered.

To carry out this minimization, it is not necessary to consider
the two-dimensional wave number plane and is sufficient to con-
sider the one-dimensional wave number space. Define a ray in the
wave number plane parameterized by the radius &, € [0, ko], where
kmax = 1/(26,). Let the contribution of each pair of satellites (/, k)
to the image coverage be given by

- 1 i ke € [P — @nin/2), P + (dmin/2)]
Fulhr) = {0 otherwise ()]

for/=0,...,N—1landk=/I,..., N — 1.Next, define the function

N—-1N-1

0k) = % IR ACD)

=0 k=1

which is the superposition of all contributions. Figure 1 shows Q
for N=Ny=3 (m =5 pixels) and Fig. 2 shows Q for Ny =16
(m =31). For the Ny =1, 2, 3, and 4 cases, removing any satellite
will immediately cause a portion of the resolution disk to not be
covered; thus, the minimum number of satellites for these cases is
Npin(m) = %(m + 1). For larger numbers of satellites, that is, larger
number of pixels, m, this is not true.

Our current minimization problem is stated as follows: Start from
a fundamental constellation, with a corresponding fixed number of
pixels m, and maximize the number of satellites that can be removed
from the constellation under the constraint that Q(k,) >0 on the
interval k, € [0, kmax]. The constraint ensures complete coverage of
the wave number line, meaning that each point on the line is covered
by at least one satellite pair. Satellite arrangements that violate the
lower bound are immediately discarded because they will have gaps
in the wave number line, which lead to spatial frequencies that will
not be covered.

To solve this problem, an algorithm was implemented that com-
putes the Q function for the fundamental constellation and all its
subsets, found by removing one satellite at a time, two at a time,
and so forth. Satellite combinations that violate the lower threshold
are discarded, and the remaining solutions with a minimum number
of satellites, Ny,;,(m), constitute the minimal set. Note that for a
given m there may be several different constellations with the same,
minimum, number of satellites.

In a fundamental constellation of N satellites, there are up to

Ny
N/' __ AN
Z(k>_2.f—1 (©6)
k=1

trials that this algorithm may need to make; for large N, this is un-
reasonably large. There are, however, numerous ways to speed up
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Fig. 2 Fundamental (Ny = 16) and minimal distributions (not to scale), Nyin = 8, and Q curves for m = 31.

Table 1 Summary of results for a 7200-km orbit,
with dyin/r, =0.0791

Fundamental Number of Minimum Number Lower
number of pixels number of of bound
satellites Ny m=2Ny—1 satellites Npin solutions Nip
1 1 1 1 1
2 3 2 1 2
3 5 3 1 3
4 7 4 1 3
5 9 4 2 4
6 11 5 3 4
7 13 5 3 4
8 15 5 1 5
9 17 6 10 5
10 19 6 3 5
11 21 6 2 5
12 23 7 18 6
13 25 7 12 6
14 27 7 4 6
15 29 7 1 6
16 31 8 28 6
17 33 8 19 7
18 35 8 3 7
19 37 9 142 7
20 39 9 91 7

the computation by restricting the space of trials considered, some of
which have been used in our computations. This algorithm has been
implemented for m=3,5,7,...,39, and the results are summa-
rized in Table 1. Figure 2 shows Q for a fundamental constellation of
Ny =16 satellites (m = 31 pixels) and a minimum of Ny, (31) =8
satellites. The Ny, curve shown is the one that maximizes the area
under the Q curve over all of the 28 possible constellations with 8
satellites and comprises satellites 0, 1, 2, 3,4, 5, 10, and 15. Note
that the minimal sets may change with the factor d,;, /7, in Eq. (4).

A lower bound on the size of a constellation can be determined
as follows. For a constellation of N satellites, there are exactly

M= Ivo -
2) =NV -D

baselines. Each baseline provides two pixels, plus one for the self-
pixels, which gives a total of m = N(N — 1)+ 1. Thus, a lower
bound on the number of satellites to cover m pixels is given by

Nip = int"[4(1+ +/4m =3)]

where int"[x] is the smallest integer larger than or equal to x. A
solution can have no fewer than this number of satellites in the

constellation without having gaps in the wave number plane. More-
over, there may not exist solutions with Ny, = Ny,. For example,
for m = 15, the minimal solution has N, =5, which is equal to the
lower bound. For m = 29, the minimal solution has N, =7, which
has one more satellite than the lower bound of 6 (Table 1). For large
m, the lower bound is approximately int™[/m].

V. Interferometric Observatory

The discussed constellation arrangements will completely cover
the wave number plane in half an orbit period, whereas imaging
for several orbital periods will result in improved image quality.
Thus, over a short period (days at most) an image can be formed.
If we place the constellation in an inclined orbit, the orbit plane
will precess relative to inertial space and the constellation will scan
across the celestial sphere at a constant rate, effectively repeating
its coverage after one nodal period. The precession rate of the orbit
plane is given by®

Q= —(2)/ /3 (R2 1 [r2) cosr)

where R, =6378.14 km is the Earth’s radius, J, =0.00108263 is
the second zonal harmonic of the Earth, 1 = 3.986005 x 10° km?/s?
is the Earth’s gravitational constant, 1 is the inclination, r, is the or-
bital radius, and T =27 /Q is the precession period of the node.
For an 800-km altitude orbit inclined at 45 deg to the equator, the
precession period is 77 days. For a constellation in a 45- or 135-deg
inclination orbit, every point on the celestial sphere can be imaged
with a resolution ranging from 6, to /26, within one nodal period.
For instance, target objects located at a latitude of +45 deg can be
imaged once every nodal period with a resolution of 6,. Objects
on the equatorial plane can be imaged twice every nodal period
with a resolution ranging from 6, to ,/26,. Objects at 90 deg
can be continuously imaged with a resolution ranging from 6,
to /26,

An important design consideration is the speed at which the pic-
ture frame disk moves in the wave number plane because this affects
the image quality. The faster this speed is, the poorer the image qual-
ity becomes. Given an upper bound on the wave-plane velocity v
and a desired angular resolution 6,, this constrains the angular rate
at which the picture frame disk moves in the wave number plane,
equal to the mean motion of the orbit, w < %179,. This bounds the
desired orbit radius, r, > 3/[411/(96,)?]. Thus, the choice of orbit
radius does not depend only on the desired baselines (determined
from the desired angular resolution), but also on the desired image
quality. Note that it is possible to trade a higher speed in the wave
number plane (shorter period) with additional observations, to strike
a balance between the two.
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Other issues of concern are the signal detection, transmission, and
interference. Moreover, path length knowledge and/or control down
to a fraction of the wavelength is required for a general interfero-
metric observatory. Whereas these issues are in general tractable for
long wavelength imaging applications, they will be especially hard
for IR missions. Our observatory is well-suited for long wavelength
applications. On the other hand, there are certain technologies that
are assumed to exist for the proposed very long baseline, Earth-
orbiting observatory to be feasible at visible and IR wavelengths,
such as heterodyne or a direct detection method.”~® Of particu-
lar interest is applying a heterodyne detector to IR applications.
Such interest is motivated by NASA’s ambitious Origins program.'°
Precurser space-based missions of the Origin’s program include
the Hubble Space Telescope and Stratospheric Observatory for Far
Infrared Astronomy, an IR mission. First- (Space Interferometry
Mission), second- (Terrestrial Planet Finder!'!), and third- (Planet
Imager'?) generation missions involve the detection of signals with
wavelengths ranging from 0.4-0.9 to 20 um. Heterodyne detection
has several advantages over direct detection, has been demonstrated
for an IR application® and is the subject of ongoing research.

VI. Conclusions

In this Note, we propose a class of sparse aperture interferomet-
ric satellite constellations in Earth orbit that can be used to observe
astronomical bodies over the full celestial sphere. This observatory
is capable of forming high-resolution images in timescales of a few
hours, while completely covering the desired region of the wave
number (#—v) plane for a wide range of wavelengths. An optimiza-
tion procedure is defined that supplies m pixels of resolution with
a minimum number of satellites. A lower bound for the minimum
number of spacecraft in the constellation is derived, and we show
that for the example considered this procedure results in an obser-
vatory that is within 0-2 satellites from this lower bound. The zonal
J, effect is used to scan the observatory across the celestial sphere.
Finally, we discuss some practical implementation issues for these
observatories.
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Introduction

N physics and engineering one often encounters what is called a

two-point boundary-value problem (TPBVP). A number of meth-
ods exist for solving these problems including shooting, collocation,
and finite difference methods."> Among the shooting methods, the
simple-shooting method (SSM) and the multiple-shooting method
(MSM) appear to be the most widely known and used methods.

In this Note a new method is proposed that was designed to in-
clude the favorable aspects of the SSM and the MSM. This modified
simple-shooting method (MSSM) sheds undesirable aspects of these
methods to yield a fast and accurate method for solving TPBVPs.
The convergence of the modified simple-shooting method is proved
under mild conditions on the TPBVP. A comparison of the MSSM,
MSM, collocation (CM) and finite difference methods (FDM) is
made for a simple example for which all of these methods con-
verge. Further comparison between the MSM and the MSSM can
be found in our earlier work,® where we studied an optimal control
problem with fixed endpoints for a nonlinear system. For that prob-
lem it was shown that the MSM failed to converge while the MSSM
converged rapidly.

A general TPBVP can be written in the following form:
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where Eq. (2) describes the boundary conditions satisfied by the
system. Examples are the familiar initial-value problem (IVP) and
first-order necessary conditions obtained by an application of the
Pontryagin Maximum Principle in optimal control theory. TPBVPs
from optimal control have separated boundary conditions of the type
rily@]=0and r2[y(h)] =0.

Some of the initial publications that deal with TPBVPs are
Keller* and Roberts and Shipman.' Provided it converges, the SSM
is the simplest, fastest, and most accurate method to solve TPBVPs.
However, it is well known that the SSM can fail to converge for
problems whose solutions are very sensitive to initial conditions.
For such problems, FDM and CM can provide a solution that sat-
isfies the boundary conditions and is close to the actual solution in
some sense. This led to the development of the MSM.® Morrison
et al. first proposed the MSM as a compromise between the SSM
and the finite difference methods. Keller’ refers to the MSM as par-
allel shooting and also proposed a version of parallel shooting that
he called “stabilized march.” The FDM and CM schemes are much
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