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Abstract

In this paper, the minimax actor-critic algorithm is
presented. This is the minimax equivalent of the
actor-critic algorithm in the case of probabilistic dy-
namic programming. The convergence of the policies
generated by the algorithm, to an optimal policy, is
established. The algorithm is applied to an example
involving a UAV navigating hostile territory. Fur-
ther, error bounds are obtained for approximations
involved in solving large scale minimax DP prob-
lems, specifically the case of state aggregation.

1 Introduction

Dynamic Programming (DP) provides a formal
framework for sequential decision making under un-
certainty [3, 4, 8, 14]. In the standard DP formu-
lation, the state x of a discrete-time system evolves
according to transition probabilities dependent on a
decision/control . The system incurs an incremen-
tal cost, ¢(z,u), in taking a decision u at state z.
The cost incurred by the system in following a pol-
icy u , a sequence of control actions, {uo, g1, ...}, is
the expected value of the weighted sum of the incre-
mental cost incurred at every stage, i.e.,

Palw) = B(Y Belon, o) 70 = 7).

k=0

(1.1)

If 8 = 1, the problem is termed a stochastic short-
est path problem [4]. Problems in which 8 < 1
are termed as discounted problems. In such prob-
lems future costs are considered less important than
immediate costs. In this paper we shall be con-
sidering discounted problems. The central con-
struct of the DP framework is the optimal ”cost-
to-go/reward/utility” function which is defined to
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be the infimum of the cost incurred in following a
policy over the space of all possible policies, i.e.,

P*(z) = igf P,(z). (1.2)

It can be further shown that the optimal cost-to-go
function is a fixed point of the DP operator B,[4, 7],
where

BP(x)

Inf {c(z,u) + BE(P(y)/(z,u))}, (1.3)
y is the state at the next instant, given that control
u is taken at state z, at the current instant. Two
algorithms find widespread use in the numerical eval-
uation of the optimal cost-to-go function: the value
iteration[3, 4] and the policy iteration[4, 11] algo-
rithms. However, the policy / value iteration algo-
rithms require that a model of the system be avail-
able, (i.e., the transition probabilities governing the
dynamics of the system be known). In the absence
of a model of the system, the cost-to-go function
can be evaluated using simulation based methods.
These methods ”learn” the optimal cost-to-go func-
tion through repeated simulations and are known as
Reinforcement Learning methods in literature. The
reinforcement learning method based on value itera-
tion is termed Q-learning [4, 18, 22] and that based
on policy iteration is known as an actor-critic sys-
tem [2, 4].

In this paper, we present the worst case variant of
the standard DP problem. To motivate the use of a
worst case formulation, consider the system shown
in figurel. There are 3 states in the system: 1, 2
and G. The goal is to get to the state G from state
1. There are two control options at state 1, move fast
or move slow. The fast move is shown by the dashed
line. If the system moves fast from 1, it reaches the
goal state G with a cost of 10. However, if it moves
slow, it can reach the goal state with a cost of 1
with probability equal to 0.9. However, there is a
probability of 0.1 that it reaches state 2 with cost
of 1. Once in state 2, the system gets stuck and
stays there forever incurring a cost of 1 at every in-
stant. At the goal state the system remains forever
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Figure 1: Motivating example for using minimax DP

without incurring any cost. According to tbe prob-
abilistic formulation, the optimal action at state 1 is
to move slow. However, note that this involves the
risk of the system never reaching the goal state and
getting stuck in state 2. According to the worst case
formulation, the optimal action at state 1 is to move
fast. This action involves no risk of getting stuck at
state 2. Thus, the worst case formulation is a better
way of solving the decision problem if we want to
avoid risk. Under the minimax DP formulation, the
dynamics of the system is defined by the next state
sets, I'(x, u), which consist of all the states that can
result from taking decision u at state x. We define
the ”"worst case” cost-to-go incurred in following a
policy u as

Ju(@) = sup {B (v, m)}, (1.4)

Y05715--

where vo = z and v € T'(yk—1, tk—1), i-€., the worst
case cost that can result in following policy u.
We define the optimal cost-to-go function J*, in the
same way as that for the standard DP problem. It
can be shown that the optimal cost-to-go function is
a fixed point of the worst case DP operator T, where

TJ(z) = inf {c(z,u)+ B sup J(y)}. (1.5)

u€A yel(z,u)

Also, the worst case optimal-cost-to-go function can
be evaluated using the value iteration and the pol-
icy iteration algorithms. The worst case approach

2

to sequential decision making problems is also well-
known in literature and are termed as risk-sensitive
Markov Decision Processes(MDP) [5, 6, 20]. A no-
table feature of this formulation is the absence of
a Markovian assumption on the underlying system
dynamics. Therefore, this treatment remains valid
for the case of a system in which the states can only
be partially observed. The Reinforcement Learning
methods based on minimax DP are termed Mini-
max reinforcement learning algorithms. It was intro-
duced by Heger[9, 10]. Heger presented the minimax
equivalent of the Q-lerning algorithm and termed it
Q—learning. More work on minimax reinforcement
learning can be found in [15, 12]. [12] discusses the
approximate solution of the minimax DP algorithm
using state aggregation. It shows that the algorithm
converges , however no error bounds on the approx-
imation are obtained. Our main contribution in this
paper is to introduce a minimax Actor-Critic algo-
rithm and show its convergence. We also discuss the
problem of function approximation in solving large
scale DP problems. We consider the simplest form
of function approximation , state aggregation, and
provide bounds on the error that result from such
an approximation. We would like to note that such
results are known in the case of probabilistic formu-
lation of DP [19]. This paper is orgainized as follows.
Section 2 presents the minimax DP operator and es-
tablishes its basic properties and shows two methods
of solution of the fixed point equation: value iter-
ation and policy iteration. Section 3 presents the
minimax actor-critic algorithm and shows its con-
vergence. Section 4 presents a numerical example
involving a UAV navigating hostile territory. Sec-
tion 5 discusses the use of state aggregation in order
to solve large scale DP problems and obtains error
bounds on such approximations.

2 The Worst case / Minimax
Dynamic Programming Op-
erator

In this section, we present the worst case DP op-
erator and mention its properties. Throughout this
paper we shall be using the terms minimax / worst
case DP interchangeably.

Let S denote the state space of the system. Let A
denote the control/action space. The incremental
cost incurred by the system in taking control uy at
state xy is given by the non negative and bounded
function ¢(xg,ux). We denote by c¢(x,u,y) the max-
imal incremental cost that can be incurred by the
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system in making a transition from state x to state
y under control action wu.

Definition 2.1 We denote the next state set of
some x under control action u by T'(z,u) and define
it as:

[(z,u) = (y € S|z =" y). (2.1)

Please note that we shall be using the term ”state”
loosely in this paper and stress that the framework
developed here is perfectly valid for incomplete state
measurements too. Also note that there is no Marko-
vian assumption on the dynamics of the system.

Definition 2.2 A control policy is defined as
a sequence of control actions i.e. a policy
(#(0), u(1),..) where p(k) € A and is the control ac-
tion chosen by the system at instant k.

Consider any ¢ € S and any policy u. Note now
that if policy u were applied to the system starting
at x, due to the uncertainity in the system, there is
more than one path from z corresponding to p. Let
these paths be denoted by v = (70,71, --), such that

Y € T(Vk—1,r—1), (2.2)
Yo = Z. (2.3)

Definition 2.3 The cost to go w.r.t path v for
policy p from x is defined as

@) = 3 el ) (24)
k=0

Definition 2.4 The cost to go from state T w.r.t
policy 1 as
Ju(z) = sup J} (z). (2.5)
v
Definition 2.5 The optimal cost to go from state x
is defined as

J*(z) = iﬁf Ju(z). (2.6)
Let B(S,R) denote the space of bounded real
functionals with topology defined according to the
sup norm, i.e., ||J||c = sup,cg|J(z)|. Note that
Jyu, J* belong to B(S,R), by definition.

We define the worst case DP operator T:

TJ(x)
~ g, e A0
Vx € S. (2.7)

3

The next proposition states that the minimax DP
operator is a contraction mapping in the space
of bounded real functionals under the supremum
norm. The proofs of the propositions are straightfor-
ward extensions of the results in probabilistic DP [4].

Proposition 2.1 The worst case DP operator T is
a contraction mapping in B(S,R) w.r.t the sup norm
i.e

ITT =TT |ee < BIIT =T |l

Next, it can be shown that the minimax optimal
cost function is the fixed point of the minimax DP
operator.

Proposition 2.2 The optimal cost to go from any
state x € S satisfies
TJ*(z) = J*(2). (2.8)
By Propositon 2.1 and the contraction mapping
theorem [13], there exists a unique fixed point of
T in B(S,R). Hence, it follows from Proposition

2.2 that the fixed point is J*, the optimal cost to go.

Definition 2.6 A stationary policy is a control pol-
icy under which the control action taken at a partic-
ular state is the same regardless of the instant it is
taken.

The next proposition states that the minimax DP
operator, defined w.r.t a stationary policy, is also
a contraction mapping and that cost function w.r.t
the policy is its unique fixed point.

Proposition 2.3 The operator T}, defined by

TuJ(x) = (c(z, u(x)) + BI(y)),V z € S,

(2.9)
where p is any stationary policy, is a contraction
operator and J, is its unique fized point.

sup
y€l(z,u(z))

In the rest of this section we mention two meth-
ods for evaluating the otimal cost-to-go function,
namely, the value iteration and the policy iteration
algorithms. The presentation of the policy iteration
algorithm follows in the lines of [7].

Proposition 2.4 Value Iteration : Given any
Jo € B(S,R), the sequence {T™Jy} converges to
the optimal cost-to-go function, J*, under the sup
norm.
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The Policy Iteration algorithm is represented as:
1) Choose some stationary policy uo.

2) Evaluate Jy, .

3) Find pgy1 such that TJ,, = Ty, Ju,

4) If || Jy, = TJp, [l > €(1—B), replace pu by pirs1
and go to step 2, o.w. stop.

Definition 2.7 An e-optimal policy is defined to be
a policy such that

Ty — T ||le < € (2.10)

where J* represents the optimal cost-to-go and J,
represents the cost-to-go with respect to the policy p.

With the above definitions, we have the following
result.

Proposition 2.5 Given any € > 0, the policy iter-
ation algorithm terminates in an e-optimal policy in
a finite number of iterations.

3 Minimax Adaptive Critics

In the previous section, we introduced the worst case
DP operator and enumerated a few of its proper-
ties. We also considered two methods for finding the
optimal cost-to-go function, namely, value and pol-
icy iterations. However, both these methods require
that the system model be supplied to them. Thus,
when the system model is unknown or partially
known, these methods break down. In probabilis-
tic reinforcement learning, this impasse is dealt with
through the use of Q-learning and Adaptive critics.
These are model-free learning techniques which re-
quire a simulation model of the system or can be im-
plemented on-line. The Q-learning scheme is based
on the value iteration algorithm while the adaptive
critic scheme is based on the policy iteration algo-
rithm. In this section, we present the minimax adap-
tive critic algorithm and prove its convergence. The
minimax equivalent of the Q-learning scheme was
introduced by [9, 10] and called Q learning. In this
section, we assume that the state space and control
space of the system is finite. Consider any fixed sta-
tionary policy p. Let the the state space be denoted
by S = {1,2,..4,..N}. Recall that c(i,u,j) repre-
sents the maximal incremental cost that a system
can incur in transitioning from ¢ — j, under the
control action wu.

A 3.1 The set of incremental costs that can be in-
curred by a system in making a transition i — j
under control u is finite. The system has a non-zero
probability of incurring any of these costs.

4

A 3.2 The simulation model is run under policy p.
It is assumed that every state i € S is visited in-
finitely often during the course of the simulation
run. There is a non-zero probability for the system
to transition from any i — j, where j € T'(i, u(7)).

Simulation Based Policy Evaluation:

1) Set J) =0

2) At instant k , at state iy , take control action
1(ig) and simulate transition to 4g41.

8) if ey (ik, p(in)) + BJI (iky1) > J)(ix) then

TR (ig) = cx(in, plin)) + BJf (igg1) else

TR (i) = Tk (in)

Under A43.1 and A3.2 we have that,

Proposition 3.1

JE@) = Ju(i)Vi € S (3.1)
Proof: If we have a bounded incremental cost
function, it can be seen that the sequence {J[j (0}
is a monotonically non-decreasing sequence and
bounded above Vi € S. Hence, it follows that
k . . . . .

Jy (i) — J°(i) Vi, where Jg°(i) is some real num-
ber. Consider some i € S. Let I'* denote the set of
times at which the state 7 is visited. Define,

Gr(i) = max {c(i,n(d),)) +BJ°0)}  (3.2)
JET (4,1(4))
G, (@) = (i, p(0)) + BT, (5)- (3.3)
. We have,

G (@) < (i, p(i), 5) + BT, (5)m
max {c(i, u(i), 5) + BT, ()},

< JET(4,u(4))
< max{e(i,u(i), ) + IR0} = GRG0). (3.4)

T JET(i,p(d)

The last inequality follows from the monotonicity
of T}, and noting that J° is the supremum of the
sequence .J} . Hence,
t . .
G, (@) <GP (i) vt. (3.5)

Note that by definition, {.J}(i)} C {G% (i)}, where,
t € ', which implies

sup{J,, (i)} < sup{G},(i)}. (3.6)
Thus, it follows that
T (i) < G2 (4) (3.7)
. Consider some ¢ € I'*. Let
jt= angefrrzgﬁ(i){C(i,lt(i)aj) +BT,(}. (38)

American Institute of Aeronautics and Astronuatics



Then, it follows under assumptions3.1 and 3.2,
that the transformation ¢ — j* takes place with
the system incurring the maximal incremental cost
c(i,u,j*) for some £ > t. Then,

TR (@) > TR0 > G

= (i, u(3), §°) + BT}, (")

> max {e(i,p(i),§) + BIL3G)}

3.9
JET (4,u(4)) (3.9)

Since J2°(i) < G°(i) from eq3.7, we have,
|5 (@) = G (@)
< {cli,n(0)) + BT ()} -

max  {c(i, (), )+/3J,tl(])}|

JET (4,1(7)
<@ max |J2() - JL()]

3.10
FET(6,u(4)) ( )

Given any ¢ > 0 there exists t5 < oo s.t [|J;° —
JE|| < 4, therefore

J(1) — G (4)| < J®(5) = Jh (5
T = GEOI B _max | 72°() = T ()
< BT — 7| = AE3.11)
which implies that,
J2 (i) > GiY (i) — 6. (3.12)

Noting that é can be made arbitrarily small, it fol-
lows from eqs 3.7 and 3.12 that J2°(i) = G°(i).
Also this holds for all 7 € S. Hence, J;° is the
unique fixed point of 7}, from the contraction map-
ping theorem [13].

q.e.d

Note that in the special case of finite state space
and control space, the number of stationary policies
possible are finite. Hence it follows from the policy
iteration algorithm(proposition 2.5) that there exists
an optimal policy and that the policy iteration algo-
rithm converges to this optimal policy. This shows
that our algorithm for policy evaluation or in other
words the CRITIC, given a stationary policy, finds
the cost-to-go w.r.t the policy. However, in policy it-
eration, given u; and J,, , we need to make a policy
update pg41 such that

pi1 (i) = arg min{_max c(i, u, j) + .5},
(3.13)

i.e., we need an ACTOR that can provide us with an
improved policy given the cost-to-go function asso-
ciated with the current policy. We propose a modifi-
cation of the simulation based policy evaluation that

5

allows us to carry out the policy update in the simu-
lation framework, i.e, when we do not have a model
of the system. We make following assumption and
definition.

A 3.3 During policy evaluation we assume that ev-
ery control action u € A other than the policy is
chosen randomly and infinitely often at every state

i€S.
Now we define a y-factor w.r.t any policy u as

Definition 3.1 ~,(i,u) = max;ecp(u{cli,u,j) +
BJu(i)}

Please note that these ~y-factors are the worst case
equivalents of the notion of -factors in traditional
DP.(Q factors in [9, 10]). Consider the following al-
gorithm,

1) Initialise 79 (i,u) = 0, i.e. initialise the gamma
factors for all control-state pairs to 0.

2) suppose at instant k, control action u is taken at
state i , we update the gamma-factor according to
the following rule,

if ek (i, u) + BT (5) > v, u)

then i+ (i,u) = ek (i,u) + BIL(5)

else 7"3“( u) = ~k(i,u) Note that J,(i) =
Vuli; ().

We term any update of y(i,u) where u # p(i) as
an ACTOR update and an update of (i, u(7)) as a
CRITIC update.

Proposition 3.2 Under the algorithm above,

’yﬁ(i,u)—)y,t(i,u)ViES, u€ A (3.14)

Proof: Consider some i € S,u € A.

Then by definition,y5t"(i,u) > ¢ (i,u) + BJL(5) -
We can see that vu(z u) is monotomcally non-
decreasing and bounded. Therefore it converges to
a limit, say v;°(i,u).

Define Gt (i,u) = (i, u) + BT, ()

By deﬁnltlon Y2 (i, u) = sup{vu(z u)}. Also note
that by definition {7 G u)} C{GL (i, u)}.
Therefore, given any € > 0, there exist t1,t2 < 00

S.t.
Vo (i ).
< W,f (i,u) +€
G (4,u) + € < c(i,u,j(t2)) + -
BI2(j(t2)) +
< i, u, j(t2)) + BJu(i(t2)) +
{e(t,u,5) + B} +

JEF(z (@)

=,(i,u) +¢€ (3.15)
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By j(t2) we denote the state that the system tran-
sitions to from state 7 at instant t». Since e can be
arbitrarily small, it follows that
Y2 (6, u) < vu(i, u) (3.16)
Let j* = argmax;er(i,u){c(i,u, j) + BJ; () }-
Let I'™ denote the set of times at which control u is
taken at state i. Then given any t € I'" there exists
t > t s.t. the transformation i — j* takes place with
the system incurring the maximal incremental cost
c(i,u, j*). It follows that

yEFL @) > eli,u, ) + BIL()
> max {c(z U j)+ﬂJt( )}

JET(i,u)

(3.17)

Since v, £ (i) is monotonically non decreasing and from
eq3.16 we have that

Iy (8) — (i, u)|
<| max {eli,u,g) + BT, ()}
—mMazjer(;, u){C(l w,j) + BJ.(5)}]

< f  max IJ (1) = Ju ()]

3.18
<8 max (3.18)

Note that, given any d > 0, there exists t5 < 00 s.t.

[T = Jull < 3, we have

However § can be made arbitrarily small, thus it fol-

lows from eqs.3.16 and 3.19 that v5° (i, u) = v, (i, u).

Also, note that it holds for all control, state pairs.

Thus, we have our result.

q.e.d

Its readily seen that the policy update stage is now

reduced to solving the equation
per (i) = argmingy, (i,u)  (3.20)

This allows to propose the following ACTOR-

CRITIC algorithm:

1) choose some initial policy g

2) evaluate v,.

3) choose a new policy according to eq3.20.

4) I ||, = Tl > €(1—B), replace uy by pers

and go to step 2 o.w. stop.

Note that in step4, T'J,, (i) = argmin, v, (i, u).

Also in the above algorithm we may set e = 0. We

know from proposition 3.1 and proposition3.2 that

using algorithm3 , the cost-to-go function with re-

spect to any policy can be evaluated using simula-

tion and that the policy update can be carried out

6

conveniently using the ~y-factors generated by the al-
gorithm. Also due to proposition2.5 we have that al-
gorithm1 terminates with a policy that is e-optimal.
Hence using these two results we conclude that the
simulation based policy iteration /ACTOR-CRITIC
algorithm results in a policy that is optimal. We
state this result as the following proposition.

Proposition 3.3 The ACTOR-CRITIC algorithm
converges to an optimal policy in a finite number of
iterations.

The actor critic algorithm assumes that every state
is visited infinitely often and that every possible con-
trol action at that state is taken an infinite number
of times. However note that the number of times
that any control action other than the policy needs
to be taken at a given state need only be a small frac-
tion of the total number of times the state is visited.
Hence the actor and the critic algorithms can be
thought of as proceeding at two different time scales,
the actor time scale being much greater than that of
the critic time scale.Hence an ACTOR-CRITIC al-
gorithm would typically be designed so that the AC-
TOR updates are relatively infrequent with respect
to the CRITIC updates.

4 A Numerical Example

As an illustrative example, we consider the problem
of a UAV (unmanned aerial vehicle ) navigating in
hostile territory. The speed of the UAV was assumed
to be constant at a value v, and the control input
to the UAV was the commanded heading angle,6.
The equations of motion of the system then can be
written as

z = Vcosf (4.1)
y = Vsind (4.2)

The continuous time problem was normalised so that
the region of interest,(i.e., the region in which the
UAV was confined to navigate), was a square of
length 1 unit. The speed was taken as 0.05 units/sec.
The problem was discretized (discrete time) by tak-
ing a sample time of lsec. To get the problem
into the discrete state space/ discrete control frame-
work , we gridded the 1 unit square into 400 parts.
Each grid had a representative point called the ”ex
emplar”. The control actions were discretised by
requiring them to be one of the 8 directions on
a map (N,NEE SE,S,SW W NW). The incremental
cost function was assumed to be the square of the
distance from the target which was chosen to be the
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UAV trajectories for various initial positions (Radar configuration #1)
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Figure 2: UAV trajectories for various initial posi-
tions(radar configuration 1)

point (1,1). Also, if the UAV came inside the en-
emy radar or if it strayed from the 1x1 square, it
was given a high positive cost. The incremental cost
function for the dicrete state/control system was
evaluated by finding the incremental cost incurred
at the exemplar nearest to the current state. A dis-
count factor of 8 = 0.9 was chosen for the problem.
We used the simulation based policy iteration algo-
rithm, presented in the previous section, in order
to solve this problem. The policy evaluation step
was carried out by randomly generating 15000 tra-
jectories and evaluating the cost-to-go according to
actor-critic algorithm. The trajectories were gen-
erated by randomly(uniformly) choosing an initial
position and applying the current policy from that
position till the UAV reached the target. The policy
update was carried out using the ~y-factors gener-
ated during policy evaluation as the policy evalua-
tion step. As a choice for an initial heuristic policy,
we chose a policy that would chose a heading an-
gle that was closest to the slope of the straight line
joining the UAV to the target. The dynamics of the
UAYV and the location of the enemy radar sites were
assumed to be unknown to the UAV. We carried
out the simulations for various configurations of the
radar sites and the results are shown in the figures
1 and 2.

UAV trajectories for various initial conditions(radar configuration #2)
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Figure 3: UAV trajectories for various initial posi-
tions(radar configuration 2)

Figure 3 and figure 4 represent the optimal
cost-to-go functions for the two different radar con-
figurations.

It was noted during the course of our exper-
iments with this example that in the regions which
were not adequately explored, there was a corre-
sponding deterioration of the performance of the
UAV.

5 State Aggregation and Ap-
proximation Error

One of the biggest drawbacks of Dynamic Program-
ming is the so called curse of dimensionality, i.e., as
the dimension of the state space increases, the com-
putational complexity increases exponentially. In
the case of a finite state system, we still might have
such a large number of states that DP might be an
infeasible option. However, the state space of the
problem can be reduced by aggregating states, i.e,
reduce the original state space to a smaller one by
partitioning it. However the question that immedi-
ately arises is: how close is the optimal cost-to-go
function of the reduced system to the optimal cost-
to-go function of the original system? In this section,
we show that the ACTOR-CRITIC algorithm when

American Institute of Aeronautics and Astronuatics



cost-to—go

cost—-to—go

Optimal cost-to-go function(radar configuration #1)

yaxis X axis

Figure 4: Optimal cost-to-go function(radar config-
uration 1)
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Figure 5: Optimal cost-to-go function(radar config-
uration 2)
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run on a state aggregated system converges. How-
ever, we give an example which shows that unfortu-
nately no guarantee can be given about the closeness
of the optimal cost function of the reduced system
to that of the original system.

Throughout this section, we assume that we are
dealing with a system that has a finite state space.
Let the state space of the syatem be denoted by
S ={1,2,..N}. We partition the state space S into
the sets Sy, 55, ....Sy, where M < N. The ACTOR-
CRITIC algorithm is now run on the reduced sys-
tem, i.e., if the system makes the transition i — j
under the control u, where ¢ € S; and j € S;, at time
instant k, then the algorithm updates its ~y-factors
as:

V41 (S, w) = maz(cx (i, (i) + ﬂJ,’f(j),%(sz)))a)
5.1

all the y-factors being initialised to zero before a

policy is evaluated. Here, i represents the actual

state within S; that the system is at time k and j is

the state to which the system transitions.

Then, it trivially follows from Proposition 3.2, that

Proposition 5.1 Given a stationary policy p, and
the ACTOR CRITIC algorithm modified as above,
the gamma factors generated converge and the limit
is given by

Yu(Si,u) = max (2(Si,u,S;) + BJu(j))

JET(i,u)
where
Ju (@) = 7, (3, p(4))
¢(Si,u,S;) =max max  c(i,u,])

i€S jel(i,u)NS;

However, nothing can be said about the closeness
of the solution to the optimal cost-to-go function of
the original system. To see this consider the 3-state
system shown in figure 6. By closeness, we imply
the following: if for the original system:

(i) — J*(j)| < .
max max |7°() = () <&, (5.2
then what can be said about,
maxmax |J*(Sy,) — J*(i)|. (5.3)

Sk 1E€ESk

The system consists of 3 states indexed 1,2
and 3. State 3 is a cost absorbing state, i.e., the
system stays there once it gets there. There are
two control actions possible at the other two states,
STAY or MOVE. At state 1, if the system decides
to move it incurs a cost of ¢; while if it chooses to
stay it incurs an incremental cost of a;. The costs
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Figure 6: Example showing that errors can be arbi-
trarily large even for a perfect partition

for state 2 are similarly defined. Note that if the
system decides to stay at either of states 1/2, then
U 1‘1_2ﬁ. Let
a < %5 ,c2 > 15 and ¢1 = %%, i.e, the optimal
policy at state 1 would be to move to state 3 while
that at state 2 would be to stay there. Consider
now the aggregated system {(1,2),3}. Suppose the
system decides to stay at state(1,2) then it incurs a
cost, of ¢y while it incurs a cost of ‘“ if it decides to
move.(note that these are the worst case costs associ-
ated with the two control policies STAY and MOVE
at the aggregated state (1,2) and is precisely what
the ADAPTIVE CRITIC algorithm would find with
respect to the selfsame policies). Note now that if we
have ¢z < then the optimal policy at state(1,2),
would be MC?VE The partition of the state space is
perfect since there’s no fluctuation of the optimal
cost-to-go function within any of the partition, i.e.,
€ = 0 in 5.2. However, we cannot give any error
bounds since the approximation error in spite of the
perfect state aggregation is maz(ca — 1"_—2,6, ey —c),
which is finite. Hence, just the assumption on the
partition of the sytem as in 5.2 is not enough to as-
sure any bounds on the approximation error.

The arbitrarily large approximation error above oc-
curs because we try to approximate the optimal cost-
to-go from a given state by the worst case cost from

9

the aggregated state to which it belongs. The two
can be different even for a perfect partition. How-
ever, suppose we approximate the cost-to-go from
any state, by the worst optimal cost-to-go value of
any state belonging to the partition containing it.
In this example we have the optimal cost-to-go from
state 1 as c¢; and that from 2 is ;*25. Thuis if we
approximate the optimal cost-to-go value from the
aggregated state (1,2) by max(c1, 1*%5) , the error
in approximation is zero. This is formalized in the
following treatment. It follows the development in
[19]. In the following the original system is assumed
to have NV states and the state aggregated system is
assumed to have M states. Let V : RM — RV such
that

Vi(J) = J; Vi€ S; (5.4)

The above equation is a compact form of represent-
ing the state aggregation scheme. In the rest of the
section, we assume that the minimax DP operator
T is known to us, i.e., the model of the system is
present. We note that the developments generalize
easily to the model-free case for both Q-learning as
well as Adaptive Critics. Let T denote the minimax
DP operator for the original system. Let I'V repre-
sent set of instants that the set S; is visited.Let J(t)
denote the estimate of the cost-to-go vector of the
aggregate system at instant ¢.Consider some instant
t € TV, let the state visited in S; at that instant be
i. Then the algorithm is stated as follows

J(1))), J;(t

Jit+1) = V(J(t
Ji(t+1)

), t €TV
J;(t), 0.w.

max(T;(
(5.5)

The following Proposition can be made about the
sequence J(t)

Proposition 5.2 The sequence J(t) converges to
J* which is the unique vector satisfying the system
of equations

J —maxT(f/(j*)) (5.6)

Let J* denote the optimal cost-to-go function for the
original system and

€ = max max | T = T} (5.7)

then o .
*) = Tl € —— .
PI)-Tle< oy (68

where ||.||co Tefers to the supremum norm in RN

Proof: See appendix.

Note that the error bound has a factor of (1 — )
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in the denominator which would tend to infinity as
B — 1. However, note that this is a worst case bound
and most real systems would have much better per-
formance than the worst case bound.

6 Conclusion

In this paper, we have presented a deterministic
worst case treatment of uncertainty, applied to a
sequential decision-making problem. This method
has been variously called in literature as minimax /
worst case DP. We have introduced minimax adap-
tive critics and shown the convergence of the learn-
ing algorithms associated with it. Also, we have
presented bounds on the errors that result from ap-
proximating a higher order system by a lower order
system, specifically the case of state aggregation.
We think that this is a first step in the direction
of function approximations in minimax reinforce-
ment learning. Getting error bounds on such ap-
proximations is very important because any kind of
practical application of reinforcement learning would
typically involve some kind of function approxima-
tion architecture. Having said this, we should be
guarded since this aspect of reinforcement learning
has proved to be very difficult to tackle in the case
of the probabilistic DP. However, we would like to
stress the simplicity of all the learning algorithms as-
sociated with minimax reinforcement learning. This
makes these methods particularly easy to imple-
ment. It may be argued that these methods would
suffer from a lot of conservatism. However con-
servatism results in these methods when there is a
great deal of uncertainty in the system. Such poorly
identified systems would be very difficult to control.
Therefore, the conservatism shown by these meth-
ods become particularly attractive when faced with
the problem of on-line real time decision-making in
expensive systems like aerospace systems. The pes-
simistic approach of these methods are particularly
suitable since we can ill-afford to lose a million dol-
lar aircraft or spacecraft. Another point of interest
is that through the formulation of next state sets as
mentioned in the paper, the case of incomplete state
measurements can be satisfactorily treated by these
methods.

A Appendix
In this appendix, we shall discuss multi-

representation contractions and show how they
are used to get the proof of proposition5.2.
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In Dynamic Programming, we require the solution of
a fixed point equation of the form 7'J* = J* where
T represents the DP operator and J* represents
the optimal cost-to-go vector. We know that 7' is a
contraction mapping and that J* is its unique fixed
point. One typical way of getting to this solution
is to get the sequence {J',TJ', T2J!,....... } which
converges to J* and is the method of succesive
approximations. However if the dimension of the
vector J* , say n,is high then the computational
complexity makes the calculation of the optimal
cost-to-go vector inherently slow. One way of
speeding up the calculation is by mapping the
problem into a smaller space ™ (m << n) which
can be thought of as a paramter space. This can
be done by defining the mapping V : ™ — ®»
and the pseudo-inverse mapping V1 : ®* — ®™.
The mapping V can be thought of as a compact
representation. The solution of the original problem
can be approximated by finding the fixed point of
themap T : R™ — R™ where T = VtoToV. The
hope is that V(J*) is close to the fixed point J* of
T where J* is the fixed point of T'.We employ a
vector norm for both R",R™ and denote both by
[|.|| and make the following assumptions:

A A.1 The mapping T is a contraction with con-
traction coefficient § € [0,1) with respect to the

norm ||.||. Hence for all J,J € R"
17T =TT < BIlT =T (A1)

The second assumption defines the relationship be-
tween V and V1.

A A.2 (a) for all J € R™
J=viV())) (A.2)

(b) there exists a 8 € [8,1) such that, for all J,J €
R,

IIV(J)—V(J)IISEIIJ_—JII (A3)
(c) for all J,J € R,
W) = VIO < 1T =T (A4)

Part(a) forces V! to be the pseudo-inverse of
V.Part(b) ensures that points that are close in ®™
map to close points in " while part(c) ensures the
opposite direction.Let

= inf ||J* -V
e= inf || = V()

Under the above assumptions the following theorem
holds[19],
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Proposition A.1 (a) We have
1T =T DN <BIT =Tl
(b) If J* is the fized point of T', then
B+8
BL-p)
Now we are ready to proceed with the proof of
Proposition5.2.

Proof of Proposition5.2:
In our case we have

|7 = V(T < (A.5)

Vi(J) = W;, Vi € S; (A.6)
Yal —
Vi(J) = max Ji, (A.7)

Now we shall verify the assumptions regarding the
multi-representation contractions. The first assump-
tion is satisfied since the DP operator T is a con-
traction mapping with a factor § < 1. Let W =
Wy, Wa,y ooy Wi 1.

Then
Wy = V) = max W) =W, (A3)
Hence we have that VJT(V(W)) =W.
Next we have that if + € S
V(W) = Vi(W)| < [W; — W] (A.9)
which means that
VW) = VW) < [W—W|| (A.10)

i.e. in this case g = 3.
We also have that

Vi -7 = _ < T
Vi () =V () Iriréngz gré%f«hl_gré%flefz Ji|

(A.11)
=
V1) = VI < maxmax | J; = Ji| = |l7 = T |
] eS;
(A.12)

Hence all the assumptions of the multi representa-
tion contractioin theorem are satisfied . Therefore it
follows that the operator T =VtoT oV isalso a
contraction mapping with contraction factor ﬂ' = 0.
Note that J;(t) is a monotonically non-decreasing
sequence and bounded above for all S;. Hence it
converges to some J>°. Now we show that J> is the
fixed point of the operator T".

Let

lim J(t) = J>®

?é%fTi(V(J ) = K

(A.13)
(A.14)

Let T7 denote the set of times at which S; is
visited. From the fact that J;(¢) is a monotonically
non-decreasing sequence,we have

Ji(t) < J° Vvt (A.15)

Let
K;(t) = Ty (V(J(t))) Vt € T (A.16)
i(t) € S; denotes the state of the system at time ¢.

Hence from the definition of the sequence J;(t), it
follows that

{J;()} € {K;(t)} (A.17)
=
sup{J;(t)} < sup{K;(t)} (A.18)

Given € > 0 there exists t. < oot. € TV st.
sp{K;(0} < Ty (VI +e.
Note that J; > Jo means that V(Ji1) > V(J2).

Hence from the monotonicity of ,

sup{k;(t)} < Ty (V(J(t))) + €
< Ty ) (V(I®) +e< K +€ (A.19)
Since the above relation holds for all € > 0, we con-
clude that sup{K;(t)} < K;°. Hence
J7? < Kp° (A.20)

Let t < oo be some arbitrary instant. Let

t + t; represent the instant at which state i € S;

is visited by the system the first time after instant
t.Let

too = grelgic(t +t;) (A.21)
which means that
J2° > Jj(too) > ?é%i(Ti(V(j(t +t3)))
> max V(7)) (4.2

The above relation follows from the monotonicity of
the DP operator T'.
Since K3° > J7*, we get

75 = K5°| < [max T(V(J (1)) = max Tu(V (J%))
< max|T(V(J () = Tu(V (7))

< max TV J(t) — TV.J>®|

< Bl (t) — J°tA.23)
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Let ts be such that for all ¢ > t5,|J(t) — J®| < 6.
Then it follows that

T — K°| < 86 (A.24)
=
J® > K — 65 (A.25)

Noting that § can be made arbitrarily small, it fol-
lows form eqsA.20 andA.25 that K3° = J*. Also
the above holds for all S;. Hence it follows that J>
is the unique fixed point of the operator T".

To obtain the error bounds on the approximation we
use the second part of PropositionA.1.If the maxi-
mum fluctuation of J* within any particular parti-
tion is less than e then inf; ||V (J) — J*||eo = €/2.
This is the case since the best a constant can ap-
proximate the cost-to-gos within a particular par-
tition is going to be 5. Hence substituitng £ in
PropositionA.1(b), we get the desired result.

q.e.d
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