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Abstract

We develop and describe a process for identifying
and imposing partial equilibrium (PE) in systems of
coupled ordinary di�erential equations representing
reaction kinetics, with particular relevance to react-
ing 
ow applications. First, a method for identi-
fying equilibrium reactions is developed. Then, a
systematic way of identifying the conserved scalars
and linearly independent equilibrium constraints is
described. The traditional algebraic constraint used
for partial equilibrium is then modi�ed, which im-
proves the transition when a reaction �rst reaches
equilibrium. The PE tools are demonstrated with
the kinetic integrator CHEMEQ2, and the results il-
lustrate that the new methods allow equilibrium to
be imposed sooner than with more conventional ap-
proaches, while still maintaining solution accuracy.
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1 Introduction

Many applications in science and engineering in-
volve coupled sets of dependent variables fyig and
their rates of change, fgig. These relationships are
represented mathematically by systems of coupled,
nonlinear ordinary di�erential equations (ODEs) of
the form

dyi
dt

= gi; 1 � i � n: (1)

Coupled sets of chemical reactions can be written in
this form for the species concentrations fyig, with
each gi being a linear combination of the source
terms for individual reactions in the chemical mech-
anism. Often the timescales for the various species
di�er by many orders of magnitude, and there is
strong coupling between species. In this case, the
set of equations represented by Eq. (1) is considered
sti� and is not readily solved by classical methods,
such as the low-order Euler methods or higher-order
Adams-Moulton methods.1{3

Partial-equilibrium (PE) methods overcome sti�-
ness by altering the source terms used in the ODE
integration.4 For example, consider sets of coupled
equations representing chemical reactions. If the ef-
fects of fast reactions can be calculated using alge-
braic equilibrium constraints, these reactions may be
removed from the standard kinetic source term cal-
culation. The e�ects of these reactions are included
either by (a) directly imposing the algebraic con-
straints,5{8 or (b) di�erentiating these constraints
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to obtain a less-sti� form of the source term.5, 9, 10

In this paper, we develop a method for approach (a),
and we compare this new method to several devel-
oped previously.5, 10

For the equilibrium constraint to be accurate, the
reaction must be fast compared to the timestep of
the integration, and it should also be close to equi-
librium by some measure. Although the examples
presented in Section 7 are limited to single-point
integration problems, the particular diÆculties as-
sociated with identifying and imposing equilibrium
in reacting-
ow problems are our focus. Using a
process-split reacting 
ow model, the e�ects of each
process such as advection and di�usion are calcu-
lated separately during a timestep. Therefore, iden-
tifying proximity to equilibrium is particularly diÆ-
cult because equilibrium imposed at the end of the
preceding chemical timestep can be disturbed by the
other processes that alter the species concentrations.
This means that the equilibrium reactions must com-
pensate for changes caused by these other processes
that disturb their equilibrium.
PE methods exploit the same system charac-

teristics as Computational Singular Perturbation
(CSP)11{14 and the method of Intrinsic Low-
Dimensional Manifolds (ILDM).15{17 All three ap-
proaches use the fastest modes in the system to es-
tablish algebraic relationships that can be used to
make the chemistry calculation less costly. As with
CSP and ILDM, PE methods can be used to reduce
the number of ODEs that are integrated, but we do
not take this approach. Here, we use partial equilib-
rium to reduce the sti�ness of the ODE system, not
to reduce the size of the ODE system.
We present a new method for determining if equi-

librium can be assumed for a given reaction. This
test includes the calculation of a single timescale
for the reaction rather than separate timescales for
each of the species in the reaction, as well as an
estimate of how close the reaction will be to equi-
librium at the end of the timestep point. We also
present a procedure for identifying redundant equi-
librium constraints, and this procedure provides a
set of conserved scalars for an arbitrary reaction set.
The classic partial equilibrium constraint (i.e., forc-
ing the source terms of equilibrium reactions to be
identically zero) is now replaced. The new constraint
recognizes that the equilibrium reactions must con-

tinually compensate for other processes present in
the system that disturb the equilibrium, such as the
slower chemical reactions, or advection and di�usion
in a reacting-
ow problem. Therefore, a non-zero
source term for the equilibrium reactions is imposed
that is consistent with the reaction's e�orts to main-
tain equilibrium. This new constraint allows equi-
librium to be imposed sooner in a simulation while
maintaining the accuracy of the integration.

2 Background

Here we introduce concepts and de�nitions needed
to develop the methods in the following sections.
A progress variable � is a scalar that provides a

measure of how far a reaction has taken the concen-
trations from their original values.18 Consider the
simple reversible reaction (i.e., a pair of forward and
backward reactions) for species A and B

A�! 2B (2)

with source term

F = kfyA � kbyB2; (3)

for concentrations yA and yB and forward and back-
ward rate constants kf and kb, respectively. The loss
of one molecule of species A produces two molecules
of B, so for changes �yA and �yB in the concentra-
tions of A and B,

�yB = �2�yA: (4)

Consider � which satis�es

d �
dt

= F: (5)

We will refer to the � that obeys Eq. (5) and has
initial value �0 = 0 as the natural progress variable.
This choice for � is convenient because multiplying
� by the stoichiometric coeÆcient of a given species,
with a minus sign for reactants and a plus sign for
products (as determined by the sign given to F ),
gives the perturbation for that species:

�yA = ��; �yB = 2�: (6)
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Therefore replacing yA and yB in Eq. (3) with

yA = y0A � � (7)

yB = y0B + 2� (8)

allows F to be written in terms of � and the ini-
tial concentrations, y0A and y0B , at the start of the
timestep. Therefore Eq. (5) is a single equation in
a single unknown, �. The value of � at any time t
gives the concentration values through Eqs. (7) and
(8).
To generalize these concepts to an arbitrary num-

ber or reactions and concentrations, we view the
species number densities as components of a com-
position vector, y: y = (y1; y2; :::; yn). The vector
y lies in an n-dimensional vector space � for which
a vector y 2 � gives a speci�c composition; com-
ponent yi of y in the natural coordinates gives the
number density of species Ai. Any reaction involv-
ing these n species can be written in the form

nX
i=1

aiAi
�! 

nX
i=1

biAi (9)

for some scalars faig and fbig. For the reaction in
Eq. (2), assigning A1 to A and A2 to B gives a1 = 1,
b2 = 2, and ai = 0, bi = 0 otherwise.
The stoichiometry of the reaction de�nes a vector

r 2 �, which is given by

r = (b1 � a1; b2 � a2; : : : ; bn � an): (10)

The vector r de�nes a line in � (i.e., a one-
dimensional subspace of �) along which the com-
position can move due to this reaction. Therefore,
given an initial composition y0 = (y01 ; y

0
2 ; : : : ; y

0
n) 2

�, any composition y achieved through the single
reversible reaction in Eq. (9) must be of the form

y = y0 + �r (11)

for some scalar �. The progress variable can also
be used to track a thermodynamics variable such as
sensible energy by adding a component to r. If a set
of k reactions occur, then the jth reaction de�nes a
vector rj = (rj1; r

j
2; : : : ; r

j
n), and the �nal composi-

tion can be written as

y = y0 +
kX

j=1

�jr
j (12)

for some scalars f�jg.
Finally, a conserved scalar is a linear combination

of the species concentrations for which the chemical
source term vanishes. Equations. (7) and (8) indi-
cate that

yB + 2yA = constant = y0B + 2y0A; (13)

so this combination of concentrations acts as a con-
served scalar for Eq. (2) acting alone. More gen-
erally, given a set of k reaction vectors frjg, any
vector c = (c1; c2; : : : ; cn) 2 � which is perpendicu-
lar to each of the k vectors frjg de�nes a conserved
scalar. Taking the dot product of c with y � y0

yields

c � (y � y0) = c �
kX

j=1

�jr
j = 0 (14)

c � y = c � y0; or (15)
nX
j=1

ciyi =
nX

j=1

ciy0i : (16)

Equation (16) is a conservation law for the set of re-
actions fr1; r2; : : : ; rkg , which relates fyig through
a constant determined by the initial conditions.
De�ne R � � as the subspace of � spanned by the

vectors r1; r2; : : : ; rk. The orthogonal complement C
of R is the subspace spanned by all vectors c that
de�ne conserved scalars for the reactions in R. A
basis fc1; c2; : : : ; cmg for C gives a complete set of
conserved scalars of the form of Eq. (16) for the given
reaction set. These subspaces and basis vectors can
be readily constructed, as is illustrated in Section 5.

3 Traditional Approach for

Identifying Equilibrium

Partial-equilibriummethods inspect individual re-
actions in the mechanism, not the composite source
terms fgig. Consider the reversible reaction given in
Eq. (17) for species A, B, C, and D,

A+B�! C +D: (17)

The source term, F , for this reaction is given by the
law of mass action as

F = kfyAyB � kbyCyD; (18)
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in which kf and kb are forward and backward rate
constants that are functions of the thermodynamic
state, and the subscript on each concentration vari-
able y indicates species.
Partial equilibrium is assumed for the reaction in

Eq. (17) if the forward and backward rates are fast
enough relative to the other processes to maintain
F � 0. The source term F will not stay identically
zero as the system evolves because other processes
change the concentrations and the rate constants.
Rather than calculating F and including it in the
species source terms, the e�ect of the reaction is in-
cluded by imposing some form of F � 0.
Classically, a fast reaction is identi�ed by calculat-

ing separate timescales for each of the four species in
the reaction. The ODE for species A, for this single
reversible reaction, is

dyA
dt

= qA � yA
�A

; (19)

where qA and �A are

qA = kbyCyD; �A =
1

kfyB
: (20)

If qA and �A were constant, the solution for Eq. (19)
would be

yA(t) = y0Ae
�t=�A + qA�A

�
1� e�t=�A

�
; (21)

so �A acts as a timescale. Similar de�nitions give
time constants for the other species as well:

�B =
1

kfyA
; �C =

1
kbyD

; �D =
1

kbyC
: (22)

By comparing the time constants to some speci-
�ed threshold or, more appropriately, the chemical
timestep used in the integration, the reactions can be
classi�ed as fast or slow. This comparison is usually
done with the species that has the largest timescale
to prevent the algebraic equilibrium constraint from
being applied prematurely.
To determine if F is suÆciently close to zero, the

net rate F may be compared to its forward and back-
ward components:

kFk
kfyAyB + kbyCyD

< �small: (23)

An alternate check would use the equilibrium values
predicted by the simpli�ed form in Eq. (21),

(yA)eq = qA �A; (24)

and similar expressions for (yB)eq , (yC)eq , and
(yD)eq . If all four species are within some tolerance
of these equilibrium values and their timescales are
suÆciently small, the reaction is assumed to be in
equilibrium.
Although this process for identifying PE is widely

used, it is unsettling that a single reversible reac-
tion provides four separate measures of the speed of
the reaction and its proximity to equilibrium. This
ambiguity arises because the timescale calculation
for one species assumes that the other three con-
centrations are constant, which is obviously not cor-
rect. Also, in a process-split reacting-
ow solver, a
constraint based on Eq. (23) or Eq. (24) may fail
to identify equilibrium present in the system due to
the concentration changes caused by other processes
during the timestep.

4 New Method for Identifying

Equilibrium

4.1 Two-Body Reactions

A two-body reaction is a reaction that has two re-
actants, i.e., the sum of the stoichiometric coeÆ-
cients of the reactants equals exactly two. Reversible
two-body reactions have stoichiometric coeÆcients
that sum to exactly two on one side of the reaction
and no more than two on the other. We now show
how conservation constraints given by the stoichiom-
etry of Eq. (17) allow the system of four ODEs de-
scribing the evolution of the species concentrations
yA, yB , yC , and yD to be replaced by a single ODE
for a scalar progress variable �. The natural progress
variable for Eq. (17) obeys

d�
dt

= kfyAyB � kbyCyD; (25)

and changes in the concentrations satisfy

�yA = �yB = ��; (26)

�yC = �yD = �: (27)
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Writing each concentration in Eq. (25) as the sum of
its initial value and its change, this ODE becomes

d�
dt

= c�2 + b�+ a (28)

for a, b, and c given by

a = kf y0Ay
0
B � kb y0Cy

0
D (29)

b = �kf (y0A + y0B)� kb(y0C + y0D) (30)

c = kf � kb (31)

Any two-body reaction leads to an ODE of the form
of Eq (28) for some a, b, and c, even if the reaction
does not match Eq. (17) exactly.
If c = 0, the solution of Eq. (28) is an exponential

given by

�(t) =
a
b

�
1� e�bt

�
; (32)

and �1=b can be used as a time constant for the
reaction. For nonzero c, the solution of Eq. (28)
depends upon the sign of q, de�ned by

q � 4 a c� b2: (33)

If the rate constants kf and kb are positive and the
concentrations are nonnegative, then q � 0. The
only case for which the equality q = 0 holds is if
all initial concentrations are zero.19 The solution of
Eq. (28) for q < 0 and nonzero c is20

�(t) = � 1
2 c

�
b+
p�q 1 + � exp(�p�q t)

1� � exp(�p�q t)
�

(34)

in which � is given by

� =
b+
p�q

b�p�q : (35)

The parameter � lies within the range �1 � � < 1,
so the denominator 1� � exp(�p�qt) is strictly
nonzero. The equilibrium (t ! 1) solution is iden-
ti�ed as

�eq = � 1
2 c

�
b+
p�q� : (36)

Note that if the initial conditions are in equilibrium,
then a = 0,

p�q = b, and � = 0.

A single timescale, �r, de�ned by

�r � 1=
p�q; (37)

is identi�ed for the reaction. Typically, a fast reac-
tion is de�ned as one with timescale �r smaller than
�f�t, where �f is a user-de�ned scale factor.
The proximity of the reaction to equilibrium can

be determined by comparing the solution at t = �t
to the equilibrium (t ! 1) solution. If the t = �t
solution is within some speci�ed tolerance of the
equilibrium solution for all of the species, the re-
action is considered close to equilibrium. That is,
the reaction is close to equilibrium if

kyi(�t)� yi;eqk
yi;eq

� �eq yi;eq ; (38)

for i corresponding to each of the species involved in
the reaction and yi;eq denoting the equilibrium value
of yi. The parameter �eq is speci�ed by the user and
can take di�erent values for the various species. This
constraint can be written in terms of � provided the
most restrictive species constraint is �rst identi�ed
and then written in terms of the progress variable.
If �eq is the same for all species (as in the current
work), then the most restrictive constraint in terms
of � is generally the species that has the smallest
equilibrium concentration.

4.2 Three-body reactions

For our purposes here, three-body reactions are
identi�ed by summing the stoichiometric coeÆcients
on either side of the reaction equation. If one side
sums to three and the other side sums to three or
less, the reaction is three body. The following are
examples of three-body reactions:

3A�! B; (39)

A+B + C�! D +E; (40)

2A+B�! C +D; (41)

A+B +M�! C +D +M: (42)

Three-body reactions can be represented with a
single ODE using the same conservation ideas em-
ployed in the previous section. However, this ODE
has a source term which is cubic in the dependent
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variable, not quadratic as in the two-body case.
Therefore, the ODE takes the form

dx
dt

= Æx3 + 
x2 + �x + � (43)

for some constants Æ, 
, �, and �, and for x be-
ing an appropriate choice of species concentration
or progress variable.
The derivation of a timescale for Eq. (43) is found

in Ref.19 In the current work, a timescale for
Eq. (43) is approximated by using the the initial
value x0 to combine the cubic and quadratic terms
into an e�ective quadratic term:

d x
dt

= d x3 + c x2 + b x+ a (44)

= c0 x2 + b x+ a: (45)

In Eq. (45),

c0 = d x0 + c: (46)

The error in assuming that the cubic source term is
quadratic decreases exponentially as equilibrium is
approached.
The fact that the rate constants change in time

has been neglected in the previous developments.
Rate constants are a function of the thermodynamic
state, which will change as the reaction progresses
toward equilibrium. The timescale calculation is
largely una�ected by this variation since it is an
instantaneous indicator at the given conditions, al-
though the solution given by Eq. (21) which leads to
Eq. (37) for the timescale �r is not exact if kf and
kb vary with time. However, the purpose of these
calculations { to quantify the speed of the reactions
and their proximity to equilibrium { can be accom-
plished despite these limitations. Each reaction is
studied as if it were acting alone. When the equi-
librium constraints are imposed, the interaction of
the reactions must be taken into account, and the
dependence of the rate constants on the thermody-
namic state can also be included if desired.

5 Linear Independence and

Conservation Constraints

Imposing equilibrium requires adjusting the
species concentrations to satisfy the algebraic equi-
librium constraints in a manner consistent with the

conservation constraints. Ramshaw et al.6, 7 devel-
oped an iteration scheme for �nding the progress
variables for the set of equilibrium reactions so that
conservation was guaranteed. However, as Rein indi-
cates,10 Ramshaw did not eliminate redundant equi-
librium constraints from his system,5 and this can
lead to poor convergence of the equilibrium system.

Rein took the additional step of designating in-
dependent and dependent species based on global
conservation constraints.10 Rein's method then im-
poses equilibrium in two steps. First, it �nds the
concentrations of the dependent species using the
equilibrium constraints and a set of conserved scalars
for the equilibrium reactions projected onto the de-
pendent variables. It then �nds the concentrations
of the independent species using the global conser-
vation constraints. This approach has a drawback,
however: if an independent species appears in an
equilibrium reaction, then these two solution steps
are not independent.

Consider, for example, the reactions

H2 +O�! OH +H (47)

H2 +OH �! H2O +H (48)

2OH �! H2O +O (49)

which are important for hydrogen combustion and
common to hydrocarbon combustion problems. If
all three reactions are in equilibrium, the constraints
they impose are (using brackets to denote concentra-
tions)

[OH ][H ]
[H2][O]

= K1 (50)

[H2O][H ]
[H2][OH ]

= K2 (51)

[H2O][O]
[OH ]2

= K3 (52)

for equilibrium constants K1, K2, and K3. These
three reversible reactions involve �ve species,
fH;O;H2; OH;H2Og, which are composed of two
elements, H and O. Including conservation con-
straints for H and O, there are �ve equations for
the �ve unknown species concentrations. However,
Eq. (52) can be written in terms of the other two
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equilibrium constraints,

K3 =
[H2O][O]
[OH ]2

=
[H2O][H]
[H2][OH]
[OH][H]
[H2][O]

=
K2

K1
; (53)

so the constraints are not independent. Since
the equilibrium constraints are redundant, the �ve-
equation system constructed in such a manner would
be indeterminate. A method such as Ramshaw's
has poor convergence characteristics if the redun-
dant constraint is not removed, and some methods
would not converge at all.
Additionally, since all of the species are involved

in the equilibrium, no segregation of the species into
dependent and independent groups will lead to two
independent calculations by Rein's method. For ex-
ample, if one picks H and O as the independent
species, Rein's method �rst constructs a conserved
scalar for the equilibrium modes involving H2, OH ,
and H2O, and then solves a system of three equa-
tions for fH2; OH;H2Og using two of the equilib-
rium constraints and this conserved scalar. The
global conservation constraints are then used to cal-
culate the concentrations of H and O after the other
three concentrations are known. However, the con-
centrations of H and O appear in the equilibrium
constraints, so the system for fH2; OH;H2Og is not
closed.
The key is that these reactions provide an addi-

tional conservation constraint,

[H2] + [H ] = constant; (54)

that follows from the stoichiometry of the three re-
actions but does not match a classic conservation
constraint such as element conservation. This con-
straint is easily found by constructing the orthogonal
complement to the reaction subspace, as described
in Section 2. The algebraic system that should be
solved for the �ve species concentrations takes two
constraints from Eqs. (50) through (52), two con-
straints from conservation of H and O, and the ad-
ditional constraint in Eq. (54). An alternative to
this �ve-equation system is to write equilibrium con-
straints for the progress variables of two of the re-
actions, which reduces the problem to two coupled
equations. This approach is described in Section 6.

6 Imposing the Equilibrium

Constraints

In addition to the methods described above for
identifying linearly independent equilibrium reac-
tions, we introduce a new equilibrium constraint in
Subsection 6.2. The traditional constraint is pre-
sented �rst for comparison.

6.1 Imposing the Constraint F = 0

Consider a set of k0 linearly independent equilib-
rium reactions involving n species yi, each with re-
action vector ri, source term Fi, and progress vari-
able �i. The concentrations and source terms can
be placed into vectors y and F in which component
i corresponds to species i. The progress variable is
governed by

d �i
d t

= Fi 1 � i � k0: (55)

Imposing the traditional equilibrium constraint Fi =
0 requires �nding f�ig, 1 � i � k0, such that

F(yeq) = (0) for yeq = y0 +
k0X
j=1

�jr
j

(56)

given initial concentrations y0.
As discussed in,1 applying Newton's method to

Eq. (56) requires solving
�
@F
@�

��
��l

�
=
��Fl� : (57)

The superscript l indicates values at the lth iteration,
and the iteration is stopped after the values fF l

i g
or the changes in the progress variables f��lig fall
below speci�ed tolerances. The components of the
derivative matrix (@F=@�) are given by

�
@F
@�

�
i;j

=
@Fi
@�j

: (58)

Equation (56) is solved iteratively by calculating the
(l)th iterates f��lig from Eq. (57), then using

�l+1
i = �li +��li 1 � i � n (59)
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to calculate F(yl+1) for the next iteration for

yl+1 = y0 +
kX

j=1

�l+1
j rj : (60)

The elements of the derivative matrix given in
Eq. (58) are constructed from the partial derivatives
of the source terms with respect to the species con-
centrations. This construction uses the reaction vec-
tors and is presented in detail by Mott.19

Although the elements of the matrix Eq. (58)
vary with �i, in general they need only be calcu-
lated once per timestep. The iteration will still con-
verge quickly, and using the initial values of these
entries will save the signi�cant expense of recalcu-
lating them.

6.2 New Equilibrium Constraint

Equation (57) strictly imposes Fi = 0 for each of
the source terms. The source term, however, is not
identically zero as the system evolves. The condi-
tion Fi = 0 is an approximation indicating that the
di�erence between the production and loss terms is
very small compared to the magnitude of these two
terms. The value of �i provides a measure of how
hard the equilibrium reaction i must work in order
to counteract the changes produced by the other re-
actions that disturb its equilibrium. Since �i = 0
initially, a discreet form of Eq. (55) gives

�i
�t

= Fi (61)

for the average value, Fi, that the source term must
take in order to produce the given value of �i.
Therefore the new equilibrium constraint uses Fi

as the target value of the source term rather than
zero, and the system that must be solved is

�
@F
@�

��
��l

�
=
�
F
l �Fl

�
: (62)

To make the iteration more implicit, the iterate Fi
l

is given by

Fi
l
=

�li +��li
�t

; (63)

so that rearranging the system gives�
@F
@�
� 1
�t

I

��
��l

�
=

�
1
�t
�
l �Fl

�
: (64)

for identity matrix I . This system also shows very
good convergence characteristics, needing at most
two or three iterations in the testing done to date.
Using Eq. (64) allows an equation to be replaced
with an algebraic equilibrium constraint farther from
equilibrium than with the traditional Fi = 0 con-
straint.
A search of the partial-equilibrium literature iden-

ti�ed no published methods that identify a set of in-
dependent equilibrium constraints and impose these
constraints directly on the system. The method
of Ramshaw et al.6, 7 for imposing equilibrium
through the progress variables could be used instead
of the Newton iteration shown here. Redundant con-
straints should be identi�ed and removed before any
method is used to impose the equilibrium. To our
knowledge, imposing an average value for F rather
than F = 0 is original to the current work.

7 Integration Results: Ther-

monuclear Mechanism

The new PE tools are applied to an extremely sti�
thermonuclear mechanism which the sti� integrator
CHEMEQ219, 22 cannot solve. CHEMEQ2 (name
derived from CHEMical EQuation solver, not equi-
librium) is designed to integrate sti� ODE systems
within a process-split reacting-
ow code. As such,
CHEMEQ2 is a second-order method with low over-
head and start-up costs that works well for problems
typical of hydrocarbon combustion.
A set of 13 nuclear species (4He, 12C, 16O, 20Ne,

24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, and
56Ni) interact through the 18 reversible reactions
listed in Table 7. This system is used in hydrody-
namic simulations of supernovae explosions which
exhibit 
ame- and detonation-like behavior. The
medium is a dense degenerate plasma which acts
thermodynamically close to a polytropic gas with

 = 1:4. The details of the reaction mechanism and
the equation of state are discussed by Khokhlov.21

The current test problems begin with 50% oxygen
and 50% carbon by moles at initial temperature

8
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Table 7: Thermonuclear Reaction Mechanism.

1) 3 4He �! 12C
2) 12C + 12C �! 4He

+ 20Ne
3) 12C + 12C �! 24Mg
4) 12C + 16O �! 4He

+ 24Mg
5) 12C + 16O �! 28Si
6) 16O + 16O �! 4He

+ 28Si
7) 16O + 16O �! 32S
8) 4He + 12C �! 16O
9) 4He + 16O �! 20Ne
10) 4He + 20Ne �! 24Mg
11) 4He + 24Mg �! 28Si
12) 4He + 28Si �! 32S
13) 4He + 32S �! 36Ar
14) 4He + 36Ar �! 40Ca
15) 4He + 40Ca �! 44T i
16) 4He + 44T i �! 48Cr
17) 4He + 48Cr �! 52Fe
18) 4He + 52Fe �! 56Ni

5� 109 K and density 1� 107gm=cm3. The integra-
tion is performed from time 0 to 102 seconds. The
e�ects of the partial equilibrium tools on the inte-
gration is demonstrated on a constant-temperature
problem. The sti�ness ratio (i.e., the ratio of the
nonzero eigenvalues of the Jacobian matrix @g=@y
with the largest and smallest magnitudes) for this
system increases from � 104 early in the simulation
to over 109 before equilibrium is reached.
The mechanism includes only one three-body re-

action, and the timescale and proximity to equi-
librium for this reaction is estimated using the
quadratic approximation of Eq. (45). Equilibrium is
imposed in some cases based solely on the reaction
timescale �r, while in others both �r and the proxim-
ity of the reaction to equilibrium are checked. The
�eq constraint refers to this proximity check using
Eqs. (36) and (38). The timestep is used in Eq. (38)
with �eq = 0:01 for all species, so in the current
simulations a reaction is\close" to equilibrium when
each of its species will be within one percent of their
equilibrium values by the end of the timestep. The
equilibrium reactions are then removed from the ki-
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Figure 1: Nuclear mole fraction histories obtained
using DEBDF and using CHEMEQ2 with no PE
imposed. The user-speci�ed parameter " dictates
the timestep by monitoring the relative error in the
integration.

netic integration, and the constraints imposed in a
second step.
The non-equilibrium reactions are integrated

using the �-QSS method as implemented in
CHEMEQ2.19, 22, 23 This method works well for
systems typical in hydrocarbon combustion, but it
is not well suited for extremely sti� problems. A
reference solution is calculated using the subrou-
tine DEBDF, which employs a variable-order Gear
method as implemented in LSODE. DEBDF is part
of SLATEC, a library of computational subroutines
available on Silicon Graphics and Cray computers.24

Since our goal is implementation in a reacting-
ow
code, the performance of the PE tools in conjunc-
tion with CHEMEQ2 is desired, but a standard Gear
method performs very well on this problem when not
coupled to a 
ow problem. Figure 1 illustrates the
reference solution obtained using DEBF and two in-
accurate solutions obtained using CHEMEQ2 alone.
All mole fractions are presented as\nuclear mole
fractions," given by

species i nuclear mole fraction =

species i mole fraction
mass number of the nucleus of species i

: (65)
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Figure 2: Nuclear mole fraction histories and the
number of independent equilibrium reactions for the
constant-temperature thermonuclear test problem.

For instance, the initial mole fractions are 0.5 for
both 12C and 16O, so the initial nuclear mole frac-
tions for carbon and oxygen are 1=24 and 1=32, re-
spectively.

Figures 2 and 3 show results obtained using
CHEMEQ2 and the new PEmethods.. Nuclear mole
fractions for the reference solution are shown as solid
lines, and the same variables obtained from the com-
bined CHEMEQ2+PE code are included as open cir-
cles. For this case both �r and �eq switches are used
for determining equilibrium, with �f = 1 (i.e., a re-
action is \fast" if �r < �t). The CHEMEQ2+PE
results show very good agreement with the reference
solution..

Figures 2 and 3 also show the number of indepen-
dent equilibrium constraints imposed by the algo-
rithm as a function of time. These curves are iden-
tical in the two plots and are included in both for
easy reference to the mole fraction plots. The nu-
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Figure 3: Additional nuclear mole fraction histo-
ries and the number of independent equilibrium re-
actions for the constant-temperature thermonuclear
test problem.

clear mechanism is unusual in that only one global
conservation law holds for the 13-species system.
(This conservation law is for � particles; dividing the
mass number of the species by 4 gives the number
of �-particles per particle of that species.) A typi-
cal hydrocarbon combustion problem with n species
composed of ne elements will have ne global conser-
vation constraints from element conservation and a
maximum of n � ne independent equilibrium con-
straints. Therefore, the nonlinear system that im-
poses equilibrium will never involve more than n�ne
equations. Since only one conservation law holds for
the nuclear network, a maximum of 12 independent
equilibrium constraints is possible. As Figs. 2 and
3 show, no equilibrium is present initially, and this
maximum value of 12 is reached when the system as
a whole reaches equilibrium.

To study the e�ectiveness of the new tools, a se-
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Figure 4: Thermonuclear results comparing the use
of the constraint F = 0 to the constraint F = �=�t,
for �f = 1 and the �r-based switch only.

ries of tests are presented using variations on the
base test presented above. The �rst variation is pre-
sented in Fig. 4, in which solutions are shown using
only the �r-based criteria for equilibrium and both
the constraint F = 0 and the constraint F = �=�t.
In both sets of calculations �f = 1. The results ob-
tained using the constraint F = �=�t are very simi-
lar to the results in Fig. 3 using both the �r and �eq
criteria for identifying equilibrium. The number of
equilibrium modes found using the �r-based require-
ment alone is not as stable, showing nonmonotone
behavior around 10�7 and 10�1 s. These oscilla-
tions are not seen when the �eq requirement is used
in combination with the �r-based requirement. The
species solution, however, is not adversely a�ected
by these oscillations.

A more dramatic di�erence is seen in the mole
fraction curves when the constraint F = 0 is used
instead of the new constraint. Jumps are seen in the

mole fraction curves when the system adds the sev-
enth equilibrium constraint at approximately 10�6 s.
A similar but less substantial discontinuity is seen
where the F = 0 calculation adds its third equilib-
rium constraint. The seventh equilibrium constraint
is more illustrative because both the F = 0 and
F = �=�t calculations add this constraint at the
same time. The �rst six equilibrium reactions are
Reactions 10{15 as numbered in Table 7, and the
seventh equilibrium reaction is Reaction 9:

He+O�! Ne: (66)

The species shown in Fig. 4 are not directly involved
in Reaction 9, but they are involved in the other six
reactions for which equilibrium is imposed at this
point. Reaction 9 is coupled to the other equilib-
rium reactions through Ne, which also appears in
Reaction 10. Adding Reaction 9 to the equilibrium
system at this point using the constraint F = 0 is
premature and causes substantial errors in the solu-
tion. Although Reaction 9 is fast as measured by the
�r criterion, substantial changes in the species con-
centrations are required in order to satisfy F = 0
for it and the other equilibrium reactions. Imposing
equilibrium as soon as the timescale is smaller than
the timestep is therefore premature when using the
constraint F = 0; Using the F = �=�t constraint
smoothes this transition and maintains an accurate
solution.
This e�ect is more dramatic as the value of �f is in-

creased. Results obtained using �f = 10 are included
in Fig. 5. Using �f = 10 with the �r-based switch
alone is not particularly reasonable; one would not
assume that imposing an equilibrium constraint as
soon as �r < 10�t would provide an accurate result.
This prediction is validated by the results obtained
using the F = 0 constraint. As equilibrium is in-
appropriately applied early in the integration, wild
oscillations occur in the species mole fractions. The
equilibrium calculation causes changes in the species
concentration so great that the subsequent timescale
calculation produces a �r value that no longer satis-
�es the equilibrium criterion. Additionally, a jump
in the mole fractions is seen at t � 1 as the �nal
equilibrium values are imposed prematurely.
Applying the F = �=�t constraint, even with the

unreasonable �f = 10 criterion, results in an accept-
able solution. The mole fraction curve for argon is
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Figure 5: Thermonuclear results comparing the use
of the constraint F = 0 to the constraint F = �=�t,
for �f = 10 and the �r-based switch only.

seen to deviate from the reference solution early in
the integration, but overall agreement with the refer-
ence solution is very good. The F = �=�t constraint
makes the equilibrium imposition more robust and
allows for accurate solutions to be calculated for a
wider range of the equilibrium criterion. This prop-
erty is important in reacting 
ow applications since
conditions will vary greatly throughout the 
ow�eld.
If the parameters required to get a suitable solution
are too restrictive, only parts of the 
ow�eld or the
integration could be calculated properly.

Since the errant results in Fig. 5 resulted from
a premature application of equilibrium, perhaps in-
cluding the �eq criterion in identifying equilibrium
can also eliminate the problem. Returning to the
traditional F = 0 constraint, Fig. 6 compares re-
sults obtained using the �r criterion alone to re-
sults obtained when the �eq test is also included.
The results obtained using the �r-based switch for
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Figure 6: Thermonuclear results for the constraint
F = 0 comparing the use of both the �eq switch and
the �r-based switch to the use of the �r-based switch
alone for �f = 10.

�f = 10 and F = 0 �rst seen in Fig. 5 are repeated
in Fig. 6. Including the �eq switch with �eq = 0:01
eliminates the oscillations early in the integration by
recognizing that imposing equilibrium (especially of
the form F = 0) is not yet appropriate. The num-
ber of equilibrium modes found by the code is also
much more stable: changes in the mole fractions re-
sulting from imposing equilibrium will not push the
timescale back above the equilibrium threshold.

Note, however, that after 10�7 s the solution in-
cluding the �eq switch deviates from the reference so-
lution and follows the solution obtained using the �r
switch alone. The solution including the �eq switch
returns to the reference solution by 10�3 s and does
not impose the �nal equilibrium prematurely. As in
Fig. 4, the problematic constraint after 10�7 s is the
seventh one imposed, again the one for Reaction 9
given in Eq. (66). The �s criterion for this reaction
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Figure 7: Thermonuclear results using the Section 3
timescale calculation for �f = 1 and �f = 10 using
the �r-based switch only and the constraint F = 0.

is more restrictive, so adding the �eq switch does
not alter the point at which it is classi�ed as being
in equilibrium. Using a more restrictive �eq con-
straint could delay imposing this equilibrium, but
recall that we already have a solution for this prob-
lem: using F = �=�t produced an accurate solution
even for �f = 10. We also know that if we wait too
long to impose equilibrium the kinetic integrator will
begin to introduce errors into the solution. There-
fore, the �eq switch cannot serve as a replacement
for using the constraint F = �=�t in extending the
range over which the equilibrium can be imposed.

How does the new reaction timescale calculation
compare to the traditional method described in Sec-
tion 3? The traditional method writes an ODE for
each species in the reaction and takes the largest
timescale from the group of ODEs to characterize
the speed of the reaction. Results obtained using
this method are included in Fig 7. These results

are obtained using the �r-based switch alone and
the constraint F = 0. Mole fractions obtained using
�f = 1 are given by the thin, solid lines in Fig. 7.
These results deviate greatly from the reference so-
lution at later times and experience the same pre-
mature freezing problem experienced by CHEMEQ2
acting alone. The number of equilibrium constraints
found using �f = 1, given by the solid line in the top
graph in Fig. 7, is much lower than in the previ-
ous solutions obtained using the new timescale cal-
culations. The curves stop abruptly before 10 s be-
cause the calculation becomes prohibitively expen-
sive. The equilibrium tools do not eliminate enough
sti�ness from the system, and the �-QSS method is
left with a system it still cannot integrate. Switching
to the constraint F = �=�t does not help in this case
because the problem results from waiting too long to
impose equilibrium, not from imposing equilibrium
too early. In some problems this inability to recog-
nize viable equilibrium would be expensive but not
catastrophic, but in this case the kinetic integrator
cannot integrate the system unless the PE method
removes more of the sti�ness from the system.
Increasing �f to 10 helps, as is seen in the curves

marked with open circles in Fig. 7. The results are
still not satisfactory, though. Minor deviations from
the reference solution are seen early in the integra-
tion (such as in Ni around 10�5 s). Larger errors
are seen later in the integration. Again, these errors
do not arise from an inaccurate application of equi-
librium, so using the constraint F = �=�t does not
help. The errors arise because not enough equilib-
rium is recognized and imposed, leaving the kinetic
integrator with a problem it cannot accurately solve.
Even with �f = 10 the code believes that only eight
modes are in equilibrium at the end of the integra-
tion. A comparison of the equilibrium mode histo-
ries using the traditional �r calculation and the new
�r calculation is included in Fig. 8.

8 Discussion and Summary

The new techniques for identifying equilibrium
and imposing a set of equilibrium constraints are
more robust and accurate than traditional PE meth-
ods. They are better suited for a reacting 
ow calcu-
lation that can experience vastly di�erent properties
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Figure 8: Number of independent equilibrium con-
straints for the thermonuclear problem obtained us-
ing the classic timescale calculation and �f = 10
versus the new �r calculation and �f = 1. �r-based
switch only.

at di�erent points in the calculation. The new con-
straint, F = �=�t, allows equilibrium to be assumed
earlier in the calculation while maintaining the ac-
curacy of the solution. A thorough error analysis
should be done to determine speci�cally how this
new constraint a�ects the accuracy of the integra-
tion.

Woven into the PE tools is a method for iden-
tifying conserved scalars for an arbitrary reaction
set. This method is based on the stoichiometry of
the reactions and is independent of equilibrium as-
sumptions. This method leads to a straightforward
test for determining which reactions in a set will
produce redundant equilibrium constraints, so that
these constraints can be eliminated when equilib-
rium is imposed.
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