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Abstract 

In the mathematical optimization literature, there has 
been considerable interest in the role that singularities play 
when models are subject to parametric deformation. In this 
paper, our objective is to illustrate the presence of such sin- 
gularities in applications where the models are smooth in 
variables and parameters, but the solutions are not always 
regular. In the first example, an elastic foundation problem 
is revisited to show that the observed singularities are of 
the SCC (strict complementarity condition) variety. In the 
second example, a classical beam-buckling model is aug- 
mented with an obstacle in such a way the solution paths 
have singularities where each of SCC, LICQ (linear inde- 
pendence constraint qualification) and SOSC (second order 
sufficiency condition) fail individually. 

1. Introduction 

Consider a typical optimal design problem stated as a 
standard nonlinear program: 

P (p) : minimize f (x, p) 
x E Rn 
subject to 

g;(x,p) _< 0 (2' = 1 . .  1 )  (1) 
h j (x ,p )=O ( j =  1 ,... ,in). 

where x is the vector of design variables, (the scalar) f ,  gi, h j  
are real valued, and usually smooth (at least C2), functions 
defined on SRn x 0, with p E R c 9'. As the parameter p 
is varied in the set 0, a family of deformed optimal design 
models is generated which we refer to as P(p). Typically, 
the parameter vector p occurs in such models in three ways. 
Firstly, p may be a naturally occurring parameter, such an im- 
precise control input, or available resource in a model. Sec- 
ondly, p may be artificially introduced in the design model, 
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e.g., the parameters used to scalarize a multiobjective prob- 
lem. Thirdly, p could be a subset of the original variables 
which are temporarily fixed, as in multilevel decomposition 
and game theory models. 

Such parametric embeddings affect the underlying model 
in various ways. Consider the following two rather extreme 
examples: 
Example 1 

minimizep2 f (x),  x E X n  

where f (x) is a smooth, strictly convex function. If N(p)  
denotes the number of minimizing solutions for a given p, 
then N(p) = 1 for p # 0 and N(p) 13 cc for p = 0. Note, 
however, that the number of optimizing function values does 
not change, as we trivially expect from Sard's theorem. 

Example 2 

minimize f ( z )  = (xl  + ~ ) ~ + x ~  S. t. p 2 ~ ~  2 O? E y?2 

For any p # 0, N(p) = 1, the only solution being 
x; = 2;: = 0 = f *. At y = 0, the problem is unbounded 
and N(0)  = 0. 

In general, the most basic question in parametric pro- 
gramming is to establish the various continuity and regularity 
properties of these point-to-set maps: the feasible solution 
set X(p) ,  the optimal value function f * ( p ) ,  and the optimal 
solution set X*(p). The literature on this subject is vast; see 
e.g., Fiacco et al.1-3 (and references there in) and Poore et 
d6.' The theoretical nature of parametric singularities has 
been examined extensively, which in turn has led to studies 
on numerical algorithms which can trace parametric solu- 
tion paths and detect the different singularities along such 
paths.4.8 In this paper, our focus is on applications where 
the model is smooth but where different types of parametric 
singularities manifest themselves. 
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2. The Lagrangian Matrix 

As discussed in Fiacco and ~ i u ?  a regular or nondegen- 
erate solution to a parametric programming problem is when 
the linear independence constraint qualification (LICQ), sec- 
ond order sufficiency condition (SOSC) and the strict com- 
plementarity condition (SCC) are satisfied. If the standard 
Lagrangian for Problem P(p) is 

then the set of n + 1 + m equations which are part of the 
KKT (Karush-Kuhn-Tucker) conditions at a candidate solu- 
tion point are V,L = 0, uigi = 0, and hj  = 0. Writing 
these as F ( z ,  p) = 0 where z  = (x, u ,  v), the Jacobian ma- 
trix V, F, referred to as the Lagrangian matrix, is as follows: 

We can readily observe that if SCC fails, then all the ele- 
ments in a row of this matrix will become zero. If LICQ 
fails, then the last 1 + m columns will be linearly dependent. 
If LICQ, SOSC and SCC are all satisfied then this matrix 
can be shown to be non-singular. The implicit function the- 
orem then implies that locally, the KKT triple ( x ,  u ,  w) is a 
once continuously differentiable function of the parameterp. 
This is the essence of the Basic Sensitivity Theorem (BST)' 
which further states that these regularity conditions are satis- 
fied for neighbouring parameter values as well and that such 
a parametric KKT path may be continued until one of LICQ, 
SOSC and SCC fails. 

3. Illustrative Examples 

A Foundation Design Problem 

This example is motivated by Shen et al." In that study the 
authors have used homotopy methods to trace the solution as 
a resource parameter is varied. The resulting solution paths 
have singularities when either a variable reaches or leaves a 
bound or when the structure transitions from a unimodal to 

bimodal design or vice-versa. As such, this is a non-smooth 
problem and the results based on BST do not apply directly. 
However, the solution curves in the cited study1' appear sim- 
ilar to what we would expect for generic cases when SCC 
failure occurs. For a simpler version of this foundation de- 
sign problem, we find that this is indeed the case. 

For the column as shown in Figure 1, given a bound on 
the total available foundation resource, the design goal is 
to obtain an elastic foundation that maximizes the buckling 
load. The energy functional for this system is: 

Under the small displacements assumption, the station- 
arity condition of the energy functional E ( u )  can be written 
as the eigenvalue problem: K ( x ) u  = P l i ~ u ,  where IC(x) 
and KG are the positive-definite 3 x 3  stiffness and geomet- 
ric stiffness matrices, respectively. K depends on the design 
x = (k1 , k2, k 3 ) ,  whereas KG depends on geometry alone. 
The design problem can now be stated as: 

max min u T K ( x ) u  
x u  

Our interest here is to observe the model deformation as 
the resource parameter X is varied. Because of the max-min 
objective, the model in Eq. (4) is not smooth and the Basic 
Sensitivity Theorem and related results do not apply directly. 
Furthermore, we cannot always write the minimum eigen- 
value function as a pointwise minimum of smooth functions 
(see, for example, Ovenon5). In this case, however, by taking 
a symmetric foundation, i.e., kl = k3 , writing k2 = X - kl , 
and by obtaining the explicit expressions for the three eigen- 
values, a one-dimensional smooth problem can be obtained 
using a "bound formulation" as follows (the upper bound on 
kl is relaxed, q = 1 , l  = 0.25): 

max a  
(h, f f )  

S. t. 
gl: a - ( 3 2 + % ) < 0  

64-k +X-A 92:  a - (  l 2  ) l o  
64-k + X + A  93:  a - (  l 2  ) < O  

94,5 : 0 < kl I X 



where 

The solntion is indicated in Figure 4. For X < 32, the 
solution is unimodal, g4 and g:, are active, with k ;  is at its 
lower bound and k,' = X. At X = 32, a transition occurs 
from unimodal to bimodal solution, and gl enters the active 
set while y4 leaves the set. This bimodal solution contin- 
ues until X = 416, when a transition occurs to a unimodal 
solution. At this point, gl leaves the active set. These two 
transitions through SCC singularities are shown in Figure 2. 

SOSC, SCC and LICQ Singolarities 

Consider the discrete model of a geometrically nonlinear 
beam, as shown in Figure 3. This model is well known in 
singularity theory as a classical example of pitchfork bifur- 
cation (Figure 5) which corresponds to the failure of SOSC. 
Here, we have slightly modified the system by adding a rigid 
obstacle as shown in the figure. For this given system, the 
basic problem is simple - given the size of the particular ob- 
stacle and a load P, find the equilibrium position, 0* ,  of the 
beam. Note that we accept as solution to this problem all 
the 0' values at which the structure could exist in a stable, 
physically realizable configuration (i.e., including those to 
the left of the obstacle which are not normally attainable by 
incremental loading from the unloaded horizontal configu- 
ration). With this broader solution class, we can show that 
this example illustrates solution singularities when each of 
LICQ, SOSC and SCC faik9 

The model is 

minimize f ( 0 )  = i k ( 2 0 ) 2  - 2 P l ( l -  coso ) ,  0 E !R 
s. t. 

g l :  ( a + b - 2 1 c o s 8 ) ( 2 1 c o s B - a ) ~ 0 ( 6 )  

The parameters of interest in this model are the load P and 
the size of the obstacle b. Without the obstacle, the response 
is as shown in Figure 5. In this case, the stationary condition 
is 

and the SOSC is (2 - (pl / k )  cos 0 )  > 0). For P < ( 2 k / l ) ,  
the only stable solution is 0" = 0. By increasingp beyond 
this value, SOSC is no longer satisfied for the stationary so- 
lution 8 = O and the column buckles. The solution bifurcates 
into two possible stable H *  # O values which are obtained 
by solving Eq. (7). Note that 0 = 0 remains a stationary 
solution at which SOSC is not satisfied. 

In the presence of the obstacle, we now consider para- 
metric deformation with respect to both P and b. Con- 
sider first the case when P is varied and b is fixed such that 

a + b = 21 cos /3 where 0 < P < cos-' (a/21).  Due to the 
presence of the obstacle, there are two stable solutions, one 
with contact at C where 0; = cos-'(a/21) and another 0; 
for which contact may or may not happen to the right side 
of the obstacle. As the load P is increased from zero value, 
SOSC will first fail when P = ( 2 k / l )  and the solution will 
bifurcate, as before. As P is increased further, the solution 
0,' will increase monotonically until 0,' = /3 and contact at D 
will just occur. This value of P causes SCC failure since g, 
is active but the multiplier, which relates to the value of the 
contact force, is zero. As P is increased further, the stable 
solution 0: = p remains constant. Note that there are no 
singularities in this case on the other solution path 0; ( P ) .  

Consider now the case when b is varied and P is fixed 
at some value ( 2 k / l )  < P < ( x k l l ) ,  i.e., at a value at 
which the structure would have buckled in the absence of 
the obstacle and let the corresponding buckled configuration 
be 0" = y. Let us decrease b from an initial value chosen 
such that 21 > ( a  + b)  > 21 cosy .  For this value of b, 
there will be two solutions, 0; = cos- ' (a /21)  as before, and 
0; = COS- ' ( (a  + b)/21). AS b is decreased, 8; will be un- 
changed and 0; will increase until 0; = y at which time SCC 
failure occurs and the contact at D just occurs (i.e., without 
any contact force). As b is decreased further, the solution 
path 0,'(b) = y will be constant and free from any singu- 
larity. However, at b = 0, when the obstacle just vanishes, 
LICQ will fail for the solution path 0; (b) and this terminates. 
The full solution set for this example as a function of the two 
parameters P and bis illustrated in Figure 6. 

3. Conclusions 

Our objective in this paper was to present illustrations of 
parametric singularities in structural applications. We hope 
that a better understanding of such singular behavior in de- 
sign applications will augment the very active research work 
in theoretical and numerical parametric programming cur- 
rently underway in the mathematical optimization commu- 
nity. These are by no means isolated examples. Loss of 
differentiability of structural states in contact problems has 
been well known, and is readily identified with SCC fail- 
ure. Simple buckling and the related well-known results in 
structural stability are examples of SOSC failure. Examples 
of LICQ failure are not so readily apparent and need to be 
explored further - this is likely to happen when some design 
constraints are redundant. 
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Figure 1 : A discrete foundation design problem. 
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Figure 2: The optimal value function in the foundation problem. 
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Figure 3: Buckling of a discrete, nonlinear beam. 
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Figure 4: Unimodal-bimodal transitions through SCC singularities. 



0' 
1.4. 

1.2. 
stable solution 
soscsatisfled 

0 . 8 -  

0 . 6  

0.4- 

0 . 2  

' 0.5 1 1.5 2 . 5  3 P 

Figure 5: Pitchfork bifurcation in the nonlinear beam 

Figure 6: LICQ, SOSC and SCC singularities in the beam buckling example. 


