
VOL. 14, NO. 6, NOV.-DEC. 1991 J. GUIDANCE 1153

Symbolic Computer Language for Multibody Systems

Michael W. Sayers
University of Michigan Transportation Research Institute, Ann Arbor, Michigan 48109

Methods are developed for describing and manipulating symbolic data objects that are useful for analyzing
the kinematics and dynamics of multibody systems. These symbolic objects include 1) vector/dyadic algebraic
expressions, 2) physical components in a multibody system, and 3) program structures needed in a numerical
simulation code. A computer algebra language based on these methods encourages the automation of multibody
analyses that are versatile and simple because much of the work involved in describing the system mathemati-
cally is handled by the algebra system, rather than the analysis formalism. It also handles mtich of the process
of converting symbolic equations into efficient computer code for numerical analysis. The language permits a
dynamicist to describe forces, moments, constraints, and output variables using expressions involving arbitrary
combinations of unit vectors from different moving reference frames. Kinematics and dynamics analysis
algorithms have been programmed that employ these capabilities to analyze complex multibody systems and
formulate highly efficient computer source code used for subsequent numerical analysis. A companion paper
describes the basic multibody formalism that has been programmed.

Introduction

T HE manual derivation of the equations of motion for
even a modestly complex multibody system is a tedious

undertaking that involves considerable algebra and a nagging
uncertainty of the correctness of the equations. Further, a
considerable programming and debugging effort may be
needed to write those equations in a form suitable for numer-
ical solution. Computer algebra has offered a means to reduce
the effort and avoid simple algebraic errors, thereby allowing
the dynamicist to concentrate on the analysis rather than the
algebra. Most of the work reported to date has been done with
the MACSYMA language,1'4 possibly because it has been
available on mainframe computers for over 15 years. Other
generic symbolic languages that have been used are FOR-
MAC5 and REDUCE.6 Newer languages with similar capabili-
ties are MAPLE,7 MuMath,8 and Mathematical

Even though these mathematical languages are very power-
ful and have many applications, they are not ideal tools for
dynamicists. Because these languages are generic (that is, they
are intended for a wide range of scientific applications), they
do not automatically associate algebraic expressions with ele-
ments in a multibody system. As a result, common kinematic
operations cannot be automated unless the analyst engages in
an extensive programming effort. Another problem is that the
software packages are large and require substantial computing
power to be effective.10 For example, the language MAC-
SYMA consists of about 3000 compiled Lisp functions, ac-
counting for over 300,000 lines of Lisp source code.4

At least one symbolic computation language has been devel-
oped specifically for interactive use by a dynamics expert.11

With this language, called AUTOLEV, the dynamicist ana-
lyzes the mechanical system using the methodology advocated
by Kane and Levinson12 and the computer acts as an assistant
that performs most of the algebra. When the analysis is com-
plete, the equations of motion are written into a Fortran
program that is ready to compile and run. Because it is
specialized for dynamics and kinematics analysis, the software
is reported to be simpler to use for this application than other
symbolic mathematics computer languages. Another advan-
tage is that it runs on inexpensive personal computers. How-
ever, the correctness of the equations is strongly dependent
on the skill and thoroughness of the dynamicist, who must
attend to many mundane details of the analysis (e.g., using
kinematical relations to derive velocities) using AUTOLEV
commands.

Further automation His been achieved by computer pro-
grams that formulate e|tlations of motion based only on a
description of the georriStry of the multibody system (e.g.,
NEWEUL,13 SD/FAS|,14 MESA VERDE,15 etc.). These pro-
grams generate subroutines that can be merged into a simula-
tion program. The automation does not come without a price,
however. With most of these programs, the dynamicist must
describe the system using coordinate systems dictated by the
software. Active forces and torques (those doing work) are not
included directly, forcing the dynamicist to develop subrou-
tines or equations by hand that are linked with the automati-
cally generated equations. Inclusion of arbitrary constraints
(nonholonomic, specified motions, etc.) can require consider-
able expertise. Simplifications that are made by a human
analyst, such as lumping bodies together, or making small-an-

Dr. Sayers received B.S. and M.S. degrees in Mechanical Engineering from the Massachusetts Institute of
Technology in 1975 and 1976, respectively, and a Ph.D. in Mechanical Engineering from the University of
Michigan in 1990. Since 1976, he has been a researcher at the University of Michigan Transportation Research
Institute, conducting research involving the dynamics of ground vehicles, vehicle-road interactions, computer-
aided analysis, and the automated modeling of dynamic mechanical systems. He developed the International
Roughness Index used worldwide by highway agencies to characterize road roughness, and has designed and
authored numerous software packages, most recently with emphasis on symbolic computation methods.

Received June 25, 1990; revision received Oct. 22, 1990; accepted for publication Oct. 23, 1990. Copyright © 1991 by Michael Sayers. Published
by the American Institute of Aeronautics and Astronautics, Inc., with permission.

1154 M. W. SAYERS J. GUIDANCE

gle approximations, are not done automatically and may not
be possible at all. Consequently, the equations can be overly
complicated.

Computer programs that automatically form equations of
motion of multibody systems, either numerically or symboli-
cally, incorporate a formal analysis process called a multibody
formalism. In developing formalisms, most dynamicists have
taken it upon themselves to specify the analysis method in
such complete detail that it can be programmed numerically in
existing computer languages16'17 or symbolically using rudi-
mentary computer algebra.13'15

Rather than developing a complicated method that can be
programmed in existing languages, an alternative approach is
to 1) design a new computer language that includes symbolic
operations relevant to the analysis of multibody systems, and
then 2) devise simpler and more versatile multibody formal-
isms that can be programmed in the new language.

This paper describes the design of such a language. In this
language, three aspects of the system are represented in sym-
bolic form as computer data objects: 1) vector and dyadic
algebra expressions, 2) components of the multibody system
(bodies, forces, etc.), and 3) pieces of computer code that go
into a numerical simulation code.

The methods described in this paper have been programmed
in Lisp and are part of a software package called AUTOSIM,
developed at the University of Michigan to automatically gen-
erate simulation codes for multibody systems. Although the
software was developed on an Apple Macintosh, it runs on
any machine that supports the Common Lisp language.18 The
multibody formalism presently used in AUTOSIM is based
on tree-topology systems. The basics of the formalism are
described in a companion paper,19 and extensions that allow
AUTOSIM to handle nonholonomic constraints and kinemat-
ical closed loops are described in Ref. 20.

Notational Conventions
Bodies in the multibody system are designated by plain

capital letters, e.g., body A, body B. The inertial reference is
called TV. Points are designated by capital letters that often
have subscripts. Origins of coordinate systems are always
written with a subscript zero (e.g., BQ). When discussing bod-
ies in the system, the current (generic) body under consider-
ation is called B. Its movements are defined with reference to
another body in the system, called the parent of B, and desig-
nated A. (The parent A can be either another body or TV.) The
configuration of the multibody system when all generalized
coordinates are zero is called the nominal configuration.

Vectors are written with bold type. Unit vectors that are
parallel with axes in coordinate systems are written with lower-
case letters that are the same as the body in which the unit
vector is fixed, and subscripted with an index of 1, 2, or 3. For
example, the three directions of the coordinate system of B are
the unit vectors b\, b2, and b3. Other unit vectors used to
define directions of interest are written with the letter d.
Position vectors are written with the letter r, superscripted
with the names of the endpoints of the vector. For example, a
vector connecting the origin of B(B0) to its mass center (B*) is
rBo**. A similar convention is used for velocity, except 1) the
letter v is used, and 2) only one point is contained in the
superscript, e.g., v^o.

Names of computer data types are written in the Helvetica
typeface, e.g., indexed-sym. Formal arguments to computer
procedures and names of slots in structures (defined later) are
shown in italics.

Symbolic Computation
Symbolic computation is used to derive expressions when

the values needed for numerical computation are not known.
Arithmetic operations are not performed on the symbolic
expressions, but are used to build new expressions that can be
applied later. That is, the arithmetic operations are deferred.
For example, given an equation A = 2*(B + C) - D, where B,

C, and D are unknown, the expression 2*(B + C) - D is
stored and associated with the symbol A. Later, when values
are supplied for symbols B, C, and D, a value for A is
calculated.

An example of a symbolic computation program is a com-
piler. Translating procedures from a high-level language such
as Fortran to a low-level language such as machine code
involves symbol manipulation and the generation of instruc-
tions to perform operations. One way to view a symbolic
multibody analysis program is as a compiler: the high-level
language is the input from the dynamicist, and the low-level
language is a target language such as Fortran.

The reason that symbolic computation can be very useful
for developing efficient equations of motion is that knowledge
about some of the terms can be used to simplify equations.
For example, the equation A = Q*(B + C) - D can be simpli-
fied once and for all to A = -D. In addition to pure algebraic
manipulation, equations can be simplified based on engineer-
ing judgments if certain terms are known to be numerically
negligible. For example, if the symbol X is known to apply to
a variable that is very small, the expression 1 - X2 can be
simplified to unity, and the expression sinX can be simplified
toX.

Basis-Free Vectors and Dyadics
Generic computer algebra languages are unable to automat-

ically manipulate vector and dyadic expressions that involve
unit vectors from a variety of moving reference frames. For
example, consider a spring between two points PA, fixed in
body A, and point PB, fixed in body B, as shown in Fig. 1. The
vector connecting points PA and PB can be written simply as

d)

Let the distance between the points be designated x, where

x =

(2)

An expression for the dot product a\ • b\ can be formulated
if information is available concerning how the bodies associ-
ated with these unit vectors are related kinematically. From
the figure, we can deduce that the dot product is the sine of the
angle between the two bodies. However, if such information is
not available, all that can be done symbolically is to generate
an expression such as a\-b\.

In most existing computer algebra languages, vectors are
handled as three-element arrays in a prescribed coordinate
system. If the unit vectors a\ and b\ are represented by such
arrays, then the dot product is the inner product of the two
arrays. Two problems with choosing a coordinate system for
each vector expression are 1) the analysis is made more com-
plicated because the coordinate systems must be monitored,
and 2) it is not always clear right away which is the best
coordinate system to choose. To represent the vector expres-
sion of Eq. (1), a dynamicist would probably choose either the

B
Fig. 1 Use of unit vectors to describe spring.

NOV.-DEC. 1991 MULTIBODY SYSTEM SYMBOLIC COMPUTER LANGUAGE 1155

coordinate system of A or B. Either way, dot products are
likely to be needed between the vector rp*pB and vectors de-
scribed in the other coordinate system. Coordinates that were
first transformed to the chosen coordinate system are later
transformed back. The process of transforming coordinates
back and forth can add to the complexity of the resulting
equations. However, if the vector r***1** is stored as written in
Eq. (1), a minimal transformation is needed to convert to any
coordinate system.

Numerical Efficiency
A simulation code is a computer program that simulates a

physical system by numerically integrating differential equa-
tions of motion. The integration is performed by using a
numerical approximation to integrate the equations over a
very small increment of time. The state variables are computed
in a simulation run for discrete times that are stepped from a
start time to a stop time. Numerical efficiency can be esti-
mated by the number of arithmetic operations needed to com-
pute derivatives of the state variables of the multibody system
at each time step. This efficiency derives from several factors.
The method used to derive the equations of motion is, of
course, a primary factor. The merits of various methods
(Newton-Euler, Lagrange, Kanes equations, etc.) have been
covered extensively in the literature and will not be repeated
here. However, within the scope of a given method, there are
several techniques that can be taken by the analyst to simplify
the equations and also techniques that can be taken when
coding the equations into a computer program. These tech-
niques include the following.

1) Terms that are zero for the specific system (but that
could be nonzero for a more general formulation) are omitted
from the equations.

2) Equations are written in factored form, involving prod-
ucts and ratios of sums of terms. For example, the expression
(A + B + C)2 requires two additions and one integer power;
the expanded form (A2 + 2AB + B2 + 2AC + 2BC + C2) re-
quires five additions, six multiplications, and three integer
powers.

3) Terms involving products or powers of quantities known
to be small are dropped if they are of order 2 or higher.
Trigonometric functions of small quantities are replaced with
truncated Taylor series expansions.

4) Complicated expressions that occur in several places are
replaced with intermediate variables. This technique is partic-
ularly important for multibody systems because the equations
of motion are inherently redundant, even when highly recur-
sive dynamics analysis methods are used.

5) Expressions involving only constants are identified and
precomputed as part of the program initialization to avoid the
repeating of identical computations at each time step.

6) Unnecessary equations are removed. For example, a
term might be introduced that is later multiplied by zero.
Equations that compute the term can be safely eliminated.

All of these techniques are independent of the method used
to form the equations of motion and can, therefore, be made
a part of the computer algebra language.

Representing Symbolic Data
The methods required to manipulate symbolic expressions

are derived from the design of the computer data types that
are used to represent algebraic expressions and other entities.
Given that the AUTOSIM implementation was written in Lisp,
Lisp terminology is used in the following descriptions. How-
ever, the basic concepts could be applied in other languages.

Lisp includes over 40 types of data objects. In addition, new
types are included by the use of structures. Figure 2 shows a
hierarchy of data types used in AUTOSIM, as they relate to
data types already in Lisp. Each type of data object inherits
from the type to its immediate left in the figure. For example,
an object of type cos is also of types trig, func, and expres-
sion. Characteristics of the types trig, func, and expression

^are inherited by objects of type cos, and most Lisp functions
developed to work with objects of type trig, func, or expres-
sion work without modification with objects of type cos.

The data objects in the figure are shown in four groups
related to 1) computer algebra, 2) the multibody system, 3) the
numerical simulation program, and 4) additional native Lisp
objects. Native Lisp forms are shown in italics, and those used
extensively in AUTOSIM are shown in bold italics. Each type
of data object is associated with a specialized function used to
print that type of object. When the object represents an alge-
braic expression, it is printed according to the conventions of
the target language. The present version of AUTOSIM prints
outputs in one of three target languages: Fortran, ADSIM (a
simulation language used for real-time simulation with com-
puters made by Applied Dynamics International, Inc.), and
RTF (rich text format, used in the Microsoft Word word
processor for the Apple Macintosh and the IBM PC). For
example, an indexed-sym object that is printed as Z10 when the
target language is RTF is printed as Z(10) when the target
language is Fortran.

Computer Algebra
Expressions in AUTOSIM can represent scalars, vectors, or

dyadics. They are composed of numbers and expression
structures, whose characteristics are listed in Table 1. The
examples show how they are printed in this paper (or when the
target language is RTF). Three of the expressions defined in
the table are elementary types from which compound types are
built. The elementary types are the number, the sym (and a
subtype, the indexed-sym), and the uv. The Lisp structure
object contains a number of variables, called slots, that are
defined within the structure. Each slot has a name and can be
assigned a value. The number of slots and the associated
names are defined for each data type. The meta-type expres-
sion defines a repertoire of qualities associated with all expres-
sion types. For example, the type slot tells whether an expres-
sion is a scalar, vector, or dyadic. The const-or-var slot tells
whether an expression is a constant or a variable. The small-
order slot defines an order of smallness for the expression.
Nested expressions are implicit in the design of the compound

Computer Algebra

- expression —

E complex ., integer
rational*—- — ratio
float

— dyad ^, trig-^— - —— cos
— func ^^ — asin ^^"^ sin
— power "̂s. atan
— prod
— sum

— uv

- forcem-<^^
- point

..— - force
'"-— moment

Multibody System

- eqs
- outvar
- declaration
- call

Numerical Simulation
Program

<*£_——. vprrnr <4L-——— c/mn/p-

Fig. 2 Hierarchy of AUTOSIM and Lisp data objects.

1156 M. W. SAYERS J. GUIDANCE

Table 1 Summary of AUTOSIM expression types

Type Primary slots Definition Examples
number
expression
sym
indexed-sym

uv
dyad
power
prod
sum
func
trig
cos
sin
asin
atan

type, small-order, sort-code, dxdt, const-or-var
symbol, default, hide, exp

symbol, body, dot products, cross products
uvl, uv2
base, exponent
coef, factors
terms
function, args
symbol

number
meta-type for all expression objects
symbol for a scalar parameter or variable
indexed symbol for a scalar parameter or variable

(this is a subtype of sym)
unit vector
dyad
base expression raised to power
product of numerical coefficient and list of expressions
sum of expressions
function that will be written into numerical program
sin or cos
cos
sin
arc-sine
arc-tangent

2, 1/3, - 0.3333

M, MC
q.2
a\

sin(02)
sin"1^

Y)

Table 2 Some of the slots in a body

Slot name Definition
symbol symbol for user to reference the body
name descriptive name of body
parent parent body in tree topology
level level of the body in tree
children list of bodies that have this body as their parent
cm-point location of mass center
mass mass associated with body
inertia inertia dyadic (with respect to the mass center)
abs-w absolute rotational velocity of the body
abs-vO absolute velocity of the origin of the body

expression types. For example, the expressions in the list of
factors of a prod can be sums, powers, tunes, etc. There are
no limits to the level of nesting (other than computer mem-
ory). Vectors and dyadics are simply expressions that involve
unit vectors (uv objects).

Table 3 Some of the slots in a point

Slot name Definition
symbol symbol used to identify the point
name descriptive name of the point
body body structure in which this point is fixed
coordinates array of three coordinates in the coordinate

system of body

Slot name

Table 4 Some of the slots in a forcem

Definition
symbol symbol used to identify the forcem
name descriptive name of the forcem
direction vector expression that gives direction of forcem
magnitude scalar expression that gives magnitude of forcem
bodyl body on which forcem acts with + magnitude
body2 body on which forcem acts with - magnitude
point 1 point on line of action of force on body 1 (force only)
point2 point on line of action of force on body 2 (force only)

Multibody System
A multibody system is composed of bodies influenced by

forces and moments and connected to each other by joints.
Each element is represented by a corresponding Lisp structure.

A data structure called a body is used to represent each body
in the system. Table 2 lists a few of the major slots in a body.
Other slots used to support mathematical operations are listed
later in other tables. Mass and inertias can be expressions
involving variables to account for dynamically varying mass
properties. Massless bodies can be used to introduce interme-
diate reference frames. Also, bodies with zero degrees of
freedom can be used to add (or subtract) mass or inertia to an
existing body. As will be seen later, some of the slots in a body
are set directly by the analyst, such as the symbol and the
parent. Others, such as the slots abs-w and abs-vO, are set by
analyses performed automatically as the body is defined.

A structure called a point is used to define a location of
interest in a body, such as the origin of the coordinate system,
the mass center, an attachment point, etc. Points are defined
as needed by the analyst to identify attachment points for
forces, as points of interest for output variables, or as center
of mass locations for bodies and composite bodies introduced
in a dynamics analysis. Table 3 defines the major slots used to
define a point. The coordinates of a point can include expres-
sions involving variables to facilitate simple descriptions of
forces that act on moving points.

Force-producing elements are represented by objects called
forces, and moment-producing elements are represented by
moments. Both types, which inherit from the meta-type
forcem, are summarized in Table 4. The pointl and point2
slots in a force are used to obtain expressions for the moment

applied to a body about its mass center. That is, the moment
is defined as

= ,.**/> x/ (3)

where rB*p is the position vector going from the center of mass
B* to the point P on the body through which the force passes,
and/is the force vector (i.e., the product of the expressions in
the direction and magnitude slots of the force object).

Numerical Simulation Program
In addition to expressions and the multibody system, the

numerical simulation program produced as output by AU-
TOSIM is represented with objects. A sequence of assignment
statements is represented by an object called an eqs. Some of
the sequences that are generated and manipulated are the
kinematical equations, the dynamical equations, the trigono-
metric functions used in other equations, and the output vari-
ables. Each equation in an eqs is a sym (or indexed-sym)
whose exp slot is assigned to an expression. As with other
types of objects, the eqs prints in a form appropriate to the
target language. Each sym is printed in a form similar to the
following: symbol = exp. Information about a variable that
will be produced as output by the simulation code is repre-
sented by the outvar object. It includes a short name, a long
name, a generic name, an expression, and units. Before the
simulation code is written, the list of outvars is processed to
ensure that statements are generated to compute all dependent
variables specified by the dynamicist. A list of all variables of
a certain type (REAL, INTEGER, etc.) that must be declared
in a specific subroutine module of the simulation code is
represented in a declaration object.

NOV.-DEC. 1991 MULTIBODY SYSTEM SYMBOLIC COMPUTER LANGUAGE 1157

Many real-world multibody systems cannot be fully de-
scribed using only differential and algebraic equations. The
behavior of certain components may require semiempirical
models that involve table lookups, convoluted numerical al-
gorithms, and even hardware-in-the-loop. Variables defined in
these ways are included in the equations of motion through the
use of external subroutines. Procedures that return a single
variable as a function of one or more arguments are repre-
sented with the func structure (see Table 1 and Fig. 2). Proce-
dures that return several variables at once are also used. In
Fortran, a procedure of this sort is called a subroutine and is
invoked with a CALL statement. When code is written, it is
essential that 1) values needed as inputs to a subroutine are
computed before the subroutine is called, and 2) all references
to values computed by the subroutine appear after the subrou-
tine is called. External subroutines are represented in AU-
TOSIM with a type of structure called a call. Each call has
slots that indicate 1) where the subroutine appears in the
simulation code, 2) the name of the subroutine, and 3) its
arguments.

Manipulating Symbolic Data
The manipulation of symbolic data to generate efficient

numerical analysis algorithms for multibody systems involves
algebraic operations, interactions with the multibody system,
and automated programming.

Making Expression Objects
Algebraic operations are implicitly performed when a com-

pound expression object is created. For example, a prod repre-
sents the multiplication of expressions. The functions that
create objects check their arguments and create simpler ob-
jects when possible. In fact, significant algebraic simplifica-
tions are performed in these operations. Table 5 summarizes
simplifications that are performed by creator functions.

Most of the small quantity simplifications occur when a
sum is created. The term with the minimum order of smallness
is used as a reference and all other terms are compared to it.
Terms whose order of smallness is more than the reference by
some threshold are dropped. Normally, the threshold for
dropping small terms is 2. However, this value can be modi-

fied if needed to perform alternate analyses that require
higher-order terms. For example, AUTOSIM has been used to
generate equations needed for a bifurcation stability analysis
in which all state variables are small and terms are kept up to
the fifth order.21 Small simplifications can also occur when a
trigonometric object is created, in which case a truncated
Taylor series is used.

Care has been taken to ensure that equivalent occurrences
of a compound expression always are created the same way.
Sums nested within sums and prods within prods are re-
moved. For example, the sum (A + B) + C yields
(A + B + C), rather than [(A + B) + C]. Terms and factors
are sorted when creating prod or sum structures. For example,
the product of B and A *C is A *B*C rather than B*A *C. A
sign convention for sums is used that results in a repeatable
formulation for a given sum. For example, the expression
(-A—.B — C) would never be generated; instead, that result
is always represented as —(A + B + C).

Algebra Operations
Conventional scalar operations such as multiplication and

addition are performed by applying simple rules to create new
data objects from data in the arguments. Table 6 summarizes
the algebra operations. Most of the scalar operators in the
table work as would be expected. One unusual operator is the
constant-part function, which returns zero unless 1) the ex-
pression is a constant, or 2) it is a sum with at least one
constant term. It is used when symbolically solving for depen-
dent variables to avoid expressions that are likely to become
singular. That is, when division is necessary, an expression
is preferred that involves a divisor whose constant-part is
not zero. (This capability is important when dealing with
constraints that occur in systems that do not follow a tree
topology.20)

Operations that involve unit vectors involve novel interac-
tions between the computer-algebra part of the software and
the representation of the multibody system.

The dot-product operation is valid for two vectors, a vector
and a dyad, or two dyads. The operation is applied by recur-
sively expanding expressions into multiplications and addi-
tions of subexpressions, until an expression is obtained that

Table 5 Simplifications performed by creator functions

Function Simplifications3

asin, cos, sin • simplify if argument is the inverse function [e.g., sin(sin lx)-~x]
• if argument is a number, evaluate
• if small order > 0, return truncated Taylor expansion

atan • same simplifications as for asin
• if there are two arguments, divide both by greatest common factor

[e. g., tan ~ l (ax, ay) -* tan ~ l (x,y)]
power • if base is a power, change exponent

• if base is number, evaluate
• if base includes small terms, drop if possible

prod • if the coefficient is 0, return 0
• if the coefficient is 1 and there is one factor, return the factor
••if any numbers are included as factors, remove them from the list of

factors and multiply them with the coefficient
•• if any factors are prods, multiply coefficients and combine lists of

factors (i.e., expand nested prods)
••if any factors can be combined into a power, make the substitution
• else, sort factors and create prod object

sum •• compare small-order values of terms and remove those that are
negligible

•• check for trig identities: sin2* + cos2x-*l; 1 - sin2jc^cos2Ar; etc.
•• if any terms are sums, remove them and append terms from nested

sums to existing list (i.e., expand nested sums)
•• if sym-value of sum would be negative, negate all terms and return

negative sum (prod with coefficient of - 1)
• else, sort terms and create sum object

Simplifications marked with •• mean that after the simplification is performed, the creator function is
called recursively, using updated arguments.

1158 M. W. SAYERS J. GUIDANCE

Table 6 Summary of primitive mathematics operations

Operation Argument(s) Description
add
angle

const-or-var
constant-part
convert-
coordinates

cross
dir
div
dot
dot-plane

x,y
vi,v2,{v3}

x
X

coordinates,
oldbody,
newbody

Vl,V2

V

x,y
Vl,V2

VI, V2

i [x/gtf(x,y)+y/gcf(x,y)]
angle between vi and V2, with sign

determined by optional vs, as
illustrated in Fig. 3

is x constant or variable?
constant part of expression
convert coordinates from coordinate

system of oldbody to the
coordinates system of newbody

V\ X V2

direction of vector, i.e.,
x/y (y must be scalar)
Vi • V2

project vi onto plane normal to V2, i.e.,
Vi - V2V2dot-plane (vi,v2> = vi - ————

dxdt
gcf
inv
mag
mul
neg
nominal

partial
sub

x

x,y
x
V

x, y
x

exp

y,x
x,y

dx
~dt
symbolic greatest common factor
\/x (x must be scalar)
scalar magnitude of vector, 1 v 1 -* vv
xy (either x or y must be a scalar)
- x

•V

set all generalized coordinates in exp
to zero

dy/dx (x is scalar)
x-y

involves operations defined for scalar algebra, together with
dot products between unit vectors. Thus, the primitive dot-
product operation is defined for two uv arguments. Recall
that the uv contains a slot called dot-products. This contains
a table with all pairs of uvs whose dot product is known.
Initially, each table contains three entries for the three uvs in
the body in which the uv is defined. (The values are 1 for the
dot product of the uv with itself and 0 for the other two uvs
of the trio.) If the table in the first uv contains the answer, it
is used. If not, the table in the second uv is checked. Again, if
the answer is in the table, it is used. If not, the following
analysis is performed.

The uv whose body is farthest down the topology tree is
identified by comparing the values from the level slots of the
bodies. That uv is transformed into an expression involving
the three uvs of its parent body by using the direction cosine
matrix (from the cos-matrix slot), as will be described shortly.
The dot product is then taken between the new expression and
the uv that was up the tree. This method is recursive—the dot
operator is defined in terms of itself. It works because with
each recursion the expressions being considered are simpler
and/or the uvs are from bodies that are closer in the tree.
Eventually, the process stops when both arguments are uvs
associated with the same body. (In the most complicated case
possible, both uvs would be transformed to the inertial refer-
ence.) The results of the process are stored in the table of dot
products for one of the uvs, so that the tree-climbing and
matrix multiplications are not required the next time the dot
product is needed. This method of tree climbing ensures that
the minimum number of direction transformations is per-
formed for each dot product operation.

The cross-product operation is performed using the same
recursive approach as just described for the dot product. A uv
crossed with a uv is obtained from the table of values in the
cross-product slot of either uv if available (with a multiplica-

6 follows right-hand convention
for v3

Fig. 3 Angle convention.

Fig. 4 Satellite multibody system.

(Thr2 ^T T £

1 :
~ 0(?) Hinge,
V^ Fo

*-?— L— r—

L5

*!
jr

1̂

I

-Â̂

-*- L3

^ Do

• LIj i
L2

i f i

Fig. 5 Dimensions of satellite.

tion by - 1 if the table of the second uv is used). Otherwise,
the cross product is formulated using the expansion:

bj - [(«/ • bi)bi + (fl/ • b2)b2 + (fl/ (4)

where a\ is the first uv, bj is the second, and b\9 b2, and £3 are
the unit vectors for the body containing bj. An angle function
is included, which uses dot-product and cross-product opera-
tions to define an angle between two arbitrary vectors, with a
right-handed sign convention (see Fig. 3).

The derivative of an arbitrary expression is determined us-
ing elementary rules of calculus to recursively expand the
expression into products and sums of simpler expressions and
their derivatives. The expansion stops when a sym, number,
or uv is reached. The time derivative of a sym is zero if the
expression is a constant, otherwise it is obtained from the dxdt
slot. (When sym structures are created to represent state vari-
ables, the dxdt slots are assigned to the appropriate sym for
the derivative.)

The time derivative of a uv (M) is defined as

i^u x u (5)

where UB is the absolute rotational velocity of the body con-
taining u. Note that Eq. (5) is always valid, even if simplifica-
tions have been made involving small angles and small speeds.

NOV.-DEC. 1991 MULTIBODY SYSTEM SYMBOLIC COMPUTER LANGUAGE 1159

Example Multibody System
Figure 4 shows an example multibody system that will be

used to illustrate the multibody operations and the general use
of AUTOSIM. The system is a satellite with a main body B
(called the bus), a flexible boom F, and a camera D, mounted
on a clock C. Dimensions and locations of significant points
are shown in Fig. 5. The bus has six degrees of freedom
relative to the inertial reference. The clock is a shaft that
rotates relative to the bus, the camera is a body attached to the
clock with a hinge joint, and the flexible boom is modeled as
a rigid body attached to the bus with a two-degree-of-freedom
hinge at a point Fo, with torsional stiffness KB and torsional
damping rate DB in the directions 1 and 3. Movements of the
clock and camera are controlled. The controller is modeled as
a torque applied to the clock through a massless element with
torsional stiffness KC and torsional damping rate DC. The
torque applied to the camera is also through a massless ele-
ment with the same stiffness and damping properties.

The complete description of this system is listed in Fig. 6.
Although space limitations prevent a thorough discussion of
Fig. 6, the following hints may prove helpful for understand-
ing the inputs. AUTOSIM commands are lists enclosed by
parentheses. Items in a list are separated by white space or by
appearing on different lines. Regardless of how many lines are
covered, the list ends when the closing parenthesis is encoun-
tered. The first symbol in the list (a name, possibly hyphen-
ated) is the name of a procedure—a Lisp macro or function.

Table 7 Parameters and degrees of freedom of a body/joint

Parameter Description

(l/ i , 1*2, '3} })

position of joint point of B relative to origin
of parent

})) list of 0, 1, 2, or 3 directions for translational
degrees of freedom of B, fixed in the
coordinate system of the parent

list of 0, 1, or 3 axis indices in B for
sequential rotations

orientation of first rotation axis of B (fixed in
the coordinate system of the parent)

reference direction for first rotation of B (fixed
in the coordinate system of the parent)

} }) list of 0, 1, or 3 directions of rotations for B.
This list is derived from the above parameters.

Other items in the list are arguments for that procedure. The
AUTOSIM macros add-body and add-moment have numer-
ous arguments that are optional. If optional arguments are not

(reset)

(add-body B -.translate (1 2 3) :body-rotation-axes (123)
: small—angle? (t t t) :small—translations (t t t.))

(add-body c :parent b :inert!a-matrix (ic ic 0)
:body-rotation-axes 3 :cm-coordinates (0 0 -L2))

(add-body d :parent c :joint-coordinates (0 L3 -LI)
:cm-coordinates (0 -L5 -L6) :body-rotation-axes 1)

(add-body e -.parent b :Joint-coordinates (0 -L7 0)
:small-angles t
:inertia-matrix 0 rmass 0 :body-rotation-axes 3)

(add-body f :parent e :inertia-matrix (ifl if2 ifl)
:small-angles t
: cm-coordinates (0 -L8 0) : body-rotation-axes 1)

; ; ; Moments due to flexing of the boom

(add-moment btl idirection [e3] :bodyl f :body2 b
: magnitude "-kb*q(9) - db*u(9)")

(add-moment bt2 idirection [fl] :bodyl f :body2 b
magnitude w-kb*q(10) - db*u(10)")

; ; ; add moments from clock and camera motors

(add-variables difeqn real clkcmd camcmd)
(add-subroutine difeqn cmd (t clkcmd camcmd))

(add-moment clockt : direct ion [c3] rbodyl c :body2 b
rmagnitude "kc*(-q(7) + clkcmd) - dc*u(7)")

(add-moment camt : direct ion [dl] :bodyl d :body2 c
:magnitude "kc*(-q(8) + camcmd) . - dc*u(8)")

; ; ; add moments from thrusters

(add-moment ttl : direct ion [bl] :bodyl b
:magnitude "lttl*thrust (t, 1, (g*u(4)

(add-moment tt2 : direct ion [b2] :bodyl b
magnitude "Itt2*thrust (t, 2, (g*u(5) +q(5)))")

(add-moment tt3 idirection [b3] :bodyl b
:magnitude "Itt3*thrust (t, 3, (g*u(6)

; ; ; set labels and default values of parameters

(mks)

(dynamics)

Fig. 6 AUTOSIM inputs to describe spacecraft example.
Table 8 Values assigned to slots in the bodies of the satellite example

Slot

symbol
name
parent
level
childen
translation-coordinates
translation-directions
uvs
basis
rotation-coordinates
rotation-directions
cos-matrix

abs-w

Bus

B
Bus
N
1
C

41*42,43
ni,n2,n3

61,62,63
6161 + 6262 + 6363

#4,45,46

«l,(C662 + 566l),63

C5C6, (C456 + C65554), (5456 - £40^5)
- C556, (C4C6 - 555456), (C654 + C45556)

5s, - £554, C4C5

M46i + W562 + W663

Clock

C
Clock

B
2
D

Cl,C2,63

C\C\ + C2C2 + 6363

qi

63

C7, 57, 0
- 57, C7, 0

0,0, 1
M46i + M562 + (1/6 + "7)

Camera

D
Camera

c
3

Cl,C?2,C?3

cici + d2d2 + d3di
48

Cl

1, 0, 0
0, C8, 58

0, - 58, C8

1/461 -I- 1/562 + (UG + 1/7)63 + us
bi

abs-vO (P\U5 + U\)b\ - - U2) [-(Li- Pi)u5 + ui]bi + [(Li - Pi)
U4 + U2\b2 ~ Ll(U6 + Ui)C\ + [Ul

1160 M. W. SAYERS J. GUIDANCE

Table 9 Slots in a body that establish its orientation

Slot name Definition
uvs three unit-vectors that define the 1-2-3 axis

directions in B
basis a dyadic that transforms an arbitrary vector

expression into the basis of this body, e.g.,
B = b\b\ + b2b2 + &3&3

rotation-directions directions associated with each joint rotational
degree of freedom

rotation-coordinates generalized coordinates introduced for each
joint rotational degree of freedom

cos-matrix direction cosine matrix between B and A

£§ , origin for body A
(joint connecting to its
parent) Position of bj

for zero rotation
(ref.axis,d?ef) BodyB

Parent body A
B0, origin for body B

Fig. 7 Geometry of body relative to its parent.

Table 11 Slots in a body that locate its origin
Table 10 Indices for three possible

rotation axes

First index

/i = l
/i = 2
/i = 3

/
2
3
1

J
3
1
2

k
1
2
3

provided, default conditions are assumed. Symbols beginning
with a colon are keywords that identify specific optional argu-
ments. For example, the keyword translate indicates that the
list (1 2.3) defines directions of translation. The add-body
macros at the top of Fig. 6 provide a complete description of
the system topology needed to support the symbolic multibody
operations. Note that the bus is represented as body B. This
should not be confused with the generic body B that is used to
signify the current body of interest.

Multibody Operations
In order for the dot-product operation to work, a direction

cosine matrix is required for each body. A few other pieces of
data are also needed in order to define vector speeds and
positions. The direction cosine matrix and several useful ex-
pressions are formed automatically when the dynamicist uses
the macro add-body. The kinematical relationship between a
generic body B and its parent A is defined by the dynamicist
using quantities listed in Table 7. In the table, optional items
are enclosed in curly braces. Figure 7 illustrates the geometry
of a joint having one degree of freedom for rotation and one
for translation. Table 8 shows the cosine matrices, unit-vector
triads, and other values of slots of the body objects for three
of the components of the example spacecraft. Table 9 lists and
defines slots that contain information needed to establish the
orientation of B.

The unit vectors of B are related to those of A by the
direction cosine matrix BCA, defined as,

Ql C\2 Cis

£-21 £-22 £-23

C*31 £-32 £33
(6)

(7)

If generic body B has zero rotational degrees of freedom,
then its direction cosine matrix is a 3 x 3 identity matrix. The
contents of the basis and uvs slots are simply copied from A
to B.

If B can rotate with respect to A, the first rotation is about
an axis whose direction dfot is fixed in A. In the nominal
configuration, the three orthogonal unit vectors that establish
the coordinate system of B are defined in terms of the inputs
from the dynamicist as follows:

Slot name Definition
0-point

joint-point
translation-coordinates

translation-directions

origin of coordinate system and joint
attachment point in this body

joint attachment in parent body
generalized coordinates introduced for joint

translational degree of freedom
directions associated with joint translational

degree of freedom

The set of unit vectors introduced for B are nominally
designated b\, b2, and £3, and are identical to the unit vectors
bjj bJ9 and bk, where the definitions of the indices /, j9 and k
are obtained from Table 10. In the table, the first index is the
first axis of rotation specified by the dynamicist. (In Fig. 6, the
first index for the add-body inputs for the bus is 1.) A direc-
tion cosine matrix is defined as follows. Calling the rotation
angle 0, two terms, s and c, are introduced as the sine and
cosine of 0 to account for the rotation. (The creator functions
for a sin and cos make small-angle approximations appropri-
ately.) The elements of the direction cosine matrix are defined
for each row using the same /, j, and k indices obtained from
Table 10:

Cri = c(ar -b

Crj= -s(ar-

Crk =ar-bk

(r = i , 2 ,3) (9a)

(r = 1, 2, 3) (9b)

(r = l ,2 , 3) (9c)

If the rotation axis is parallel to one of the unit vectors of A,
then the corresponding unit vector is also used for B. In the
satellite example, the rotation axis of body C is b3. Thus, the
unit vectors of the clock are c1? c2, and 63.

A body with three rotational degrees of freedom is subject
to three consecutive rotations. Starting with the nominal ori-
entation, after each of the three rotations, the orientation
coincides with 1) a reference frame B ", 2) a reference frame
B', and 3) body B. The method just described to obtain a
direction cosine matrix for a body with one rotational degree
of freedom is applied three times to obtain cosine matrices
relating B to B', B' to B ", and B "to the parent:

B' (10)

= bkx = bj x bk (8)

Slots that contain information needed to locate the origin
of B are listed and defined in Table 11. The origin is a point
object created automatically for the body with coordinates
(0, 0, 0) and assigned to the 0-point slot of the new body
object. The coordinates of the joint-point are provided by the
dynamicist and define the vector TA^J. The list of translation-
directions is also provided by the analyst. The generalized
coordinates for translation are indexed-sym structures, cre-
ated automatically, and put in a list assigned to the transla-

NOV.-DEC. 1991 MULTIBODY SYSTEM SYMBOLIC COMPUTER LANGUAGE 1161

tion-coordinates slot. For the satellite example (Table 8), the
bus has three translational degrees of freedom. The transla-
tion directions are parallel to axes in the inertial reference
frame and are indicated by numerical indices in the input. If a
direction is not aligned with an axis, a list of coordinates is
provided to the add-body macro instead of an index.

Table 12 lists three operations that provide vector expres-
sions for the multibody system. The pos operation derives a
position vector between any two points. If the two points are
in the same body, their coordinates are subtracted and the
results are multiplied by the appropriate unit vectors to yield a
vector expression. Otherwise, offset vectors that define the
position of the origin of a body relative to the origin of its
parent are added and subtracted as needed to handle displace-
ments across bodies. The rotational velocity of B is directly
available from a slot called abs-w. The velocity of B0 is avail-
able from the slot abs-vO. The absolute velocity of a point P
fixed in B is derived using the relationship:

(11)

where Bvp is the relative velocity of P within the reference
frame of B. (This term is zero when the point is fixed in B.)
The vel operation applies Eq. (11) to the two specified points
and subtracts the results. Note that the expressions for w5 and
VB(> generally involve unit vectors from several bodies to main-
tain the simplest possible form (i.e., without trigonometric
functions).

Operations on Program Code
Programming simplifications are easiest to implement after

the simulation code has been generated and can be inspected.
This means that equations are not written as they are derived,
but are kept in computer memory as eqs objects.

The simulation code generated by AUTOSIM includes two
sets of intermediate symbols used to replace expressions. One
set is for constant expressions and the other is for variables.
(Both are called intermediate variables in the following since
that is how they are implemented in a Fortran program.) A
function called intro-var-if-new is used to process expressions
and introduce new variables as needed and is indicated in this
paper by enclosing the expression with the symbols « and ».
The replacements are indexed-sym objects, designated/?/ for
constants and Zi for variables. A simplified version of the
algorithm used to process an expression «x» is described in the
following, with examples. In the example expressions, the
symbols A, B, and C are constants, the symbols X and Y are
variables, and symbols shown in bold type are unit vectors.

1) If x is a number, an indexed-sym, a sym, a uv, or a
dyad, return x. For example,

«3»-3 (12)

2) Else, if x is a vector or dyadic, collect terms so that each
unit vector or dyad appears only once, and then apply the
function recursively to the scalar expressions. For example,

«Aa\ (13)

3) Else, if the expression is in a table of existing intermedi-
ate variables, return the corresponding indexed-sym.

4) Else, if the expression is a constant,
a) make a new indexed-sym /?/, where the index / is

incremented from the highest index used previously for that
eqs.

Table 12 Summary of operations for bodies and points

Operation Argument(s) Description
pos
rot
vel

Pl,P2
B

Pl,P2
co*

l _ V
p2

b) put pi at the end of the list in the eqs object for
intermediate constants.

c) put x and /?/ into the table of intermediate variables so
that the next time expression x is encountered the symbol /?/
will be found in step 3.

d) if an option to expand constants is enabled, recur-
sively expand any intermediate variables in the expression
assigned to /?/. (This is done to formulate constants that are
more easily interpreted by a human and to permit possible
cancellations.) If the option is disabled, this step is skipped.

e) return pt as the result of the procedure.
For example,

«A(2.3B - C2)»— (14)

5) Else, if any constant expressions can be factored out, do
so. Apply Intro-var-if-new to the constant part, the variable
part, and the product. For example,

«A(2BX + B2Y)»-+««AB»«2X + BY»» (15)

6) Else, x is a compound expression that is not a constant,
a) If x is a prod, with more than two factors, process the

scalar factors two at a time. For a prod with coefficient c and
five factors, the processing sequence is

(16)

b) If x is a prod with just two factors, or a single factor
and a numerical coefficient that is not ± 1, then a new in-
dexed-sym is introduced:

i. make a new indexed-sym z/, where the index / is
incremented from the highest index used previously for that
eqs.

ii. put zt at the end of the list in the eqs object for
intermediate variables.

iii. put x and zt into the table of intermediate variables
so that the next time expression x is encountered the symbol z/
will be found in step 3.

iv. return zt as the result of the procedure.
c) If x is a sum of terms - f i , t2, . . . , tn, the processing

sequence is

«t2» (17)

after the terms are processed, a new intermediate variable is
introduced for the entire sum using the process in 6b.

d) if x is a power, the base is first processed and then the
power is replaced with a new variable using the procedure
from 6b

(18)

e) if x is a function with arguments a\, a2, . . . an, the
arguments are first processed, and then the function is re-
placed using the procedure from 6b

(19)

This algorithm is recursive, and results in a number of
intermediate expressions being introduced for a single com-
pound expression. Consider the example

where

«A sm(BX + CY)2/cos(3A)»-z6 (20)

pi = A /cos(3^4)

i = BX z2 = CY z$ = (z\ + Z2)

Z4 = sin(z3) Z5 = zZ Z6=PiZ5 (21)

1162 M. W. SAYERS J. GUIDANCE

C Simple control subroutines for spacecraft example
C

SUBROUTINE CMD(T, CLKCMD, CAMCMD)
PARAMETER (PI » 3.1415926)
IF (T .LT. 1.) THEN
CLKCMD =4.-PI
CAMCMD = -.5

ELSE.IF (T .LT. 11.) THEN
CLKCMD - 4. -.025*(T-1.) - PI
CAMCMD - -.5 + .01*(T-1.)

ELSE
CLKCMD - 3.75 -PI
CAMCMD - -.4

END IF
RETURN
END

FUNCTION THRUST(T, AXIS, ERROR)
INTEGER AXIS
REAL DBAND, TMIN, FIRE(3), TOFF(3)
SAVE TOFF, FIRE
DATA DBAND /.0025/
DATA TMIN /.02/
DATA FIRE, TOFF /3*0., 3*0./

IF (ERROR .LT. -DBAND) THEN
IF (FIRE(AXIS) .LT. 1.) TOFF(AXIS) = T + TMIN
FIRE(AXIS) - 1

ELSE IF (ERROR .GT. DBAND) THEN
IF (FIRE(AXIS) .GT. -1.) TOFF(AXIS) - T + TMIN
FIRE(AXIS) = -1

ELSE IF (T .GE. TOFF(AXIS)) THEN
FIRE(AXIS) - 0

END IF
.. THRUST - FIRE (AXIS)

RETURN
END

Rotation - rad

-axis 1, fiill nonlinear -*—*-axis 1, "small variables"
-axis 2, full nonlinear K X axis 2, "small variables"

-o—o-axis 3, full nonlinear -A—A-axis 3, "small variables"

Fig. 8 External function to simulate thrusters.

The original expression in Eq. (20) required four multiply
operations, one divide, one integer power, two function evalu-
ations, and one add. By factoring out the constant A /cos(3^4),
the operations needed after the constants are reduced to three
multiplies, one integer power, one function, and one add.
Also, further processing might involve one or more of the
intermediate variables. For example, consider an expression
with some of the same terms:

where

«5 cos(3A)/sm(BX

= 5 cos(3>l)

(22)

(23)

In this case, evaluating the expression in Eq. (22) involves
just a single additional divide operation, after handling the
constant.

Before the equations are written as output in the target
language, they are inspected for intermediate variables that
are not needed. Recall (or see Table 1) that one of the slots in
the sym object is called hide. The hide slot is used to keep
count of how many times the sym actually appears in the
equations. To count occurrences, the hide slots in all interme-
diate variables in an eqs are set to zero and then equations
used to compute derivatives and output variables are pro-
cessed with a function that operates recursively to validate
syms. An important part of the design of AUTOSIM is that
the two symbolic elements—the sym and the uv—are stored in
memory such that there are no copies (e.g., the object printed
as Z2 exists in only one place, even though it appears in more
than one expression). Lisp uses pointers to reference such
objects. When an elementary object such as a sym is changed,
all expressions containing that element are updated since their
pointers continue to point at the changed object.) The eqs
object only prints equations involving syms whose hide slots
are no longer set to zero. For example, if an eqs structure
contains 100 equations, but only 10 involve syms with hide
counts greater than zero, then only 10 equations are printed.
The other 90 equations are still in memory, but are hidden.

30

Fig. 9 Attitude of spacecraft body computed for two formulations.

There are some reasons not to introduce a new intermediate
variable if that variable will only be used once. First, the
equations become almost unreadable by humans. The equa-
tions of motion for multibody systems are usually complicated
to begin with, and introducing intermediate variables that only
appear once compounds the difficulty. Further, some compil-
ers optimize machine instructions for large expressions,
putting temporary intermediate results in machine locations
that exploit the design of the specific hardware. If an interme-
diate variable is defined in the source code, the compiler is
obliged to save its value, possibly at the expense of computa-
tional efficiency. After the hide values have been established
for all indexed-syms that appear on the left side of an equa-
tion i a second pass is made in which all intermediate variables
that are used only once (hide = 1) are expanded back into the
original expressions.

Discussion
Automated modeling of multibody systems has typically

offered great convenience for the dynamicist who is willing
to sacrifice certain capabilities. In the case of generalized
numerical codes, computation inefficiency is sacrificed and
some types of subcomponent models are difficult or impossi-
ble to include in the programmed system description. In the
case of symbolic multibody programs, a programmer must
write external functions and subroutines, which are often
quite complex, and then manually edit those routines into the
computer-generated code. One step in remedying these limita-
tions is to develop a computer language that can perform the
same symbolic procedures as a human analyst armed with
pencil, paper, and persistence. This paper described the design
of such a language. Consider once again the example space-
craft system. At this time, we will consider the treatment of
moments acting on the rigid bodies, and also the inclusion of
external procedures.

Suppose the object of the simulation is to simulate a slew
maneuver in which the clock and camera are moved from
initial values of (4 - IT) and - 0.5 rad, respectively, to final
values of (3.75 - TT) and - 0.4 rad, over a 10-s interval. The
orientation of the spacecraft body is controlled by three pairs
of thrusters that fire bursts of propellent when the angle of the
craft drifts beyond a dead zone tolerance of 0.0025 rad, and
which remain on for at least 0.02 s. Each pair of thrusters is
balanced to apply a pure couple to B about the axes 1, 2, and
3. Figure 8 lists a very simple Fortran subroutine that provides
controller commands for this maneuver and also a Fortran
function that defines the control laws for the thrusters. The
Fortran code shown in Fig. 7 is the complete handwritten part
of the simulation code. Every other line of code is written or
assembled automatically by AUTOSIM, based on the inputs
from Fig. 6. The macro add-moment is used to include the

NOV.-DEC. 1991 MULTIBODY SYSTEM SYMBOLIC COMPUTER LANGUAGE 1163

Table 13 Parameter values for example

DB
DC
G
IB\\
IB\I
IBM
IB22
IB23
fB33
Ic
ID\\
ID\2
IDII
ID22
/D23
/£>33
IFI

10 N-m-s
20 N-m-s
2 s
115kg-m2

- 14 kg-m2

14 kg-m2

3 16 kg-m2

- 34.6 kg-m2

440 kg-m2

0.35 kg-m2

4.85 kg-m2

0.41 kg-m2

-0.07 kg-m2

2.2 kg-m2

-0.54 kg-m2

5.5 kg-m2

27.2 kg-m2

IFI
KB
KC
Li
L2
Li
L5
L6
Li
Ls
LTTI
LTTI
LTTI
MB
Mc
MD
MF

0.2 kg-m2

2000 N-m/rad
3500 N-m/rad
1.5 m
0.75 m
0.1 m
0.22m
0.2m
1.2m
3.3m
0.23 m
0.21 m
0.31 m
410 kg
6.8 kg
57.5 kg
10.7 kg

moments applied by the torsional springs and the thrusters.
The macros add-variables and add-subroutine cause AU-
TOSIM to properly include a CALL to the user-written sub-
routine CMD. The command mks specifies that the MKS
units system should be used to generate labels for output plot
files and documentation files that are optionally generated by
AUTOSIM. The command dynamics results in the complete
derivation of the equations of motion for the system.

The portions of the inputs in Fig. 6 that are underlined
specify that certain variables are small. These include the 12
coordinates and speeds associated with B, and the four rota-
tional coordinates and speeds associated with the Boom (bod-
ies E and F). However, the rotational coordinates and speeds
of bodies C and D are not small. Figure 9 compares time
history plots computed by simulation codes generated with
and without the underlined portions of the input. It shows that
the small-variable assumptions are fully justified for the slew
maneuver of interest. Table 13 lists numerical values used to
compute these results. Each parameter was generated from the
AUTOSIM input from Fig. 6, either explicitly (e.g., Ll9 KB,
etc.) or implicitly (e.g., MB, IB\\> etc.). A companion paper
1) provides details as to how the equations for this system are
formed, 2) includes excerpts of the equations, and 3) contains
a summary of their computational complexity.19

Conclusions
Methods were presented for representing all of the compo-

nents of a simulated multibody system in symbolic form on a
computer, including 1) algebraic expressions for vector/
dyadic analyses, 2) physical components in a multibody sys-
tem, and 3) program structures needed in a simulation code. A
language called AUTOSIM has been written in Lisp to imple-
ment these methods. Modeling and programming strategies
employed by humans can be mimicked in computer software
when all of these objects are available for computer manipula-
tion. The main practical advantages of this approach are 1)
models of dynamic systems can be developed with much less
effort than alternative methods, 2) modeling options are avail-
able to tailor a simulation code to match the expectations of
an intended end user (e.g., by using arbitrary coordinate sys-
tems and familiar parameter definitions), and 3) the numerical
computation software generated is highly efficient, such that
the code can be used for real-time simulation and other appli-
cations where computational efficiency is critical. An advan-
tage for researchers is that alternative modeling strategies can
be tested and compared with a fraction of the effort that
would otherwise be needed.

Acknowledgments
The work reported in this paper was funded by the U.S.

Army Tank and Automotive Command and by the University

of Michigan Transportation Research Institute Fellowship
program.

References
^respo da Silva, M. R. M., and Hodges, D. H., "Role of Comput-

erized Symbolic Manipulation in Rotorcraft Dynamics Analysis,"
Computers & Mathematics with Applications, Vol. 12a, No. 1, 1986,
pp. 161-172.

2Golnaraghi, M., Keith, W., and Moon, F. C., "Stability Analysis
of a Robotic Mechanism Using Computer Algebra," Applications of
Computer Algebra, edited by R. Pavelle, Kluwer, Boston, MA, 1984,
pp. 281-292.

3Hussain, M. A., and Noble, B., "Application of Macsyma to
Kinematics and Mechanical Systems," Applications of Computer Al-
gebra, edited by R. Pavelle, Kluwer, Boston, MA, 1984, pp. 262-280.

4Pavelle, R., "Macsyma: Capabilities and Applications to Prob-
lems in Engineering and the Sciences," EUROCAL'85 European
Computer Algebra Conference, Springer-Verlag, New York, 1985,
pp. 19-32.

5Levinson, D., "The Derivation of Equations of Motion of Multi-
ple-Rigid-Body Systems Using Symbolic Manipulation," AIAA Paper
76-816, 1976.

6Krishnaswami, P., and Bhatti, M. A., "Symbolic Computing in
Optimal Design of Dynamic Systems," Proceedings of the 10th De-
sign Engineering Division Conference on Mechanical Vibration and
Noise, Cincinnati, OH, American Society of Mechanical Engineers,
Sept. 1985, pp. 1-6.

7Char, B.W., Geddes, K. O., Gentleman, W. M., and Gonnet,
G. H., "The Design of MAPLE: A Compact, Portable, and Powerful
Computer Algebra System," EUROCAL'83 European Computer Al-
gebra Conference, Springer-Verlag, New York, 1983, pp. 101-115.

8Wooff, C., and Hodgkinson, D., muMATH: A Microcomputer
Algebra System, Academic, London, England, UK, 1987.

9Wolfram, S.,Mathematica, Addison-Wesley, Reading, MA, 1988,
p. 767.

10Nielan, P., and Kane, T., "Symbolic Generation of Efficient
Simulation/Control Routines for Multibody Systems," Dynamics of
Multibody Systems, lUTAM/IFToMM Symposium, Springer-Verlag,
New York, 1985, pp. 153-164.

HSchaechter, D. B., and Levinson, D. A., "Interactive Computer-
ized Symbolic Dynamics for the Dynamicist," Journal of the Astro-
nautical Sciences, Vol. 36, No. 4, 1988, pp. 365-388.

I2Kane, T. R., and Levinson, D. A., Dynamics, Theory and Appli-
cations, McGraw-Hill, New York, 1985, p. 395.

13Schiehlen, W. O., and Kreuzer, E. J., "Symbolic Computerized
Derivation of Equations of Motion," Dynamics of Multibody Sys-
tems, Springer-Verlag, New York, 1977, pp. 290-305.

14Rosenthal, D.E., and Sherman, M. A., "High Performance
Multibody Simulations via Symbolic Equation Manipulation and
Kane's Method," Journal of the Astronautical Sciences, Vol. 34, No.
3, 1986, pp. 223-239.

15Wittenburg, J., and Wolz, U., "MESA VERDE: A Symbolic
Program for Nonlinear Articulated-Rigid-Body Dynamics," Proceed-
ings of the 10th Design Engineering Division Conference on Mechan-
ical Vibration and Noise, Cincinnati, OH, American Society of Me-
chanical Engineers, Sept. 1985.

16Orlandea, N., Chace, M. A., and Calahan, D. A., "A Sparsity-
Oriented Approach to the Dynamic Analysis and Design of Mechani-
cal Systems, Parts I and II," Journal of Engineering for Industry,
Vol. 99, Aug. 1977, pp. 773-784.

17Nikravesh, P. E., and Haug, E. J., "Generalized Coordinate Par-
titioning for Analysis of Mechanical Systems with Nonholonomic
Constraints," Journal of Mechanisms, Transmissions, and Automa-
tion in Design, Vol. 105, Sept. 1983, pp. 379-384.

18Steele, G. L. J., Common Lisp: The Language, Digital, Bedford,
MA, 1984.

19Sayers, M. W., "Symbolic Vector/Dyadic Multibody Formalism
for Tree-Topology Systems," Journal of Guidance, Control, and Dy-
namics, Vol. 14, No. 6, 1991, pp. 1240-1250.

20Sayers, M. W., "Symbolic Computer Methods to Automatically
Formulate Vehicle Simulation Codes," Ph.D. Dissertation, Univer-
sity of Michigan, Ann Arbor, MI, Jan. 1990.

21Stribersky, A., Fancher, P. S., MacAdam, C. C., and Sayers,
M. W., "On Nonlinear Oscillations in Road Trains at High Forward
Speeds," llth IA VSD Symposium of Vehicles on Roads and Tracks,
edited by R. J. Anderson, Swets and Zeitlinger, Amsterdam, 1989,
pp. 552-565.

