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1.  Introduction 
 

On 12 September 2005, the Japanese Hayabusa spacecraft arrived at the asteroid 
25143 Itokawa.  Due to Itokawa’s small size (~550 meters) and low gravity, the 
spacecraft did not orbit, but hovered near each of two stations on a line between the 
asteroid and Earth.  It remained at the “Gate Position” at a range of about 18 km until 
September 30, and then shifted to the “Home Position” at a range of about 7 km.  
Between October 8 and 28, it made several excursions to higher phase locations to obtain 
varying illumination conditions, and away from the equator to obtain polar data.  On 
November 4, 9 and 12, the spacecraft made approaches to the asteroid in preparation for 
touchdowns on November 20 and 26.   

 
Among the instruments carried on board the spacecraft (Fujiwara, et, al, 2006) 

were a narrow angle (AMICA) science camera (Nakamura, et al, 2001), a laser altimeter 
(LIDAR), and two wide-angle navigation (NAV) cameras, one co-aligned with AMICA, 
and one offset by about 45 degrees.  During the station-keeping phase, navigation was 
accomplished by locating the center of brightness in the co-aligned NAV camera to 
establish the cross line of sight location, and using the LIDAR to establish the range.  
Errors occurred due to uncertainties in camera pointing and in the asteroid shape model. 
 

 
 
      Figure 1.  AMICA image 2423264117 of Itokawa. 
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Figure 1 shows a typical narrow-angle frame.  Itokawa is in its “sea otter” 
orientation, with north toward the bottom of the image.  About 770 of the more than 1500 
AMICA images (Saito, et al, 2006) were used in this study, ranging in resolution from 
less than 10 cm/pixel to about 2 m/pixel.  The earlier images were downloaded with 
lossless compression, but later ones were compressed with a JPEG algorithm that did not 
appreciably affect the data quality. 

 
 The basic data product of this analysis is an ensemble of digital topographic and 
relative albedo landmark maps (L-maps) constructed from imaging data using multiple-
image stereography and photoclinometry.  The stereo pair in Figure 2 clearly shows both 
the topography and albedo variations within such a map.  Because of their three-
dimensional structure, landmark maps can be aligned with images, limbs and other maps 
to find landmark location, spacecraft position and orientation, and the rotational 
properties of the target.  They can also be combined to construct high-resolution 
topographic maps of portions of the surface or a global topography model (GTM) 
accurately depicting both the shape and topography of the body. 
 

      
 
   Figure 2.  Landmark map (L-Map) DE0002 in stereo 
 
 In section 2, we discuss the methods used in this analysis.  Sections 3 and 4 
present surface characterization and navigation results respectively.  Section 5 discusses 
work remaining to be done. 
 
2.  Methodology 

 
1.  L-map to image connection 

 
At the heart of the analysis is the connection between the location of a pixel on an 

L-map and its predicted location in an image.  This connection depends upon the 
location, orientation and height variation of the L-map, the location and orientation of the 
camera (spacecraft), and the rotational dynamics of the body.  A change in any of these 



quantities results in a characteristic change in the image-space projections, leading to 
their estimation in terms of the imaging data.   
 

An L-map is specified by a vector V from the center of a body fixed coordinate 
system to the origin of the L-map coordinate system, by the axes of that coordinate 
system ui (i=1,3), and by heights and albedos at positions (x,y) relative to that system.  
The L-map coordinates of a body-fixed point P on the surface are x=u1•(P-V) and 
y=u2•(P-V) with the height h(x,y)=u3•(P-V) and an albedo a(x,y).  The camera’s position 
vector W and its coordinate system ci (i=1,3), unit vectors in the sample, line and 
boresight directions, respectively, are also specified in body-fixed coordinates. 
 

For a simple narrow angle camera with focal length f, the focal plane image 
location Xi (i=1,2) of the L-map center V is given by 

 
  Xi = f(V-W)•ci/(V-W)•c3              (1) 
 
If Mij=ci•uj, a point (x,y,h) on the L-map has the focal plane projection then 
 
  Xi = f((V-W)•ci+Mi1x+Mi2y+Mi3h)/((V-W)•c3+M31x+M32y+M33h)         (2) 
 

An equally important connection is between the slopes and albedos within an L-
map, the local illumination and camera directions, and the predicted image-space 
brightness.  A change in slope or albedo at any L-map pixel will result in a characteristic 
change in the predicted brightness at the corresponding location in an image.   At the 
point (x,y) of the L-map, the brightness at the corresponding focal plane location in the 
kth image can be parameterized as 
 
 Ik(x,y,t) = Λk(1+t3(x,y))F(cosi,cose) + Φk                (3) 

 
F is an appropriate reflectance function (Hapke,1981; Squyres and Veverka, 1982).  The 
factor (1+t3) is the relative albedo at map coordinates (x,y), normalized so that <t3>=0 
over the map, and i and e are the local angles of incidence and emission, relative to the 
surface normal at (x,y). During its extraction, the imaging data is usually scaled 
(maximally stretched), so the multiplier Λk is included.  Moreover, due to background or 
haze in some images, or perhaps because super-resolution sampling has left a “washed 
out” look, a positive background term Φk can be added.   
 

In terms of the (negative) slopes t1=-dh/dx and t2=-dh/dy, the local arguments of 
the function F are 
 
 cosi = (s1t1+s2t2+s3)/√(1+t1

2+t2
2)           (4a) 

 
 cose = (e1t1+e2t2+e3)/√(1+t1

2+t22)           (4b) 
 
where sj= s•uj and ej = e•uj are the L-map components of the sun and spacecraft unit 
vectors respectively.  The reflectance function   



 
 F(cosi,cose)  =  cosi + 2cosi/(cosi+cose)            (5) 
 
is used, since it does a good job rendering high resolution shape models.  No phase 
dependence has been included since it is nearly constant over each L-map, even for wide-
angle images, and any phase functions can be absorbed into Λk . 
 

 
 
          Figure 3.  Imaging data and re-illuminated L-map DE0002. 

 
The top row of Fig. 3 displays data extracted from five AMICA images, projected 

onto the coordinates of the L-map displayed in Fig. 2 according to equation 2).  The 
bottom row shows the corresponding L-map illuminated according to equation 3), with 
the Λk adjusted to match the average brightness in the overlapping regions.  

 
In addition to its appearance on the image of a body, the three-dimensional 

structure of an L-map allows it to be identified on the limb.  The focal plane location of 
the map center, which is not necessarily on the limb, is still determined by equation 2).  
The predicted limb points are those parts of the L-map surface to which the line of sight 
is tangent, and which are not either hiding or hidden by any other part of the body. 
 
 A final constraint on the L-map lies not with its correlation with imaging data, but 
with other L-maps.  The common topography of the overlapping maps can be aligned in 
three-dimensions to solve for the central vector V of one L-map relative to the other.  
 
2.  Geometry estimation 
 

The geometry problem consists of determining the body fixed L-map vectors V, 
the body’s pole, and the spacecraft location W and orientation c.  The L-map topography 
problem is treated as a separate estimation.  The geometry solution is found by 
minimizing the quantity  

 
 H = ΣK(Yi – Xi)2+ HE               (6) 
 



with respect to variations in V, W, c, or rotational parameters g.  Yi (i=1,2) are the 
measured focal plane locations of the L-map centers and where the predicted locations Xi 
(i=1,2) come from equation 1).  The sum is over all L-maps and all images, with each 
term weighted by a different “spring constant” K, the inverse square measurement 
uncertainty. The HE represent external a priori terms which constrain the estimation 
according to external measurements.  The solution proceeds iteratively, solving in turn 
for all the L-map vectors V, and then for the spacecraft positions and orientations W and 
c.  Formal uncertainties from each solution help determine the weights K of the next. 
 
 The solution for an L-map vector V + δV is found by minimizing  

 
 H = ΣK(Yi – Xi– δV•∇VXi)2 + ΣKm (Vm + Δm – V - δV)2

          (7) 
 

where Xi is evaluated at the nominal vector V, and ∇VXi are the partials of Xi with 
respect to the components of V.  The first sum is over all images containing the 
landmark, while the second, coming from HE , is over all overlapping L-maps.  Δm  is the 
difference between the two central L-map vectors from the correlation discussed at the 
end of Section 1.  The minimum of H in equation 7) occurs when 

 
 ΣK∇VXi (Yi – Xi– ∇VXi •δV) + ΣKm (Vm + Δm – V - δV) = 0         (8) 

 
which can be written as  
 
 M•δV= r                 (9) 
 
with M = ΣK∇VXi⊗∇VXi

 + ΣKmI and r = ΣK∇VXi(Yi – Xi) + ΣKm(Vm + Δm – V).  The 
3x3 matrix M is inverted to solve equation 9) for the corrections δV = M-1•r.  The 
diagonal elements of M-1 are the squares of the formal uncertainties in V. 

The solutions for spacecraft position W + δW and orientation ci + εijkcjδαk are 
found by minimizing 

 
 H = ΣK(Yi - Xi - δW•∇WXi - δα•∇αXi)2 + Kn(Wn - W - δW)2 

                (10) 

     + Kn(εijk cni•cj - δαk)2 + ΣKp(Wp + Δp - W - δW)2 

 
The sum in the first term is over all landmarks occurring in the image, with the K 
determined from the formal uncertainties of the previous estimation.  The second two 
terms reflect nominal positions, orientations and, through the Kn, the corresponding 
uncertainties.  These come, for example, from external radiometric, optical navigation 
and star-tracker measurements.  The final term is a sum over those images correlated with 
the image in question, those that are close enough in time so that the position difference 
Δp can be predicted by the trajectory dynamics.  This term ties images together in the 
same way that the last term in equation 7) ties L-maps together.  The minimization of H 
in equation 10) results in a set of six equations for the six corrections δW and δα . 

 



A change in the rotation of the body alters the components of the vectors in the 
body-fixed frame in a time-dependent fashion.  It does not affect the scalars W•c in 
equation 1) since both vectors are associated with a single image and are transformed in 
the same way.  The products V•c will change, however, both because the components of 
V and the c change, and because the new geometry yields a new solution for the L-map 
vectors.  The corrections to the rotational parameters g and the L-map vectors V are 
determined by minimizing 

 
 H = ΣK(Yi – Xi– δg•∇gXi– δV•∇VXi)2              (11) 

 
summed over all images and all landmarks.  The resulting equations are 
 
 A•δg + Σ Ck

T•δVk = r0 and Ck•δg  +  Bk•δVk  =   rk          (12) 
 
where k labels the L-maps and 

 
A = ΣK∇gXi ⊗∇gXi  (sum over all images and L-maps) 
Bk = ΣK∇VkXi ⊗∇VkXi  (sum over all images with L-map k) 

 Ck = ΣK∇VkXi ⊗∇gXi  (sum over all images with L-map k)       (13) 

r0  = ΣK(Yi – Xi)∇gXi  (sum over all images and L-maps) 
rk  = ΣK(Yi – Xi)∇VkXi (sum over all images with L-map k) 
 

In practice, the δV are eliminated from equations 12) to give 
 
 (A – Σ Ck

TBk
-1Ck)•δg = r0 – Σ Ck

TBk
-1rk            (14) 

 
which is solved for the rotational correction δg.  The spacecraft positions W and 
orientations c are then expressed in the new body-fixed frame and equation 9) is used to 
find the new L-map vectors V. 
 
3.  Topography estimation 
 

Each L-map is typically about a hundred pixels square.  At each of these pixels 
(x,y), the values of ti are solved for by fitting the extracted brightness data Ek(x,y) to 
equation 3) and minimizing the weighted sum squared residual  

  
 H = ΣK (Ek(x,y) - Ik(x,y,t) - δt•∇ tIk(x,y,t))2          (15) 
 
where the sum is over the images.  Λ and Φ are determined from a global fit over the L-
map at the nominal values of t. 

 
The minimization of H is accomplished by setting its partials with respect to δt 

equal to zero.  This yields a set of three coupled linear equations of the form Mδt = w, 
where the information matrix M is quadratic in the partials of I, and w is made up of 
products of the partials and the residuals.  The inverse of the information matrix, M-1, is 



the covariance matrix.  Its diagonal elements measure the formal uncertainties σ2 in the 
corresponding variables.  To M is added a diagonal a priori information matrix D to keep 
the solution from diverging.  In particular, if the albedo component D33 is large, albedo 
variations will be tightly constrained.  This is often done initially, to allow time for the 
topography solution to settle down. 

 
Notice that the slopes determined in this way do not implicitly satisfy the “curl-

free” condition ∂1t2-∂2t1=0, which follows from ∂1∂2h-∂2∂1h=0.  However, the nominal 
values of t1 and t2 used in the estimation are found from the height solutions described 
below and are manifestly curl-free, so as the iteration proceeds, the condition is 
eventually satisfied. 
 

The height at each location (x,y) is determined from the neighboring heights, and 
a possible constraining height hc from the shape model, differential stereography, limb or 
overlapping map data, according to: 
 
 h(x,y) = [h(x+s,y)+s(t1(x,y)+t1(x+s,y))/2+h(x-s,y)-s(t1(x,y)+t1(x-s,y))/2 

 +h(x,y+s)+s(t2(x,y)+t2(x,y+s))/2+h(x,y-s)-s(t2(x,y)+t2(x,y-s))/2      (16) 
 +wchc(x,y)+]/(wc+4), 

 
where s is the map pixel spacing and wc is a small constraining weight.  This equation is 
applied repeatedly to map points chosen at random until a converged solution is reached.   
If any height does not exist, its term is not included in the average.  

 
3.  Surface Characterization 

 
About 300 L-maps were constructed during the encounter itself, and were 

gradually refined as more images were added and as the navigation solution converged.  
The entire process was an iterative one, involving solutions for L-map topography and 
albedo, body fixed L-map centers, spacecraft location and orientation, and the asteroid’s 
shape and rotational axis.  The nominal shape and pole were provided by radar 
observations (Ostro, et al, 2004).  Since data for the polar regions did not become 
available until the end of October, global map coverage was not achieved until early 
November.  Since then about 500 higher resolution maps have been added.   

 
The ensemble of L-maps can be used to produce a local topography map by 

averaging the L-map heights and slopes relative to a flat reference surface. The averaged 
slopes are then integrated as in Eqn. 16 to produce the height distribution, with a sparse 
set of averaged heights hc conditioning the process.  Figure 4 is a stereo pair of such a 
map, showing the Yoshinodai boulder.  In this process, only topography is included.  The 
albedo information has been discarded.  The local topography maps can also be used to 
re-sample an image in order to display the finer topography and the albedo variations.  
Figure 5 shows such a re-sampling of the region surrounding the Pencil boulder.  Both of 
maps are about 100 meters square. 

 



 
 

      Figure 4.  Stereo pair of the Yoshinodai boulder. 
 
 

 
 

     Figure 5.  Resampled stereo pair of the Pencil boulder. 
 
The global topography model (GTM) is constructed by a similar procedure, but 

referred to a pre-existing approximate shape model rather than a plane.  In practice, a 
chain of models is produced, having 6000, 25000, 100000, 400000 and 1.6 million 
vectors respectively, with each acting as the reference shape for the next.  Figure 6 shows 
the GTM illuminated as in Fig. 1, and with the L-map of Figs. 2 and 3 displayed.  Notice 
that the map is upside down since north is at the bottom of the picture. 

 
The surface area is 0.404 km2 and the volume is .0177 km3, with uncertainties of less than 
one percent.  The principal moments per unit mass are (.00631, .02127, .02236) km2.  
The pole, determined from a simultaneous estimation with landmark locations, is 90.02°, 
-67.03° (earth equatorial) or 269.03°, -89.53° (ecliptic), with an uncertainty of 0.005°. 



 

 
 

Figure 6.  Global topography model and L-map DE0002. 
 
3. Navigation 
 

The navigation function of the analysis software was crucial to the success of this 
work because spacecraft position information provided in the SPK files was often 
unreliable.  For example, one early image was reported at a range of 6.73 km.  Initial 
registration corrected this to 20.59 km and alignment with L-maps gave the value 20.45 
km.  After LIDAR and dynamic corrections, the final value of 20.39 km was obtained.   

 
The 60-meter difference between the L-map only and the L-map with LIDAR 

values is typical, and reflects the uncertainties inherent in the estimation of Eqn. 10 in the 
absence of the final dynamical term.  Essentially, the problem lies in finding the overall 
scale of the solution.  For orbital missions, this scale is provided by Doppler data since 
the absolute distance between two observations can be determined by integrating the 
velocity.  For a hovering mission, the LIDAR provides this scale.  Note that the LIDAR 
provides the range to the surface, so the actual range to the center depends on the GTM.  
The 60 m range error without LIDAR corresponds to a 0.3% error in scale, or a 50 cm 
error in the over all size of Itokawa.  The next iteration has rms range residuals of about 4 
meters, with size errors far below the 20-centimeter rms residuals of the L-map 
estimation  

 
For a narrow angle camera, it is difficult to distinguish between clock/cone 

pointing errors and cross line-of-sight spacecraft position errors.  Fortunately, the 
Hayabusa pointing information was good, its one mrad uncertainty translating into a 20 m 
uncertainty at the 20 km gate position, and a 7 m uncertainty at the 7 km home position.  
By fitting freefall trajectories to the positions determined by L-maps and LIDAR, and for 
intervals between maneuvers, the random errors could be reduced.  The resulting image-
to-image correlations were included in the final term of Equation. 10 to condition the 



solutions.  The final uncertainties in position were about 1.5 meters at the home position 
and 4 meters overall.  The position solution for the 773 AMICA images used so far is 
shown in Fig. 7.  The coordinate system is a pseudo-inertial one with the z-axis pointing 
from Itokawa to the Earth, and the sun direction in the x-z plane.   

 
 

Figure 7.  Spacecraft positions for 773 AMICA images. 
 
 
One application envisioned for the L-map technology is its use in semi-

autonomous navigation during approach and landing (Gaskell, 2001).  L-maps 
constructed on the ground during the observation phase from narrow-angle camera data 
can be correlated on board with wide-angle image data to rapidly determine spacecraft 
location and orientation.  Twelve of the wide-angle frames downloaded during the 
November 12 approach with slant ranges varying from 57 m to 740 m were correlated 
with L-maps.  The rms difference between the predicted ranges and the measured LIDAR 
ranges was about 10 meters.  The final two images in the sequence had the largest errors, 
possibly because the LIDAR was moving off the body.  When these were removed, the 
rms residual dropped to 4 meters.  A display from the L-map correlation of one of these 
images is shown in Figure 8, with alternate rows showing extracted imaging data and 
corresponding L-map data.  Note the spacecraft’s shadow in the first two boxes.  The 
shadow appeared in ten of the images, and was used to determine the precise camera 
pointing.  Despite the difference in resolution, and the very lossy compression of the 
wide-angle data, the software was able to perform the correlations. 
 

The body-fixed positions determined from this analysis are plotted in Figure 9.  A 
trajectory fit to the data was used to solve for the mass of Itokawa with the result GM  = 
2.36x10-9 ±0.15x10-9 km3/s2 .  With the .0177 km3 volume from the GTM, the density 
becomes .02.0 g/cm3 of suggesting a porous interior. 



 

         
 

Figure 8.  Auto-registration of a wide-angle navigation frame. 
 
 

       
 

     Figure 9.  Body-fixed trajectory of Nov. 12 approach. 



5.  Discussion 
 
 Our analysis software proved very successful in characterizing the shape and 
topography of Itokawa and in determining the spacecraft trajectory.  Almost as successful 
was the simulation that preceded the encounter.  The current L-map residuals are 16 cm, 
compared with the simulation value of 21 cm.  Our pole uncertainty of .005° was 
identical to the simulation’s error.  Finally, the simulation error of 2.4 m at the 7 km 
home position was larger than our estimate of 1.5 m, but the simulation did not directly 
include the LIDAR data type. 
 
 There is still work to do in the analysis, including creation of another level of 
higher resolution L-maps, the creation of a global albedo map, the inclusion of 
maneuvers in the trajectory analysis, and the archiving of the L-map and navigation data. 
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