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I. Introduction

Bare electrodynamic tethers have been proposed for two important space applications: in-orbit propel-
lantless propulsion [1,2] and remediation of Earth-bound radiation belts through the scattering of high-energy
electrons leading to their accelerated precipitation [3–5]. The latter application is oftentimes referred to as
space remediation.

In both applications, the use of multiple parallel conducting wires is being considered. Such a multi-
strand structure would provide improved survivability to collisions with micrometeroid. Additionally, since
sheath size is roughly a function of the total amount of linear surface charge held on the tether system [6], a
multi-wire structure might allow for the formation of the large plasma sheath required for effective scattering
in the space remediation application, at a reduced cost in terms of expended power due to the increased
capacitance provided by the relative proximity of parallel wires.

In an effort to get a basic understanding of the physics of plasma-immersed multi-wire conductive struc-
tures, we consider in this paper a structure consisting of two parallel, identical round cylinders with equal
potential bias. Both cylinders have a radius r0 and their centers are spaced apart by a distance ∆x.

Section II presents an overview of the theory used in our plasma solvers. Section III presents our
simulation results.

II. Overview of KiPS, a Steady-State Kinetic Plasma Solver

Self-consistent analyses of the plasma sheath exist [7] which apply to a single round cylinder immersed
in a stationary plasma at low bias voltages. Other self-consistent models were developed which accounted
for plasma flow [8, 9] but applied to a single round cylinder at low bias voltages.

The Kinetic Plasma Solvers (KiPS-1D and KiPS-2D) developed at the University of Michigan are based
on a kinetic approach for the self-consistent modeling of a stationary or flowing collisionless unmagnetized
plasma in a vast region surrounding any two-dimensional conductive object. Two solvers were developed
based on this model:

• KiPS-1D, a 1-D model based on cylindrical symmetry, applicable to round cylinders in stationary
plasmas;

• KiPS-2D, a full 2-D model, allowing for arbitrary 2-D geometries in stationary or flowing plasmas.
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Some of the theory for these models was presented before [10], but will be repeated in part here for com-
pleteness. Validation of these models against previously existing models [7–9] has shown excellent agreement
for round cylinders over the low voltage regimes covered by those models [6]. In this paper, we use the
new simulation capabilities provided by KiPS-2D to simulate the interference effect among parallel wires
immersed in a plasma.

A. Poisson–Vlasov Representation of a Collisionless Plasma

Obtaining a simultaneous solution in two dimensions for the steady-state electric potential and charge den-
sity distributions of both plasma species (ions and electrons) requires the ability to solve, self-consistently,
Vlasov’s equation for each species and Poisson’s equation for the electric potential and charge density, while
satisfying appropriate boundary conditions.

In charged media such as a plasma, the steady state of the electric potential and net charge distributions
obey Poisson’s equation [11],

∇2V (x, y) = −ρ(x, y)

ε0
, (1)

at any point within the plasma. In addition, each species comprising the plasma, that is, electrons and ions, is
composed of particles with a two-dimensional distribution of velocities at any point in space f (x, y, vx, vy).
The number density of each species is obtained by integrating the velocity distribution function over all
velocity space

ne,i =

∫ ∫
fe,i(x, y, vx, vy) dvxdvy, (2)

where the indices e and i refer to electrons and ions, respectively. The net charge density results from

ρ(x, y) = qini(x, y) + qene(x, y), (3)

where qe and qi are the electron and ion particle charge.
In a collisionless, unmagnetized plasma at the steady state, the velocity distribution functions f(x, y, vx, vy)

of each species is conserved along particle orbits. This is stated by Vlasov’s equation in the steady state

(
∂f

∂t
= 0) [12]:

dfe,i
dt

= vx
∂fe,i
∂x

+ vy
∂fe,i
∂y
− qe,i
me,i

∂V

∂x

∂fe,i
∂vx

− qe,i
me,i

∂V

∂y

∂fe,i
∂vy

= 0 (4)

where we substituted the electric field components with the gradient of the electric potential, i.e., ~E = −∇V .
Given a known potential distribution and a boundary condition for the incoming particles at the outer
boundary of the computational domain, the method of characteristics can be used to solve (4) for the
velocity distributions fe,i(x, y, vx, vy) of both the electrons and ions, at all positions and for all velocities.

The use of the method of characteristics for the resolution of Vlasov’s equation in plasma problems
was reported early on [13], and was referred to as the inside-out procedure. It consists of tracking a
particle’s trajectory back in time until it intersects the “source boundary” of computational space, where
the velocity distribution function is sampled. Any trajectory not originating from the outer shell is deemed
unpopulated [7]. Such is the case for trajectories originating from the tether itself, which we assume does
not emit charged particles, as well as trapped trajectories, which have no sources in the collisionless case.

The steady-state of the plasma must simultaneously satisfy both Poisson’s equation (1) and Vlasov’s
equation (4), subject to appropriate boundary conditions on the potential and the incoming particles.

B. Regularized Newton-Iterative Poisson–Vlasov Solver

To find the steady-state solution, both a Poisson solver and a Vlasov solver are implemented:
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• The Poisson solver computes a numerical approximation for the potential distribution V (x, y) based
on the finite element method [6, 14], given a net charge distribution ρ(x, y) together with appropriate
floating boundary conditions on the potential distribution, consistent with Poisson’s equation (1). The
finite element implementation is based on a piecewise-bilinear representation of potential and charge
density distributions over an unstructured set of triangles covering the computational domain. Details
of the 1-D and 2-D implementations of the Poisson solver are given in ref. 6.

• the Vlasov solver computes a numerical approximation for the charge distribution ρ(x, y), given a
potential distribution V (x, y), consistent with Vlasov’s equation (4) as well as with (2) and (3). The
density calculations are computed by integrating samples of the velocity distribution function over
velocity space. Using reverse-time trajectory tracking, these samples can be inferred from the known
velocity distribution functions of the background plasma (the source) by virtue of the fact that the
velocity distribution function f(x, y, vx, vy) is conserved along trajectory orbits in collisionless plasmas.
This technique is known in mathematics as the method of characteristics [15], or, alternatively, as the
inside-out procedure as introduced by Parker [13] for plasma simulations.

Poisson
Solver

Vlasov
Solver

~ρin ~V
~ρout

Poisson-Vlasov Operator ~fPV

Tikhonov-Regularized Inversion

~ρ ≈ ~ρout + JPV (~ρ − ~ρin)

~ρin + α (JPV − I)† (~ρin − ~ρout)

Step Size Control

Figure 1. Progressive Tikhonov-regularized Newton iterative
Poisson–Vlasov procedure. JPV is a Jacobian matrix containing
the linearized behavior of the Poisson-Vlasov operator near an
“operating point” ~ρin.

The steady-state solution lies at the
fixed point of the combined Poisson–
Vlasov operator enclosed within the
dashed box on Figure 1. Now, there
are known difficulties arising in solving
such a problem [7]. Simple iteration
of the fixed point operator does not in
general yield convergence, since it is a
non-contractive mapping [16]. To ad-
dress these difficulties, a procedure was
implemented based on Newton’s method
for nonlinear systems of equations [17].
This technique, which we designate as the
Progressive Tikhonov-regularized Newton
iterative procedure, is depicted in Fig-
ure 1. It consists of progressively improv-
ing a solution vector ~ρin, i.e., reducing
the residual norm ‖~ρin − ~ρout‖, by suc-
cessively linearizing the Poisson–Vlasov
operator and finding a regularized solu-
tion for the resulting linearized system of
equations. This process relaxes the solu-
tion vector ~ρin and has the global effect of
reducing the Euclidean distance between
~ρin and ~ρout. The iterative process con-
tinues until the solution can no longer be
improved with the specified quadrature accuracy used in the Vlasov solver. In practice, a suitable quadrature
accuracy is chosen that allows the iterates to reach a reasonably low residual norm ‖~ρin − ~ρout‖∞, on the
order of 1% of the background plasma density.

The necessity of the Tikhonov regularization stems from the ill-conditioning of the linearized system,
which tends to allow quadrature noise into the solution, causing rapid divergence of the iterates. The regu-
larization process prevents “oversolving” the linearized system at any given iteration, making the procedure
tolerant to ill-conditioning and quadrature noise [6].

Figure 2 depicts the flow of computed quantities within a typical KiPS-2D run, at the converged state.
The best estimate for the input net charge density profile ρin(x, y) is used to compute the electric potential
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Electric Potential, V

Net Charge Density ρin Net Charge Density ρout

Particle Trajectory
Tracking

(Vlasov’s Eqn.)

Ion
Density

Electron
Density∇2V = −

ρ
ε0

Poisson
Eqn. =
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If ρout � ρin, a new ρin is computed using
Tikhonov-Regularized Inversion and the 
process is repeated until convergence

( )ei nne −=ρ

Figure 2. Illustration of the Converged State of the Iterative Resolution Process Used to Find the Self-
Consistent Steady-State Solution. This specific solution corresponds to a simulation of two parallel wires.

profile V (x, y) from Poisson’s equation (1). Vlasov’s equation is then solved using particle trajectory tracking
(i.e., the Vlasov solver) to infer the ion and electron density profiles ni(x, y) and ne(x, y) that are consistent
with the obtained potential profile. Finally, the net charge density profile ρout(x, y) is inferred from the
ion and electron density profiles using (3). On Figure 2, the very low discrepancy between ρin(x, y) and
ρout(x, y) indicates that we have reached a solution corresponding to the steady-state of the plasma profile.

C. KiPS-1D and KiPS-2D: Implementations Compared

Table 1 compares various aspects of the computer implementation of the 1-D and 2-D solvers. The primary
difference between both implementations is that KiPS-1D runs on a single CPU, whereas KiPS-2D has a
parallel implementation. While the 1-D implementation of the Vlasov solver does not require trajectory
tracking, KiPS-2D’s Vlasov solver requires tracking about 10,000 particle trajectories per density sample at
any given iteration, which totals to a few tens of millions of trajectories per iteration. This can only be
accomplished in a reasonable time using some form of parallelism. The 2-D version of the Vlasov solver was
thus implemented in Fortran 90 using an MPMDa parallel processing scheme based on the Parallel Virtual
Machine library [18]. Since the Vlasov solver consists of computing a fixed number (say M) of plasma
density samples throughout the computational domain based on a given potential profile, it can easily be
divided into M independent sub-tasks. These sub-tasks are distributed among the slave nodes on a parallel
platform in what constitutes a coarse-grained parallel algorithm.

A dynamically-configured pool of about 150 Sun Blade 1000/1500 workstations, each acting as a slave
node as part of the Vlasov solver, is used as the parallel platform. A total of 250 workstations are being
used on an opportunistic basis, being swapped in and out of the 150-workstation slave node pool according
to their availability.b

aMultiple Program, Multiple Data
bA workstation is removed from the slave node pool when a console user logs in, and only moved back in when no console
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IMPLEMENTATIONS COMPARED

KiPS-1D KiPS-2D

Serial Poisson and Vlasov solvers Serial Poisson solver, Parallel Vlasov solver;

Management of top-level iteration routine and
Poisson Solver under Matlab

TM

;
Management of top-level iteration routine and
Poisson Solver under Matlab

TM

;

Vlasov Solver implemented in Fortran 90 for
computational efficiency;

Vlasov Solver implemented in Fortran 90, runs
on multiple slave nodes - density samples are
computed by individual nodes;

Runs on a single PC;
Parallel Virtual Machine library used to harness
a dynamic cluster of 150 Sun Blade Workstations

Run times from a few seconds to a few minutes Run times from a few minutes to a few hours

Table 1. Comparison of the KiPS-1D and KiPS-2D implementations of the self-consistent steady-state kinetic
model

D. Duality of ion- and electron-attracting configurations

In the negative-bias situation under consideration, the ions are the attracted species. Since the plasma is
not moving (no flow), the results we obtain are also directly applicable to the electron-attracting situation
with equal bias magnitude, provided that we swap the ion and electron density profiles.

E. Treatment of Repelled Electrons

Our model allows for the full kinetic representation of both species. However, in a stationary situation we
know that the electric potential will have the same sign as the potential bias, everywhere in space around the
perturbation, and certainly everywhere within the computational zone. For a repelling bias of such a large
magnitude as that considered here (φ0 = −320), we can affirm that, for all practical purposes, none of the
electron trajectories which contribute to the electron density intersect the conductive cylinders. This means
that all electron trajectories are connected to the background plasma, and allows us to use with excellent
accuracy the Boltzmann equation for the electron density:

ne = n0 exp
V

Te
, (5)

where we assume that V < 0 everywhere in space. This approach results in significant computational savings,
due to the fact that only the ions need to be treated kinetically.

III. Simulation Results for Two Parallel Cylinders

The geometrical parameters are the cylinder radius r0 and the center-to-center spacing ∆x. All of the
simulation results presented in this section were performed using a cylinder radius r0 = λDe and a normalized
potential bias φ0 =

V0−Vp
Te

= −320.
We consider the effect of the center-to-center spacing on sheath structure and current collection, always

comparing performances to those of a single round cylinder with radius r0 = λDe and bias φ0 = −320. The
value of the center-to-center spacing ∆x varies from ∆x = λDe (cylinders touching) to ∆x = 300λDe. This
maximum spacing corresponds to about 16 times the single-wire effective sheath radius of 19λDe [6].

users are logged in.
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A. Orbits of the Attracted Ions

We now turn our attention to the orbits of the attracted ions. In the following we discuss the existence
of complex ion orbits which do not exist in the single-cylinder case, and explain why the criteria used to
determine whether an orbit is trapped (and unpopulated) must be less restrictive than in the case of the
single cylinder. We then show some examples of these complex orbits.

1. Criteria for Trapped Orbits

The symmetric potential structure which exists in the simple single-cylinder case does not allow any of the
non-trapped trajectories to feature more than one change of “radial direction”, that is, one change of sign
of the radial component of velocity, vr. In other words, any orbit originating from the background plasma
will either:

• approach the conductive cylinder (vr < 0), miss it due to excessive angular momentum and return to
the background plasma (vr > 0);

• approach the conductive cylinder and get collected onto it (vr < 0 all along).

When two parallel cylinders immersed in a plasma are placed sufficiently close to one another (i.e., when the
individual sheath radius is a non-negligible fraction of the center-to-center spacing ∆x), the shadow effect
created by one cylinder can affect the space charge surrounding the other sufficiently to create asymmetries in
the potential structure. Those asymmetries, in turn, could allow for the existence of collisionless trajectories
of an increased complexity, featuring for example several “radial oscillations” about a given cylinder, or
even “figure eight” trajectories orbiting about both cylinders. At any given location, some of the directions
in velocity space that were unpopulated when there was no neighboring cylinder may now be populated
through relatively complex paths originating from the background plasma, while other directions that were
previously populated may now be unpopulated due to the existence of new types of trapped orbits, such as
the “figure eight”.

As a consequence, we need to allow for a sufficiently large number of radial oscillations to accommodate
for the existence of these more complex orbits, while at the same time keeping it down to a reasonable value
to obtain reasonable simulation times. We have found that allowing for up to 20 radial oscillations provided
such a compromise.

2. Examples of Ion Orbits

In Figure 3 we show a few typical examples of ion orbits through the self-consistent potential structure of
the two-cylinder configuration with a center-to-center spacing ∆x = 20λDe, a potential bias φ0 = −320Te
and a cylinder radius r0 = λDe. The circle shown at one end of each trajectory indicates the location of the
interrogation point where the velocity distribution function is being sampled. Following the trajectory from
this point backward in time leads us to the “source” point of the trajectory, indicated by a square.

The source point can either be the background plasma, a cylinder’s surface (in which case the orbit
is unpopulated since the cylinder is not a source), or it may be undetermined in the case of a trapped
(unpopulated) orbit.

Figures 3(a)–3(c) have a common interrogation point, located on a node on the right side of the mesh.
Figure 3(a) shows an example of an unpopulated orbit originating from the surface of the rightmost cylinder;
this orbit is not populated because the cylinder is not a plasma source. Figure 3(b) depicts a populated orbit
that undergoes two loops around the rightmost cylinder before reaching the interrogation point. Figure 3(c)
depicts a very complex but populated ion orbit that originates from the background plasma, undergoes
several loops around both cylinders, and finally reaches the interrogation point.

Figure 3(d) corresponds to a different interrogation point. It is shown here to illustrate one example of an
unpopulated orbit that was deemed “trapped”, having exceeded the maximum number of radial oscillations
set for this simulation, which was set to 20.
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B. Inspection of the 2-D Sheath Structure

We now consider the general aspect of the sheath structure surrounding both cylinders for a few values
of the center-to-center spacing: ∆x = 2λDe, 10λDe, 20λDe, and 80λDe. First, we note that all of the two-
cylinder simulations presented here were performed using two axes of symmetry. In other words, only a
single quadrant had to be simulated, thanks to the symmetry of the two-cylinder geometry and the fact that
the plasma is not flowing. The density distributions shown here, however, are shown over two quadrants, in
order to clearly illustrate the two-cylinder geometry under consideration. The simulation results, spanning
the quadrant θ ∈ [0, π/2], were simply “mirrored” to the second quadrant in θ ∈ [π/2, π]. We have opted to
only show the results in the half-space θ ∈ [0, π], so that the features of interest near the cylinders can be
clearly seen. All of the distributions shown in Figures 4 through 7 are given in the following two formats:

• 2-D distributions are shown on the left, over the half-space θ ∈ [0, π];

• one-dimensional profiles of cross-sections performed along the x axis are shown on the right.

Figure 4 shows the electron and ion density distributions pertaining to the smallest center-to-center
spacing, ∆x = 2λDe (cylinders touching). Due to the proximity of the two cylinders, the profiles obtained
are very close to what would be obtained with a single cylinder. The ion density, shown on Figure 4(b), is
seen to drop to just under half the ambient density on the external surfaces of both cylinders, an indication
that the total extent of the two touching cylinders is barely large enough to create a departure from the
orbital motion limit of half the ambient density. Radial acceleration of ions is responsible for the significant
drop in ion density as the ions enter the sheath, a phenomenon that is also observed in the single-cylinder
case [6].

Figure 5 pertains to the spacing ∆x = 10λDe. The ion density is seen to drop to a minimum density of
about 0.2n0 as the ions enter the sheath. A relatively large ion density is seen to exist in between the two
cylinders, where it reaches a maximum of about 0.7n0. The ion density at the surfaces of the cylinders is seen
to be much lower here than what was seen for the case where the cylinders are touching. The ion densities
on the external and internal surfaces of the cylinders are about 0.27n0 and 0.19n0, respectively. This is an
indication that the orbital motion limit was not achieved for current collection, due to the overall extent of
this “two-cylinder” probe. The center-to-center spacing is not quite large enough for the two sheaths to have
separated, so that the two cylinders are in effect emulating a larger structure, leading to reduced current
collection with respect to OML, similar to what is seen as the radius of a single cylinder goes from a fraction
of a Debye length to several Debye lengths [19].

Figure 6 pertains to the spacing ∆x = 20λDe. Here the ion density profile shows various “bumps” as
we enter the sheath, which may be due to the partial filling of some of the velocity space’s directions that
were left empty in the single-cylinder case due to angular momentum restrictions. Some of these directions
are being populated by the complex trajectories described earlier. The ion acceleration through the sheath
still results in a significant drop of the ion density, albeit for a somewhat smaller range of distances from
the cylinder’s surface. The ion density at the surface is still well below the orbital motion limit: we have
ni ≈ 0.2n0 on the inside surface and ni ≈ 0.3n0 on the outside surface. We can therefore still expect a
significant current reduction as compared to the OML limit. The peak in ion density previously seen for
∆x = 10λDe has dropped to about ni ≈ 0.58n0, as the sheath has begun to separate into two separate
sheaths, which causes some restrictions of the angular momentum with respect to each cylinder’s axis.

Figure 7 pertains to the spacing ∆ = 80λDe. At this large spacing, the two cylindrical sheaths have
now separated, and the electron density now peaks at above half of the ambient density in between the
two cylinders. We now distinguish a net charge distribution which features two structures resembling the
net charge distribution around a single independent cylinder, except for some remaining strong asymmetry.
This asymmetry remains in spite of the fact that the surface charges located on one cylinder practically no
longer contribute to the electric fields within the sheath around the other cylinder. Rather than being due
to a direct field coupling, the remaining asymmetry is due to the fact that some velocity space directions in
the sheath around one cylinder are left unpopulated because their corresponding trajectories originate from
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the surface of the other cylinder. This effect can be significant because of the focusing effect between the
two sheaths which concentrates trajectories toward the inside of the sheath even as they are moved apart
significantly. The asymmetries are also amplified by the changes that they induce in the population of the
orbits that are normally “trapped and unpopulated” in the case of an independent cylinder. The ion density
profile seen on Figure 7 shows two familiar patterns resembling the ion density profile typical of a single
independent cylinder [6], albeit with some asymmetry. The ion density reaches a value of about 0.54n0 on
the x axis in between the two cylinders. We observe that this is a significantly lower density than would be
observed at such a large distance from an independent cylinder (about 0.75n0). The asymmetry however
causes some increase of the “outside” density profile, where we observe a “bump”.

The observations that we have made concerning the widest spacing can be summarized as follows:

1. the ion densities on the outermost side of a given cylinder are somewhat increased by the potential
asymmetries caused by the trajectory connections among both sheaths;

2. the ion densities on the innermost side of a given cylinder are somewhat decreased due to the unpop-
ulated trajectories originating from the surface of the other cylinder.

While the first observation may lead to a decrease of the effective sheath radius as measured on the outermost
side as compared to that of an independent cylinder, the second observation may cause an increase of the
“inner” effective sheath radius. The overall outcome of these two competing effects is difficult to predict.
We will assess it in the following two sections based on a more general measure of the sheath dimensions,
the effective sheath area.

C. Definition of an Effective Sheath Area Concept

A useful first-order metric for the scattering efficiency of the sheath structure is that of the effective sheath
area As, which in the case of a single independent cylinder relates to an effective sheath radius rs through
As = πr2

s . For a single independent cylinder, the effective sheath radius rs is defined based on the asymptotic
form of the potential profile,

φ(r) = φ0

(
1− ln (r/r0)

ln (rs/r0)

)
. (6)

This asymptotic potential profile most accurately describes the potential drop near the cylinder’s surface,
and drops to zero faster than the fully self-consistent solution of the potential, which comprises a tail that
extends the potential structure further out. This asymptotic description represents the equivalent problem
of a coaxial capacitor, with all of the space charge concentrated on a single radius r = rs.

We now seek to generalize the concept of effective sheath radius for application to non-symmetric sheaths,
while providing a metric consistent with that used for round cylinders.

Let us first consider a sheath with circular symmetry, for which (6) applies. We define an effective sheath
area As consistent with our previous definition of the effective sheath radius rs based on the relationship

As = πr2
s (7)

where we include the area of the cylinder itself as part of the effective sheath area. Similarly, we define

A = πr2 and A0 = πr2
0 , (8)

where A is the area enclosed by any equipotential circle of radius r, and A0 is the cylinder’s cross sectional
area. Using (7) and (8), we re-write the potential profile given by (6) in terms of As, A and A0:

φ = φ0

(
1− ln (A/A0)

ln (As/A0)

)
. (9)
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This asymptotic relationship relating the potential on any contour level to the area it encloses, holds from
the surface of the cylinder out to a fairly large radius r (or area A).

We may now generalize (9) to any type of sheath structure, by considering the variation of the potential
φ as a function of the area A enclosed within the corresponding contour level, and finding an appropriate
measure of the sheath area As based on some asymptotic behavior of the φ-vs-A plot. As was just demon-
strated, in the case of the single round cylinder, this definition will provide us with a measure for the effective
sheath area As consistent with the effective sheath radius rs defined earlier for a single independent cylinder.

D. Determination of the Effective Sheath Area of the Two-Cylinder Configuration

Figure 8 graphically illustrates, for a spacing ∆x = 10λDe, the process that was used to determine an effective
sheath area As, consistent with the definition given in Section C. Part (a) shows a set of equipotential
contour levels and part (b) shows a plot of the potential φ as a function of the surface area A enclosed
by the corresponding contour level. The effective sheath area As is determined by the A-interceptc of the
extrapolated asymptotic behavior of the φ-vs-A data. In the particular case shown in Figure 8, the two-
cylinder effective sheath area is As = 2244.6λ2

De, which compares to As,1 = πr2
s = 1128.6λ2

De for a single
independent cylinder.

The semilog graph of the φ-vs-A data shows two distinct linear regions, indicated by separate linear
“best fits”. The first linear region (on the left) corresponds to the set of circular contour levels enclosing
each cylinder separately. The slope associated with this first region is not as steep as that which would be
expected of an independent cylinder, and is consistent with the observed lower amount of normalized surface
charge Qn = Q/(ε0Te), where Q is the surface charge in Coulombs, held separately by each of the cylinders
as compared with the surface charge held by an independent cylinder.d This lower charge can be attributed
to a “virtual” effective sheath edge enclosing an area As,virtual (shown on the figure to be further out to the
right of the graph) that is much larger than the effective sheath area of an independent cylinder. The fact
that each cylinder holds a lower amount of surface charge than an independent cylinder is consistent with
the large area As,virtual, as is evidenced by the following equation applicable to coaxial capacitors [11]:

Qn,1 = 4π
φ0

ln (As/A0)
(10)

where Qn,1 is the normalized surface charge held by each cylinder and A0 = πr2
0 is the single-cylinder area.

The expression given by (10) clearly shows that the surface charge Qn,1 goes down with increasing sheath
area As.

The leftmost linear region extends until we approach a critical point where the equipotential contours of
both cylinders connect together to form a single contiguous contour. The φ-vs-A data then rapidly switches
to the rightmost linear region corresponding to the set of circular contour levels enclosing both cylinders.
The effective sheath area of the system is defined as the A-intercept of the rightmost linear fit. In this
particular case, it turns out that the effective sheath area As is almost exactly equal to the combined sheath
areas of two independent cylinders, i.e., As ≈ 2As,1.

Space charge effects can be seen at two different locations on Figure 8. The first one occurs near the
inflection point between both linear regimes, where the φ-vs-A data is seen to momentarily drop below the
leftmost linear best-fit before it starts growing faster toward the rightmost linear best-fit. This momentary
slope reduction is attributed to the shielding effect of space charge, which is having a detectable effect because
of the sufficient spacing between the cylinders, where some space charge exists. Beyond the turning point
of this graph, the effect of space charge becomes negligible again for a large portion of this outer sheath,
until we reach beyond an area A ≈ 1000λ2

De, where we notice the typical tail-like behavior of the potential
associated with space charge shielding.

cThe A-intercept is defined as the value of A at which the linear graph intersects the A axis.
dNote that even though the surface charge Qn = 1052.5 shown on Figure 8 is larger than the surface charge held by an

independent cylinder Qn,1 = 683.4, the amount of charge held individually by each cylinder, 1
2
Qn = 526.25, is lower.
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E. Parametric Analysis of the Sheath Structure

Using the definitions given in the previous section, we can now consider an analysis of the effects of the
center-to-center spacing on the effective sheath area and total surface charge held by the cylinders.

First we define the effective sheath area ratio as the ratio of the total effective sheath area As of a
two-cylinder system to the effective sheath area of a single independent cylinder, As,1, i.e.,

RAs ≡
As
As,1

. (11)

Figure 9 depicts the variation of the effective sheath area ratio RAs as a function of the center-to-center
spacing ∆x of the two parallel cylinders.

The leftmost data point in Figure 9 corresponds to a spacing of ∆x = 2λDe and applies to “touching”
cylinders since they both have a radius r0 = λDe. RAs is seen to start around 1.55 when the cylinders are
touching, indicating a total sheath area 55% larger than that of a single cylinder. For a smaller cylinder
radius, we would expect to obtain RAs = 1 when the cylinders are touching because the full extent of the
two touching cylinders would be small enough for the shadowing effect to be negligible on the density of
outward-moving ions throughout the sheath [6].

The ratio RAs then rises to a maximum very close to 2.0 for a spacing ∆x = 20λDe, indicating that
the effective sheath area is now on par with the sheath area expected of two independent cylinders. This
represents an optimal spacing for purposes of maximizing the total sheath area, as is desired for the high-
energy particle precipitation application. This optimal spacing is followed by a sharp drop of the ratio RAs
to a minimum value at a spacing ∆x = 40λDe. The sheath area then goes back up relatively quickly until
the spacing reaches ∆x = 60λDe, and then follows a slow upward slope for the remainder of the graph.
It is seen that the total effective sheath area has only reached about 1.5 times the sheath area of a single
independent cylinder at a spacing of ∆x = 200λDe, whereas we expect it to reach a ratio RAs = 2.0 when the
spacing is sufficient for the two sheaths to be fully independent of each other. An extrapolation of a linear
fit performed on this slow increase indicates that “full independence” would be reached at an approximate
spacing ∆x ≈ 660λDe, which corresponds to about 35 times the independent cylinder sheath radius of
Rs ≈ 19λDe.

The surface charge ratio is shown in Figure 10. This ratio is defined as the ratio of the total surface
charge held by both cylinders to the surface charge held by a single independent cylinder. As discussed
before, thinner cylinders allowing reduced spacings would carry the same amount of charge as a single thin
cylinder when approached sufficiently close to one another. Since here we are considering relatively large
cylinders with a radius of one Debye length (r0 = λDe), they cannot be brought sufficiently close together
to achieve as low a capacitance as a single wire. This is why the graph shown on Figure 10 starts above
1.0, at a ratio of about 1.1 for a spacing ∆x = 2λDe. As the cylinders are spaced apart, their combined
capacitance increases so that the amount of charge they hold grows to a value of about 2.25 times the single-
wire surface charge at ∆x = 40λDe. This is actually more than two independent cylinders could hold (2.0),
and is consistent with the observed reduced effective sheath area seen in Figure 9 as compared to the total
sheath area of two independent cylinders. The total charge then slowly ramps down as the spacing increases
beyond ∆x = 40λDe, and the graphed ratio should eventually reach 2.0.

Figure 11 is an alternative representation of the information shown in Figure 9. It shows the “equivalent
potential bias” for a single cylinder. This is the potential bias required on a single cylinder to generate an
effective sheath area equal to that generated by our two-cylinder system biased at φ0 = −320Te. It is seen
that one could create a sheath as large as that which is created by a single cylinder of radius r0 = λDe biased
at φ0 = −570Te by using two cylinders of equal radius r0 = λDe biased at φ0 = −320Te and spaced 20λDe

apart.
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F. Interference Effect on Collected Current

Figure 12 depicts the variation of collected ion current as a function of center-to-center spacing. The graph is
normalized to the current that would be collected by two independent cylinders, Iindep. In the present case,
which involves cylinders with a relatively small radius r0 = λDe, Iindep is very close to the orbital motion
limit [6].

Concave Perimeter

Convex Envelope

Figure 13. Illustration of the convex enve-
lope surrounding both cylinders. The cur-
rent collection to the concave portion of the
perimeter is limited to some directions.

When the cylinders are touching (∆x = 2λDe), the cur-
rent ratio I/Iindep is about 0.79. This relatively low ratio is
attributable primarily to the concave structure formed by the
two cylinders, which prevents many incoming directions from
reaching the facing internal surfaces of the two cylinders. In
fact, one can approximate the current that should be collected
based on the current entering a convex envelope enclosing both
cylinders, as is shown on Figure 13. If we assume that the over-
all two-cylinder structure is still sufficiently small for orbital-
motion-limited current collection to apply, we can compute the
expected collected current based on the ratio of the convex
envelope’s perimeter to the concave perimeter [20] as follows:

Iexpected = Ioml ×
convex perimeter

concave perimeter
=

4r0 + 2πr0

4πr0
≈ 0.82.

(12)
This value (0.82) is just above our result of 0.79. The remain-
ing discrepancy can be attributed to a mild departure from the
OML limit due to the overall size of the collecting structure.
This is supported by the fact that the ion density at the ex-
ternal surface of the cylinders is slightly lower than half the
ambient density, as seen on the x axis cross-section profile of Figure 4(b).

As the cylinder spacing is increased, the collected ion current is seen to drop to a minimum just below half
of the independent cylinder current near an optimal spacing of ∆x = 10λDe. The current then rises sharply
at a spacing ∆x = 30λDe, when two separate sheaths have begun to form. The remainder of the graph
shows a rather steady increase of collected current with increasing spacing. This steady increase occurs once
the sheaths have completely separated and are primarily coupled through the empty ion orbits connecting
both cylinders’ surfaces. The observed current increase is attributed to the gradual reduction of the number
of connected ion orbits, which are not populated and therefore do not contribute current at the cylinders’
surfaces. It is interesting to note that a similar observation was made as part of a separate experimental
effort [21] concerning the experimentally measured current collected by slotted tape samples. The correlation
between the experimentally observed decrease in the collection efficiency of the perpendicular slotted tapes
with increasing gap widths and our simulation results indicate that the gap spacings sampled during our
experiments were all located on the left of the expected minimum point on the current-vs-spacing graph.

IV. Conclusion

KiPS-2D was used to model the interaction of two parallel conductive cylinders (tethers) in a plasma.
Interference effects between two parallel cylinders were shown to exist for spacings upward of 20 times the
single-cylinder sheath radius, and an optimal spacing of about half the single-cylinder sheath radius was seen
to maximize the overall sheath area to a value equal to that of two independent single-cylinder sheaths. Near
the same optimal spacing, current collection is reduced to a minimum of half of the current collected by two
independent cylinders. This is attributed to the existing set of unpopulated collisionless paths connecting
both cylinders.
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(b) Complex Populated Orbit Around One Cylinder
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(c) Complex Populated Orbit Around Both Cylinders
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(d) Complex Unpopulated Orbit Around Both Cylin-
ders

Figure 3. Examples of some typical ion orbits within the self-consistent potential structure of a two-cylinder
system. The square and circle indicate the source and interrogation points of the orbits, respectively. The
total ion energy (potential plus kinetic) is indicated above each plot in terms of the electron temperature (in
units of eV). Intersections with the background mesh are marked with dots.
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(a) Normalized Electron Number Density ne/n0.
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(b) Normalized Ion Number Density ni/n0.

Figure 4. Self-consistent electron and ion density distributions for the two-cylinder configuration with a
cylinder radius r0 = λDe, center-to-center spacing ∆x = 2λDe, and normalized bias φ0 = −320. These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net charge density
profile ~ρout = e (ni − ne) depicted on Figure 1.
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(a) Normalized Electron Number Density ne/n0.
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(b) Normalized Ion Number Density ni/n0.

Figure 5. Self-consistent electron and ion density distributions for the two-cylinder configuration with a
cylinder radius r0 = λDe, center-to-center spacing ∆x = 10λDe, and normalized bias φ0 = −320. These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net charge density
profile ~ρout = e (ni − ne) depicted on Figure 1.
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(a) Normalized Electron Number Density ne/n0.
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(b) Normalized Ion Number Density ni/n0.

Figure 6. Self-consistent electron and ion density distributions for the two-cylinder configuration with a
cylinder radius r0 = λDe, center-to-center spacing ∆x = 20λDe, and normalized bias φ0 = −320. These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net charge density
profile ~ρout = e (ni − ne) depicted on Figure 1.
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(b) Normalized Ion Number Density ni/n0.

Figure 7. Self-consistent electron and ion density distributions for the two-cylinder configuration with a
cylinder radius r0 = λDe, center-to-center spacing ∆x = 80λDe, and normalized bias φ0 = −320. These density
profiles constitute the output of the Vlasov solver and are subtracted to form the output net charge density
profile ~ρout = e (ni − ne) depicted on Figure 1.
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Figure 8. Potential contour levels (a) along with a plot of the enclosed area as a function of the level of a set
contour levels of the potential structure (b) for two cylinders with a center-to-center spacing ∆x = 10λDe. The
cylinder radius is r0 = λDe and both cylinders are biased at a normalized potential φ0 = −320.
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Figure 9. Effective sheath area ratio as a function of center-to-center spacing of two parallel cylinders. The
results shown here apply to the case of two cylinders of radius r0 = λDe with normalized bias φ0 = −320. The
effective sheath area ratio is the ratio of the two-cylinder sheath area to the single-cylinder sheath area.
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Figure 10. Ratio of the total surface charge on both cylinders to the surface charge held by a single independent
cylinder. The results shown here apply to the case of two cylinders of radius r0 = λDe with normalized bias
φ0 = −320.
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Figure 11. Equivalent bias of a single cylinder as a function of the center-to-center spacing of two parallel
cylinders. The results shown here apply to the case of two cylinders of radius r0 = λDe with normalized bias
φ0 = −320. The equivalent bias is that which would be necessary for a single cylinder to yield the same sheath
area as the combination of the two cylinders.
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Figure 12. Current ratio as a function of center-to-center spacing for a two-cylinder configuration. The
current ratio is defined as the ratio of the total collected current to the current that would be collected by two
independent cylinders.
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