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PREFACE

The most important parameter characterizing the scattering
from any body is the radar cross-section. Unfortunately, theoret-
ical radar cross-sections of general shapes have not been found,
and experimental data still lack precision.

Exact theoretical solutions have been obtained for certain three-
dimensional shapes including the sphere, prolate spheroid, parab-
oloid and semi-infinite cone (with source on extension of axis of the
cone). The radar cross-section of a sphere has been determined
and numerical answers obtained over a range of several parameters
(Ref. 1, 2, and 3). For the prolate spheroid (Ref. 4) and the pa-
raboloid (Ref. 5) theoretical solutions have been formulated but only
one numerical answer exists for the former and none exists for the
latter. The exact solution for the semi-infinite cone has been found
from electromagnetic theory by Hansen and Schiff (Ref. 6). In order
to compute numerical values from this solution, it is necessary to
determine the zeros of certain associated Legendre functions. How-
ever, as shown in Reference 7 the tables currently in use which list
the values of these zeros are inaccurate,

The present report is the third in a series of reports which
will discuss the problem of the scattering of microwaves by various
shaped objects. In this over-all program, the numerical values for
the cross-sections of certain simple shapes are being computed for
a range of physical parameters which is either realistic at present
or will be realistic in the near future.

The first of these reports (Ref. 4) described the scattering by
a prolate spheroid.

The second report (Ref. 7) discussed the properties of the as-
sociated Legendre functions of non-integral degree.

The present report reviews the solutions to the cone problems
which are obtained from physical and geometrical optics and electro-
magnetic theory. New results presented for the first time in this
report are as follows:

ii
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1. A quick method is used to obtain solutions to the scalar
wave equation for plane waves scattered from a body when the
solution is already known for the case of a point source placed
a finite distance from the body.

2. Carslaw's method for a point source is extended to
include the solution for plane waves.

3. The scalar differential scattering cross-section is obtained
for the scattering of plane waves by a semi-infinite cone.

4, The relationship between radar cross-section and differen-
tial scattering cross-section is derived. (Although the authors
know of no reference in which this derivation appears, they feel
this result is well known).

5. A comparison is made between the sound-theory (scalar)
and electromagnetic (vector) solutions to the cone problem.

The next report in this series (Ref. 23), will discuss the
Hansen and Schiff solution (Ref. 6) for a semi-infinite cone more
fully. An analysis will be made which shows how to re-interpret
the Hansen and Schiff solution to yield a correct conclusion. A
cross-section for the cone is then obtained from this solution and
compared with experiment.

iii
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NOMENCLATURE
-
A = vector potential
-
E = electric field vector
-—p
H = magnetic field vector
2
H(.) 1 (kp) = Hankel function of the 2nd order, degree i + 1/2,
147 argument k po
Jni+1/Z (kr) = cylindrical Bessel function of degree n, + 1/2 and
argument kr
—p
K = gsurface current density

. 7T -1/2(n1+1/2)371
Kni+1/2(3kp )= 2 sin (mj+ )7 ©

(n;+ )i T
X l}_ni_l/g(kp) -e Jﬂi""l/g(kp):]

Nni"‘i/a (kr) = cylindrical Neumann function of degree n, + 1/2 and
argument kr
m .
Pni (/J) = associated Legendre function of the 1lst kind, order
m, degree n., argument
m
Qni (/1) = associated Legendre function of the 2nd kind, order m,
degree n;, argument A
c = velocity of light
-27Kz
g zfe dA = equivalent flat plate area
A

[N
"

real integer

iv
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NOMENCLATURE (Continued)
J = \/—1
in.(kr) = spherical Bessel function = RS J (kr)
i 2kr “njtly
2T
k = —
A
L =n + 1/2
dPiy; ( o)
mj = real number defined by —-}-——/—J—O— = 0
apt
dPn: (Ko)
nj = real number defined by __nl_él_(_)__ =0
du
n,.(kr) = spherical Neumann function = / i N (kr)
nj 2kr Nj+1/2
r = radial distance in spherical coordinates
r) = radial distance in cylindrical coordinates
¥,y = solutions of Legendre's equation
a,f = real numbers defined by n = @ + j 8
€ = dielectric constant (60 = dielectric constant of free
space)
!
€' = a real number 0 < E <1
Mo = intrinsic impedance of free space
o = angle measured from z-axis in spherical coordinates
6. = angle in cylindrical coordinates
O = 1/2 total cone angle
A = wave length
\4
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NOMENCLATURE (Continued)
M = cos 6 (/10 = cos 90)

M = magnetic permeability (/Lg = magnetic permeability
of free space)

I (x) = r' (x + 1) where r' is the Gamma function

/0 = distance measured along axis of cone from vertex to
source of radiation

g (0) = radar cross-section

O'D(B) =0p T differential scattering cross-section

O'D (0) = differential back scattering cross-section
27 c

w = angular frequency = X

¢ = azimuthal angle in spherical coordinates

Miscellaneous

* = complex conjugate

7?6 (x) = the real part of x

N NN

i, j, k = unit vectors along the rectangular x,y, z, axes respec-

tively (Note: the symbol Awill always denote a unit vector).

dPn, (Ho) dPn;(u)
W e M=K,

d° Pn;( U o) 0 *Pn; ()
0 nj d,u dnj a/-t

HM=H 5

vi
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NOMENCLATURE (Continued)

Miscellaneous (Cont'd)

W, u, ug eigenfunctions of the operator v* + k* with the

eigenvalue 0.

it

o (x) terms of the order of x

vii




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-87

RADAR CROSS-SECTION

The radar cross-section ¢°(0) is defined as the area intercept-
ing that amount of power which, when scattered isotropically, pro-
duces an echo at the source_of radiation equal to that observed from
st a'(0)

amr?
the antenna to the target and S° and S' are the average scattered
and incident Poynting vectors respectively., 07(0) indicates that
backscattering takes place along 6 = 0 where O is the usual angle
in spherical coordinates measured down from the z-axis. It is
assumed that the incident wave is linearly polarized and along the
z-axis and that only the component of the scattered wave with po-
larization similar to the incident wave is used in determining g’(0).

the target. That is, S5 = where r is the distance from

The radar cross-section described above is related to what is
commonly known as the differential scattering cross-section, op.
The latter can be described in the following manner. Consider a
plane wave incident upon the scattering body; then physically, at
large distances from the body, the solution to the wave equation
(either vector or scalar) must have the character of an incoming
plane wave plus an outgoing spherical wave which appears to di-
verge from the scattering body. If spherical coordinates are em-
ployed, this condition can be expressed mathematically as

jkr cos e e“Jkr
u=e + ——— |£(6.¢)
r

where, for scalar fields, u is the solution to the scalar wave equa-
tion, and for the vector fields, u represents one of the three com-
ponents, u, , u,, uz, of the solution to the vector wave equation.

The differential scattering cross-section 0'p is then defined for the

scalar case as 0 = lf(9,¢) g

21500, 87 + |1:(8.8)%.

and for the vector case as 0 = |f1(6,¢)
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Although the radar cross-section is strictly defined only for
the backward direction, the differential scattering cross-section
gives the complete angular distribution of the scattered wave. For
the backward direction we call the latter the differential backscat-
tering cross-section or, simply, the backscattering cross-section.

In Appendix B it is demonstrated that the radar and backscat-
tering cross-sections are related in simple fashion, namely, that
a(0) = 477 07, (0).

v In general, in order to calculate the cross-section of any ob-
ject one must determine the electric and magnetic field intensities
at all points in space. That is, for a charge-freez‘ homo_geneous
medium, a solution to the vector wave equation V2C + k2C = 0 is
required, subject to Maxwell's equations and to the proper boundary
conditions at the surface of the scattering body, Here, C sia;mds
for any of the pertinent vector quantities, E, H, B, D, or A.

The solution of the vector wave equation for any body presents
great difficulties, both mathematical and theoretical. One widely
known method developed by Hansen (Ref. 9, p. 392) constructs
solutions to the vector wave equation from known solutions to the
corresponding scalar wave equation. But the scattering body must
be the contour surface of a coordinate system in which the scalar
wave equation is separable and for even the simpler types of sep-
arable bodies the problem involved in obtaining a numerical answer
can become quite formidable (see Ref. 4 and 6).
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II
APPROXIMATE METHODS

Because of the difficulties mentioned above and in order that
some numerical answers may be obtained (even if they are only
approximate) the methods of physical and geometrical optics are
employed. The regions for which these methods are applicable
are as follows: when the wave length of the incoming radiation
is small compared to the dimensions of the scattering body the
methods of physical optics may be used. In the limit of vanish-
ing wave length the methods of physical optics reduce to those of
geometrical optics.* When the wave length of the radiation is of
the same order as the dimensions of the scatterer, then electro-
magnetic theory must be used, i.e., a direct solution to the vector
wave equation must be obtained. When the wave length is much
greater than the dimensions of the scattering body, the Rayleigh
Law is applicable.

The basis of both physical and geometrical optics is the
Kirchhoff-Huygens principle, originally applied to scalar fields
but later extended (see for example Ref. 9, Sec. 8.14) to electro-
magnetic fields. This principle states that if the value of a field
quantity is known at every point on any closed surface surround-
ing a source-free region, each elementary unit of surface can be
considered as a radiating source, and the total field at any interior
point is given by integrating the contributions of all the elements
over the surface.

A, PHYSICAL OPTICS

In order to apply the methods of physical optics, certain simpli-
fying assumptions will be made in this report. They are.

*For a proof of the statement that the diffuse boundary of the
shadow in diffraction phenomena (i.e., physical optics) becomes the
sharp shadow of geometrical optics as the wave tends to zero,

(see Ref. 8, p. 79).
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1. Only back scattering is calculated.

2. The scattering body is assumed to be a perfect electrical
conductor.

3. The dimensions of the scattering surface are large com-
pared to A, the wave length of the incoming radiation.

4, The scattering surface is assumed to be smooth, contain-
ing no abrupt corners except possibly at its extreme edges.

5. The distance from the radiation source to the target is
large compared with the dimensions of the target.

Because of Assumption 2, all fields inside the body are zero
and the tangential component of E and the normal component of
ﬁ are zero on the surface. Because of Assumption 3, the sur-
face of the body is so large in terms of wave length that H;
(the total magnetic field on the surface) has the same value
that it would have if the surface were infinite in extent. On
the back side the field is then zero, and on the front side H; is
twice the tangential component of the incident plane wave. Thus,
if the incident wave is traveling along the z-axis with its magnetic
vector of amplitude Hg in the direction ﬁ, perpendicular to the
z-axis, then on the surface the magnetic field is given by
e e—sz

H =i 2H

e =T 28, (w-1)

where Yt is a vector tangent to the surface and giving the direc-
tion of the total surface field.

. f) n (II-2)

and n is the outward normal to the surface. Stated in another
way, since no tangential electric field can exist on the target sur-
face, a reflected tangential field must be set up which is equal in
magnitude but opposite in phase to the incident tangential electric
field at every element of the surface. Hence, a reflected tangen-
tial magnetic field is induced which is of the same magnitude and
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phase as the incident tangential magnetic field, and the total tan-
gential magnetic field is equal to twice the incident magnetic field.
This situation is illustrated in Figure II-1 below. ﬁo is a unit vec-
tor in the direction of the incident wave. -

By

Kerr (Ref. 1, Ch. 6)

derives the physical op-
tics approximation to the incident n
radar cross-section by
making use of Stratton's
expression for the mag- i
netic field which comes

from a vector extension R
of the Kirchhoff-Huygens -n @

o
principle. Another meth- reflected
od of obtaining the phy- ﬁ E

sical optics expression r
is to calculate the sur-

face currents, the re-

sulting vector potential and then the field from the vector poten-
tial, This method will be discussed in Appendix C. The treat-
ment given below, however, is due to Kerr.

r

Figure II-1.

If a plane wave falls on an object of arbitrary surface S,
the object scatters the incident wave, and the current and charges
within the object may be considered the source of the scattered
Wave.

Stratton's Equation (20) (Ref. 9, p. 466) may be adapted to the
present case and becomes, by virtue of Assumption 2, (superscript
S denotes scattered wave)

H - - L /[@xﬁ)xv<e-jkr>jl ds II-3
T 4T t r ) (IL-3)
S

The surface of integration is the surface of the object and a closed
surface at infinity (the integral over this surface is zero). Be-
cause of Assumptions 1, 3, and 5, we may write
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e—jkr e—jkr>
V( r > = "o <]k r

where r is the distance from any element of area dS to the point
of observation. Using the usual physical optics approximation
(removing r from under the integral sign where it affects only the
amplitude and may be treated as a constant, but retaining it where
it has an effect on the phase), Equation (II-3) becomes

- ik = -j
- -/ f i x T e as. (11-4)
S

Let us now consider the case of the incident plane wave travel-
ing along the z-axis. Then Equations (II-1) and (II-2) apply and we
find that

A - ~-ikz
n, x (ﬁ X Hy) = —ZQHOeJ (ﬁo-ﬁ) R

If dS is the element of area on the scattering surface and dA is
the projection of dS on the plane normal to the line-of-sight, then
dS and dA are related by dA = - (ﬁo . ﬁ) dS . Then for back-
scattering, Equation (II-4) becomes

- . A Y
HS = - J——lgljrza / e 2ikz dA . (II-5)
A

The cross-section is given by

-g '4
O = 4mrt —_i = 4qr?
S

S

H,

*Kerr's third equation (Ref. 1, p. 463) is in error and should
read ﬁo X (0 X it) = A (ﬁo - 7). Also equation (55) on page
463 should have a minus sign.
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. . . 27 .
Using Equation (II-5) and remembering that k = BN we finally
have
2
47 -2jk anm
== e %% qa = 22 |g|2. (11-6)
N N
A
-2jkz . :
The term A e dA is called g, the equivalent flat-

plate area, by Spencer (Ref. 10). It is equal to the summation
(of the projection on a plane normal to the line-of-sight) of each
elementary area dS of the target multiplied by a phase factor

-2 :
e Jkz which assigns to each area a phase depending upon its

distance from the transmitting antenna of the radar. Thus Spencer
notes that the amplitude and plane of polarization are constant and
independent of orientation as long as the projection of the scatterer in the
direction of the line-of-sight is constant. Note that for a closed body in-
tegration is from the tip to the edge of the geometrical shadow. Thus the
assumption is made that the geometrical shadow region does not contrib-
ute to the scattering. This point will be discussed later in this section.

We now turn to the actual calculation of the backscattering
cross-section of a finite cone (aligned along the z-axis as shown

in Figure II-2) using the method of physical optics. The equiv-
alent flat-plate area, g, must first be calculated. For a cone,

r? = z? tan? 6, and the cross-sectional area A = 7r? = 7 z*tan®0 .

1
B\

Figure II-2.
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zo
2 tanz 617" / e—ZJkZ Zdz

[+

Then g

-2jkz_-2jkz %o

Z €
27 tan® 6, o T (TR

) 2 T tan?0 ;

-2jkz -2jkzq
(2jk)? - *

-2jkz e

Using Equation (II-6) and k = 2—)\75 we have

(J,:’rzan‘iel)\2 2

oy -2jkzy  -2jkzq
1677 2jkz, e - e

+1

If we restrict our consideration to microwaves ( A <30 cm
and k> & cm™), then kzy > > 1 for any object of dimensions
Zo >>5 cm. Using this approximation, the scattering from the
base of the cone reduces to 07 = mz? tan* & ,, while for scatter-

ing from the tip,

)\Z
g “TeR tan* 0, . (I1-7)

As can be seen, with the assumption kzg > >1, if the base
of the cone is sharply defined, the scattering from it will outweigh
the contribution from the tip of the cone. However, if the base of
the cone is cut very irregularly or the cone curves gradually so
that it becomes parallel to its axis, the scattering from the tip
will become dominant. Hansen and Schiff (Ref. 11) discuss this
point in some detail. They investigate the contribution to the scat-
tering of a pointed body of revolution from the penumbra region,
i.e., the region immediately behind the edge of the geometrical
shadow, and conclude that under the assumption of short wave-
lengths (kz, > >1) the contribution from the tip is the dominant




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-87

one. This conclusion is very important for it enables us to approx-
imate the back-scattering from certain important practical shapes,
such as the ogive, by considering only the scattering which would
result from the tip of the semi-infinite cone with the same angular
opening as the front end of the missile.

B. GEOMETRICAL OPTICS

In the limit of vanishing wavelength, the methods of geomet-
rical optics are applicable. Polarization and phase are now neg-
lected, and the scattering of the energy depends entirely on the
target and antenna geometry, since the energy flow is directed
now in straight lines.

The method is applicable only to smooth surfaces, or to those
portions of a body which are smooth. Geometrical optics does not
take into account diffraction effects which arise because of the wave
nature of electromagnetic radiation. The method is most easily
utilized for quadric surfaces with two finite principal radii of cur-
vature, but may be applied by suitable refinements to such surfaces
as flat plates and cylinders where one of the radii of curvature is
infinite or very large compared to the other.

The scattering from a semi-infinite cone or from a pointed
body of revolution viewed head-on may not be calculated by this
method since the effect of the conical point cannot be determined.
However, formula (II-7), derived previously from physical optics
under the assumption kz > > 1, may be thought of as a geometrical
optics formula since it is the physical optics formula in the limit
of very small wave length.

Given below is the geometrical optics derivation for the radar
cross-section valid for smooth, curved surfaces with two finite
principal radii of curvature. This derivation is due to R. C,
Spencer (Ref. 12).

The cross-section of a body is now defined as the cross-section
of an isotropic scatterer which would scatter the same energy in
any given direction as the actual body. It is assumed that the
plane waves of intensity I,, arrive at the point of reflection P on
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the body. An isotropic scatterer intercepts an amount of power
equal to I,o0 and thus, the scattered power dP® per unit solid angle
dw is

dP® 10 g O - 491 dP®

dw 497 - I, dw

Note that the differential solid angle dw encloses the reflected
ray. Making use of the law of reflection for a smooth body
(namely that the angle of incidence © is equal to the angle of re-
flection), it is now possible to express the cross-section in terms
of the differential solid angle dw,enclosing the normal to the sur-
face. This is shown in Figure II-3, below, by the solid angles
dw and dw, on the unit sphere, where the points T, P, N, and
R, are respectively in the direction of the transmitter, the point
of reflection, the normal to the scattering surface at the point of
reflection, and the receiver.

sin ©d¢de
sin (260)d ¢ d(20)

dw
dw

1]

4 cos GdLUO

dw

Figure II-3

10
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The power incident on any surface area dS of the body is
I
dP = IO cos 8 dS so that O becomes 0O = g——f’-s- since dPS = dPI.
o
For a quadric surface with principal radii of curvature R, and
R, the solid angle enclosed by the normal to the surface element

ds is _ 4s
R, R,

This simply says that the expression

dwg

R,R, is equal to the equiv-

alent solid angle dwgy on a unit sphere enclosing the normal to dS.
This is shown in Figure II-4, where the unit sphere may be en-
closed within the body or may completely surround the body and
the center of the sphere is on the normal to dS.

Figure II-4

Thus, the dey, shown in Figure II-3 is of the same magnitude as

the dw, occurring in the expression dw, = since they both

dS

RiR,
are the differential solid angles on a unit sphere enclosing the nor-
mal to the surface dS of the scattering body. Finally then,

g = HRIRZ\.

Note that @ is independent of @ ; hence, it can properly be called
the radar cross-section since the formula is valid for 6 = 0.

11
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III
SCALAR SCATTERING BY A SEMI-INFINITE CONE

In this section, the scattering from the semi-infinite cone is
solved by the scalar wave equation, making use of a particularly
elegant technique. Two other techniques are exhibited in Appendix
A: the method of separation of variables; and the method of con-
tour integration. Solution of the scalar cone problem by three
different methods is justified by the wide interest shown in it (see,
for example, Ref. 13, 14, 15, 16, and 17). Furthermore, the
auxiliary information obtained by these different methods has been
valuable in obtaining relationships between special functions which
have proved useful in our other scattering work.

Carslaw (Ref. 17) solved the following ''sound" problem. He
placed a point source on the extension of the axis of symmetry of
a semi-infinite cone at a distance p from the tip. He solved the
problem for the scalar wave equation with ert type time dependence
and insisted that the normal derivative of the solution go to zero
at the boundary and that there should be no reflection from infinity.
This is stated mathematically

VZu+k%®u =

( Jou
O normal

As r approaches oo , u cannot have eJKT type dependence.

1

o

~
"

0 at body .

The solution to his problem was split into 2 parts. He ob-
tained one part for p>r and one for P <r. For prr

T 1
35 (njt+3) Pp.(u) Jp.+4(kr)
u = 4 Z e 2 a (1’11+ %)Knl-l-é' (Jkp) 1# 1'2

d*Pn( Uo)
Ve (1~ 6Pyl o) —g—g—
1

where the n; are the zeros of Phi(,uo), j =\/-1, M= cos @ and

(I1I-1)

90 = cone half angle.

12
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Now a point source at infinity appears to an observer as a
plane wave. The cone problem of interest to us is the scattering
of a plane wave by a semi-infinite cone. (Physically the plane
wave is supposed to represent, much later in our analysis, a
radar beam emitted by a parabolic antenna.)

Since Carslaw's solution already is a solution of the correct
differential equation with the correct boundary condition at the body,
we must only find a method of moving the point source at ( p, 0, 0)
to infinity.

We thus go on a ''classical tour' to portray mathematically
the physics of a point source moving to infinity and becoming a
plane wave. The expansion for a point source (Ref. 18) is

"']kR 00
- R ’3’\/ Zb (21 +1) Jj 4 4 (kr) H&Q (kp ) Py(pt)
1=
for P)r
2 2
where R='\/r2+pz—2rp/1 = P\/l'_gl_"'gr-

Now for large p
= pQ -5

(z) 2 ) 2 -jkp
(kp ) = Tkp (-1) e

o TIKlp -Tp) -jkp

p-xp

jkr/u :

e _ 7T ) i/2 ,_.

TV L ey w g
P

—VZk Z (- 1) (21 +1) J, 1(kr) Pi(p)

13
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Now taking the limit as p —> oo
Jap [N )2 (4 g, |
e = 2kr - ( 1) (21 + 1) J1+—é— (kr) Pl(/‘[ )

which is the well known expansion for a plane wave.
We went on this classical tour to observe that

l‘m e—JkR ° p = ejkr#.
pre| R e IEP

Since the sources are really fundamental solutions to the boun-
dary value problems they represent, the transformation between
sources is representative of the transformation between total boun-
dary value problem solutions. Thus, our method of attack is to
take Carslaw's solution* for a point source at (p, 0, 0) and trans-
form it in exactly the same way in which we transformed a point
source into a plane wave.

Let Zm P _|.w, wh
et >0 Uearslaw e'jkP w, where uCarsla

w is Equation (III-1).

Now for large P (Ref. 17, p. 138)

| —  -itkp + )
Kny0kP) = Vg © '

* All sums will now be considered to be finite sums. This as-
sumption is justified in Reference 23.

14
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e K
w - L 4 P T e"J(kp+4)
P > o lkp 2kp
JT
S
N e (nj +%) In+ 3 (kr) Pny(p)
; 0* Pl plo)
=1 (1 - H% ) Pyl Ho) KDY
047
="
— e © (m+%) Ing+ L (kr) Py(p)
w=a [T (II1-2)
2kr £ (1 - p2) Pyl po) 3“Pn;( M o)
, ! ani oM

dPnl( /10)
where the n. are the zeros of —— .
1 d/'l'
Ordinarily we would now prove that the boundary conditions
were satisfied; however, this will be shown in Appendix A, where

the same answer is derived by two other methods.

In Appendix A we derive the differential scattering coefficient
from Equation (III-2). The differential coefficient is
jni'Jr 2
o ] Z (2n1+1)e Pni(/,t)
7D ' 2 y 3°Pn;( Mo)
p2p) O -nilf o)
On,0u

Pni(,Uo) (1 -

i

In Appendix D we show that

1 2 ) o°%P .(/1 )
_ 1 -Fo nj 0
Mo

1
when the ni's are the zeros of Pni (/Uo)'

Jnl

Pp ()

;| L7
[[P (,u] du

Thus IR 6) =
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For axially symmetric back scattering

ng 7 2

L T
IESACUEIRE

1
K2

a0) =

as Pni(l) =1,
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v
HANSEN AND SCHIFF SOLUTION TO VECTOR SCATTERING
BY A SEMI-INFINITE CONE
Hansen and Schiff (Ref. 6), using a method due to Hansen
(Ref. 9, p. 393), solve the semi-infinite cone problem for elec-

tromagnetic scattering, For axially symmetric back-scattering
from a semi-infinite cone Hansen and Schiff show that

=in: 7T -1172
n.(in, +1) e g m,(m, +1)e Jmag 7t
ivi i i

' 1
Tp 0 =iz Z 2By, ) 2B,

s 1
1

By, = f

Mo
1 2
_ 1
B = [:Pmi( lu):] du .
Ho

where
1

2
[Bastpe)] g

The ni's are the zeros of P;I_(po) and the mj's are the zeros
i

dP;ni(/‘LO)
of —— .

ez

17
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\4

COMPARISON BETWEEN SCALAR AND VECTOR SCATTERING
FOR A SEMI-INFINITE CONE
Much has been said in the literature about the use of differen-
tial cross-sections obtained from scalar theory to approximate
scattering cross-sections obtained from vector theory. In this sec-

tion we point out a relationship that arises when a comparison is
made between the o"D (0) of the vector cone problem and the o’D(O)

of the scalar case.

"For the scalar case we observed

1 ejniﬂ'
GD(O) = I{‘E Z 1 2 (V'l)
i f [Pni(/u ):] d/u
Ho
where the n;'s are zeros of P] ().
i
Hansen and Schiff found for the vector case that
~-jnj7v -jm;i T 2
! ni(ni+1)e31 mi(mi+l)eJ 1
ap (0) = = Z (V-2)

1 2 7 1o 2
. 1
oL Tl o 2 s ] o
Ho Ho
where the nj's are defined as in the scalar case and the mj's are
1
dp

In order to make the form of Equation (V-2) more like Equa-
tion (V-1) replace nj by -n;j-1 and mj by -mj-l.

zeros of

18
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Thus, Equation (V-2) becomes

Jmym
0’ (0) = = . (V-3)

fl:Pn(,u):] du f[m(/l):] du

By Appendix D

n(n +l)e m(m +1)e
1z Z

1 .

1 1
[Pl : )]2 iy - . Lo Mo dPny( fto)\ [ dPn;( fo) (V-4)
nft 7| M T T on 1 dpt dn,
i i
Ho
and
1 P “4 1-p 9Pyl o
[ni(/‘)] F T+ ouon  mlMol (V=)
i i
>0
In Appendix D (Eq. D-11) it is shown that when the boundary
dP;‘ni(/‘O)
condition is ——— = 0, one obtains
ap
1 2 2 3P,
Pl du - 1 - Uy mi(,uo) Pl
l:mi(/“ ):l H T 2m; + 1 opuOm; mi(/io)' (V-6)
Mo
Applying a recursion formula plus the boundary condition we
find

dPp, (#o)
(1 -/40>——'u—— = nilng +1)4/1 - #o  Pnilpo).  (V-7)

The definition of the associated Legendre function is

Ppp) = -yl -p° —a (V-8)

19
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Applying Equation (V-8) and (V-7), to Equation (V-4) we ob-
tain

1 n.(n, +1) 9°%P, (/U )
f [P (/u)] U = 5 (1 - p%) Py (ﬂo)—é———ép—.(v-%
Mo ’

Now combining Equations (V-9) and (V-5) we obtain
1 . 2 1 2
/ I:Pni(}'l)] du =+ni(ni+l)/ [Pni(/l )] dpt - (V-10)
Ho o

Using recursion relationships with Equation (V-6), remember-

dPr. (o)
ing _-E;_l_— = 0, and using the m; form of Equation (V-8) we
obtain
! 2
/E’ini(,u)] dg = mj(mj + 10 - 1) Pm;, (o)
Ko
y L7 mj(m; + 1) dPm (Ho) 1 62Pmi(luo)
Mo T Hoem; +1) T dmy Zmy+1 Opdm; (-

(V-11)

We have now evaluated algebraically all the terms in Equa-
tions (V-1) and (V-2). Now by Equations (V-10) and (V-3) we
observe

o |2
i m, (m, + 1) I
ol o) - L l L

D(0) = 1= -3 - (V-12)

4 S AEN) PR N

Thus Equation (V-1) for the scalar case and Equation (V-12) for
the vector case will be identical if

20
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Jjm, 7

jni‘ﬂ m.(m.+1l) e
Z Z z T Z 11 11 2 (V-13)
AL TRy T

and then the cross-section for the scalar case would be identical
with the vector case.

It will be shown in Reference 23 that Equation (V-13) cannot
be true and thus the scalar and vector cross-sections for a cone
cannot be equal. However, as pointed out in Reference 23, for
many bodies the scalar cross-section may be a first approxima-
tion to the vector answer.

21
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VI

CONCLUSIONS

In this report an attempt was made to lay the ground work of
our physical optics and geometrical optics approximations for radar
cross-sections. We have also presented a cone solution to the
scalar or "sound" problem. We presented the Hansen and Schiff
cone cross-section solution to the vector problem to point out some
mathematical similarities between the solutions to vector and scalar
problems.
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APPENDIX A

SCALAR SCATTERING BY A SEMI-INFINITE CONE

1. CONTOUR INTEGRATION METHOD

This section will be divided into four parts:

a. The expansion of the source (a plane wave) in Bessel
and Legendre functions.

b. The expression of the source function as a contour
integral.

c. The total solution (made up of the plane wave plus
the scattering due to the cone).

d. The boundary conditions,

The physical picture is shown in Figure A-1 below:

Plane waves

<

<
<
o

«—

> 7

Figure A-1
The differential equation to be satisfied is:

Viu +Kk@u =0,
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a. The expansion of the source.

For a plane wave traveling along the z axis as shown,

- eJk(Ct'l'Z) '

ikz _ ejkrcos e

The time independent part u, = e is a solution

of
V2, + kg = 0.

We know a general solution of this differential equation to be:

oQ
1
Yo (kr)¥? ZO A; J;4,, (kr) Pij(cos O ).
1=
Therefore e cos 6 1 -

We may now compare powers of kr cos 6 on both sides of the

above equations.

Note first, however, that

; (kr) - f (—1)m (E)ih/ﬂZm
i+1/2 My mi[ i+ e +m) N2
and
S (2i) 1 pod 1,0 1
Pi(COS 0) = 2l (i1)2 [COS 6} ZFl('Z’ 2 ° 2% Costo )

Then taking the first terms of Ji+1/z (kr) and Pi (cos ©)

we have

@ grcose) Y we)™E (2i)t [cosdt |
it v it% . s IV (A-1)
(kr)72 2 [M i+%) 27 (i)
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Now using the following relations (Ref. 18, p. 1)
1 .
) 1 -4 21 ) ]
[ (2i) = 227 ) Tlth)

2
27

(2i)! = JT(2i+1) = 2i ["(2i)

equation (A-1) becomes

A2 2 rwr (i+%)

i
it - = S
At% Mi+d) Vem 2% 2% i

But
ifG) =a+) =it and [+ = (it%) [tk
. A, :
Then (j) = ————— or A, = (it} i Vew .
(i+4) V2 '
Finally

e 1/2 =

_ jkrcos © _ (2T i1

u =e = (———kr) Z j (1+(2) Ji+}é(kr)Pi(cos 0). (A-2)
i=0

b. Expressing the source as a contour integral

This section follows the methods of Carslaw (Ref. 17).
Consider the following integral over the infinite path shown in
the plane of the complex variable n (See Figure A-2).

1
27 sin nTl

nm
(n+l/z) e—_-z-l Jn+1/z(kr) Pn(-cos 0)

dn (A-3)
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ﬁ ~
SN P
/ \\Q‘A

(K4

\ s
’
4

Figure A-2

We wish to use Cauchy's theorem to evaluate the integral, tak-
ing as the closed path, the solid curve plus a circle of infinite
radius connecting the ends of the solid curve. It will now be shown
that the integral over the dotted portion will vanish. To do this,
it is sufficient to show that the integrand times |n| vanishes over the
dotted portion (i.e., as |n| becomes large).

For large values of |n| we have the following approximations
(Ref. 17, p. 135):

1
)R
Jn+1 (kr) = n+ L
% 2" B0+

[ 2 . 7
Pn(-,u) Vo7t snd sin [(n+’/2)(1f-9) + Z—J ‘

Substituting th toti 1 tJ - i -
ituting the asymptotic values o er_l/z(kr) and Pn( M) into Equa

tion (A-3) we have:

nmj

1 N I n
I Lo e 2 (kr)n+/2 > sin L(n+/2)(ﬂ-6) + 4:]
27j (n+72) n+% n 7 sin 6 sin n T dn
2 Tl (n+1/2)
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Let us first examine the expression:

nnj t
Inl e 2 (n+l/g) (kr/Z)n+/2

/T M(n+%)

as | n l approaches 0O.

Let n+1/2 =4, kr/2 =a, TWWU) =T(L+1)
Writing /(£ +1) = (£ + 1) 2/ (£ - 1) we have

Zaz (£ -'/z)'/2 e(l-'/z)%j 24 I
[ (L +1) r(2-1)

Now use Stirling's formula for the gamma function (Ref. 18, p. 3);
valid for large values of the argument.

IS (£ +1)= (€ +%) In(Z + 1) -(/+1)+’/21n 2N

N-1 m-1 1-2m
+ % (-1) Zm]?éﬁ(’-g;)l) + RN([+1)
m=1 "

For large £ we may write
1
i/ (£-1es (0 -FHmf-1) where 1.1 > k > 1

so that

V4 L 4

a
[Z-1~ /%
(/-1 &

- —

£ -1k

ol ]

which is seen to approach 0 as |/€| approaches o9,
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Therefore, we have shown that

B nn’j K n+—é— ]
e 2 (n +l) (_ZE)
ﬂ/”L 'nl 2 ¢ I 1 =0.
oo v e+ 2)

We now examine the remaining terms over the infinite path in the
complex n-plane,

. x ot
The remaining terms are —— [(n + 1{2) (r-0) + /4:'
sin n7

Now:

sin I:(n + 12) (M-60) + 7(/4]: ejl}n-ﬂ/z) (7-6) + 7(/4]

sin n7 enﬂj

-n;j
- e J

-ilmr/2) (w-0) + 4]

nmj -nwij
e J _ e J

Letn = @+ jB8. For 3<0, i.e., over the part (a) of the path
we may write the above expression in the form

nj _ X
4 -nnj . 4 -n7nj
e” e glmedam-01] _e” ™™ i+ d)x-61]
1 -2nxj 1
—e -
2nj
e

/4 Jlam-6)-ne]  -wi/a -i[n@m-0) + (x-0)]

1 »

1 - 1
2nmj i
e nij evarJ
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Then for B approaching - oo the expression approaches 0 since
0<O < 7. For B > 0, i.e., over the part (b) of the path we
may write the expression in the form

enzr;njn']/l J|:(n+——)(‘n' 6):' —Jl:n9+2(1f 6):'

Then for 3 approaching + oo this expression approaches 0. Thus,
we have shown that the integral vanishes over the dotted portion of
the path.

Then finally by the Cauchy residue theorem

nwj/2
1 (n +§)e ,
Z”jf " Jn+_é_(kr) Py(-M ) dn

o0 nﬂl
Z n+d)e °
= L w CBE nim Jn.{__é_(kr) Pn(-/l ) .

But for n = i = integer Pj (-pu) = (-1)* Py(u)
nrj
2

. 1 (n+ %) e
27j sin nw

n+__(kr) P. (-/,L ) dn

©0
1
= = Z (+ghe ° Iy, 1lkr) Py (p)

=
1]
o
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Noting, Equation (A-2) then -
é 1 2
U 1 (n+3%)e
Yo ” (kr) ZJ f sin DT Jn+.é.(kr)Pn( M )dn
nrj
T % -nj/2 (n +»é—) e 2
Yo~ (2kr> © sin nT Jm_%(kr)Pn(-ju ) dn.

(A-4)

¢. The Total Solution:

This section too, follows closely the methods used in Reference
17. We now add to the source ug, the part due to the scatter-
ing by the cone. Consider the integral

nﬂj

R I ﬂ N 2
[ T \e 2 (n +3) e
vos (Zkr © sin n7 n+_(kr)

-}l)d}l n(}lo)'P(/—l) 1’1(—/“10)

— P
}1 n(ﬂo)

dn

(A-5)
over the same path as before. We show, as before, that the
integral vanishes over the dotted portion of the path (see Fig.

A-2).

We had for large In'

Pp) sy Treme o [‘“ N7-6) + ]
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Then

) (n + )
d/l Fal=pt) = \/1171:: {COS I:n +2)(-0) + Sm62
! o
+\[———3——-—-— (n(';:):irﬁ@) sin [:(n +'21~')(7T—6) +ﬂ
n

Tsin 6

— P,(- ’u)~-‘/n7rsm39 {cos[n +2)(1T 6)+-—J}(n +2)

for large lnl

Substituting m - @ for @ in the above equation we get

7 P, (/1) = W/n'frsm39 {cos |:n +2)6 + w/él]}(n +2)
P, (u) = -\/H—;{—z—lg—é— sin I:(n +%)6 + "‘Vzl]

The first part of the integrand of equation (A-5) is just the u,
we examined before. The second part is:

. d

sin nm n+z
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Substituting the appropriate approximate expression when Inl
is large we have:

{2 (0 +4) ener/Z (kr)n+—;: SlnEn+§)9 +Z] cos[En+%)(«n'_90)+Zj|
L dn .
sinnwynm sin 6 2n+21'l(n+%) cos En+-é—) 90+i-1]

Again, we desire the integrand to vanish over the infinite por-
tion of the path. We have already examined the terms:

1

1
+__
2" T (ntd)

nwj/2

(n +_é_)e and shown that this expression

vanishes over the infinite (dotted) part of the path. Also

sin En +3) 6 +’{l sin l}n +%)(7r-6)+2ﬂ

will vanish exactly like

sin n 7 sin n%

did previously since both @ and -6 are positive quantities.

Thus, all that remains is

cos[(n +%)(7T-90) +1—(] .

cos[:(n +—%—) 90 + i—r:l

] (n+%)(7f-90)+§:l . e-j[(nJré-)(ﬂ—eoH’Z’

jEm%) % +§_—J . e-j[(m%) 0, +§]

=

e

e
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For the part (b) of the path, ( B > 0) we write:
1 116
cos Bn +B)N - O ) + 4] ]

cos ]:(n +l/2) 60 + t{l

1
jM(n+1) - [(m%)(zeo-vrﬂ'
+ €

jl:(n +E(T-6) +Z—f|
e
+

j[(n+%) 0, +§| - l:(n+%)eo +-1—r:l
e +e

e

This will approach 0 as (@ approaches oo if T<28,. This
condition is satisfied for the configuration under discussion.

For the part (a) of the path ( 8 < 0) we write:

cos [(n +1é)('n' - 90) +TZT]—
cos [(n +1/2) 90 +7—1—]
- En +3 7-6,) +g]
1 e

; T _ - *
e +e

which will approach 0 as 8 approaches - oo,

We have thus, finally shown that the integral representa-
tion of u (the total solution) will vanish over the dotted part of
the path of integration. We may then take the complete path
and evaluate the integral by the Cauchy residue theorem.
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In examining the integrand of Equation (A-5) for poles we
should note that the integrand has no poles when n = integer.
For, when n = i = integer we may use the relation

P; (u) = (-1} Py (-;u

Then the term P; (,a) au P; (ugy) - Py (}1) Pj (-po)

}J.

becomes
- P. - (=~ P P
( ) (,U) au (/.l) ( ) (}l) au 1(/1)

The denominator also becomes 0. Evaluating by L'Hospital's
rule, the integrand then becomes an analytic function (whose
value is 0) for n = integer. The only poles then occur for the

d . .
zeros of au Pni ((o) when nj is not an integer.

Thus:

n,mj/2
1 i )
q = _(_g_r__)é‘ o~ Ti/2 27 Z (n;+3)e In;+3 (kr) Pp;(p) dﬂPnl( L)

2kr sin ni n 2

onu Fnil Ho)

(A-6)
dPp; (o)
dpt

The summation is taken over all zeros of which are

greater than -1/2.

The above result may be simplified by the following rela-
tion:

2 sin nj ;0

d
(1 -/l(z) ) Pni (}10) 'aani ("/-‘o) = - T

This may be derived by considering two relations to be found
on page 63 of Reference 18 and making use of the fact that

dPp; (o) Y

d
#H d Qnj (1,) ,
The first relation is Pni ( /10) =

dp L - Mo
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4 th 4 dPni(—/uO) _ E . T[ dQni(}Jo)
an e second is i = -z sinny —__dll

Multiply the second by Pni (Mo) and substitute into the first

relation. We then obtain the result that was to have been de-
rived.

Equation (A-6) then becomes

(n +%) QM2 5 In;+4 (kr) Pp, (M) (2/71)

1 .
o= (Fe) e em ),
i n (/‘to) (l /‘(OZ) a au Ill (/‘lo)

u =

7\ Z 1 mymj/z g g KT Poylp)
(F) L wivhe S
T Ppi(fo) (1 - Mo )—5:157[ Pn; (o)

(A-7)

dPni (,Uo)
where the nj's are the zeros of T greater than -1/2.

d. Boundary Value Problem

Our solution, Equation (A-7) must satisfy the following
boundary value problem.

1. V& + k4 =
2. 9% L g ot th £ 0:-=0_; M-
-l at the surface of the cone (O = O,/l—,uo)

where n' is the outward drawn normal to the surface.

3. Sommerfeld's 'Ausstrahlungsbedingung' (radiation con-
dition).
It can very easily be shown by separation of variables that in

spherlcal coordinates a solution to (1) is of the form

( ) Z A Jn +_(kr) P, (cos 0). It is seen that Equation (A-T7)
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is in the required form and therefore condition (1) is satisfied.
Condition (2) is obviously fulfilled when we remember that the
dFp; (p)
ni's were determined by the relation T = 0,
K= Mo
Condition (3) warrants a little more discussion. This discus-
sion however, will be deferred until we come to part 2 of this
appendix, where the radiation condition is stated, and it will be
shown just how it is satisfied.

2. SEPARATION OF VARIABLES METHOD

The method of solution by means of the separation of variables
technique is one which is perhaps a little clearer than the methods
previously employed. It is the classic, time-honored way in which
to solve boundary value problems and because of this it will be much
easier to compare this method for the scalar solution to the cone
problem with the work that has already been done on vector scatter-
ing. In addition, it is felt that the physics is displayed in a more
lucid manner when separation of variables can be employed. For
example, the differential scattering cross-section is obtained directly.

The problem to be solved is the scalar scattering of plane
waves by a semi-infinite cone. The scalar potential satisfies
Pockel's equation subject to the following boundary conditions:

du

3—1_1'_ = 0 at the surface of the cone where n' is the outward

normal to the surface.
2. u must be finite everywhere in the region of interest.

3. At large distances from the scattering body the solution
must have the character of an incoming plane wave plus a
diverging spherical wave which appears to originate at the

scattering body. The plane wave is denoted by eJk(Ct t2)

and © = O, denotes the surface of the cone.
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Now the solution obtained by separation of variables is

PII}; (cos 0) ing (kr)

_ Jm¢
u(r,0,¢) =€ QII,II; (cos 6) nni (kr)

n

where jni = kr

Jn +_(kr) and nnl = Nni+-é-(kr) are the

e
2kr
spherical Bessel and Neumann functions, respectively. The func-
tion In, (kr) cannot be used since it will cause u to become infinite
at r = 0. Similarly, erf; (cos ©) may not be used since it has
singularities at © = 0 and . Plrf (cos @) has a singularity at

i

© =7 when n; # integer. However, this occurs, as can be seen,
wholly within the cone and thus does not effect the region of physi-
cal interest; namely, all of space up to the surface of the cone.

In addition, since symmetry about the z axis prevails, derivatives
of u must be independent of ¢ and so m must be taken equal to

d*u
Zero, as C1¢ (C, # 0) is not a solution of EET = -m%u. Finally,
then, the solution will be expressible in the form

u(r,0) = Z A Jn; (kr) Pn; () (A-8)
i=1

where M= cos 6

Applying boundary condition (1) we have

ou Z aPnl (ﬂo)
an' 4 A Jn (kr) ——— 3 = 0 Thus, we choose
w0
dPni (/JO)
This can be written T = 0. This condition will
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determine the value of the nj's which in this case turn out to be
non-integral. According to boundary condition (3) for very large
r we must identify the incoming part of the solution with that of
the incoming plane wave; therefore, the first step is to expand
the plane wave in terms of the non-integral n;'s.

Jkr cos @ Z £, (kr) Pp; (1) (8,< ©£0)
i

Multiply both sides of the above equation by Pn'i (1) and integrate
from uq to 1.

1

1
/eJkr cos 6 Pn,i (/u) du = Z i8] (kr)/Pn'i (/I)Pni (,u) dF
1

Ho Ho

The orthogonality property of Pni (1) may now be used (see Appendix

D).
! 0 for n; #n'y.
H (1-45) e A ,
) -é?l—l—ﬁ— nl(,uo) m}‘z— for nj =n'y
Thus 1
2n. + 1 .
fj (kr) = i P eI H Pp (p) du -
1 2 P a Pni(ﬂo) 1
( "/uo) 1'11(/10) an]_aﬂ Y
! k
Now ST P (1) d e Appendix E)
nj\H#) Al ) &r (see Appendix
Ho
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so that we finally havex

.4 L ;
Jkrcos©  __ 2j Z it E) oy ) K
k4 8°Pp;( Ho) r

(1-u23) P'ni(,uo) W

The asymptotic form of u(r,8) for large r is now required.
This is easily arrived at by making use of the asymptotic form of
the spherical Bessel function. For large r, (Ref. 1, p. 449).

n, +1

. ~ 1 i
_]ni(kr) = &y cos kr - >

T (A-9)

Substituting into equation (A-8) we have,
n,+l nj+1

1 . n

1 jlkr - —— ) -J(kr -T2 )

u(r,0) -~ A | © 2 +e Pni(}l) .

T —>00

i
jkr

Then, upon identifying the incoming part with the plane wave

expansion, the coefficient A; satisfies the relation

.<ni+1 7r> . 1
_‘L_X_i_ e'J > ] ~2j (ni +3)
- 2p...
’ (1= K ) Py pto) ° anlflgli())
1
and
n; 70 j
4e 2 (n, +1/2)
A, = = 3 .
' (1 ‘/“é ) Pni (o) O Pny(Ho)

aniay

*All sums will now be considered finite sums. The reduction of Equa-
tion (A-8) to a finite number of terms and the details of the subsequent
substitution of (A-9) into (A-8) is justified in Reference 23.
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The final solution then becomes
nj 77 j

2
(n; +2)e "~ jn;(kr) Py(p)

- 9% Pn;
i (1 —/u% ) Pni(/lo) aninaiu/-lo)

u(r,@) = 4

dPp (M o)
dp

of course, agrees exactly with the solution obtained by the method

of contour integration (Equation A-7). (Note j = \~1 but jn; is the

where the n;'s satisfy the condition = 0. This solution,

1

spherical Bessel function.)

Some remarks about the Sommerfeld radiation condition are
now in order. The radiation condition for the three-dimensional
problem is written

Lim {08 jku} - 0 (A-10)
r -»00 or

where it will be noted that the minus sign occurring in Sommerfeld

(Reference 20, p. 193) is replaced here by a plus sign. This is

due to the fact that Sommerfeld uses the time dependence e Jwt

while we use eﬂwt The physical meaning of the radiation con-
dition is best expressed in a direct translation from Sommerfeld
(Reference 20, p. 189):

".... the sources must be sources, not sinks of energy.
The energy which is radiated from the sources must
scatter to infinity; no energy may be radiated from in-
finity into the prescribed singularities of the field. (Plane
waves are excluded since for them even the condition
u = 0 fails to hold at infinity.)"

Thus, we may conclude that the scattered part alone of our
solution must satisfy the radiation condition. For large r, making
use of equation (A-9) we can write u(r, € ) as
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2y N7y ) Poglp) o Jer

u(r, @) = S P 1

r —> 00 i Pp (o) (1 - %) Ooni Mo
! On, Ou
1

+ —J- Z P te B Pn;(pt) e kT

Pnl( }10)(1 -/L[ZO ) aZPnj_(}l o) r

where the first term is the incoming plane wave and the second
term the scattered wave. It is seen that the scattered wave obeys
the radiation condition (Equation A-10),

The differential scattering cross-section, O~ pl ©) which gives

the angular dlstrlbutlon of the scattered power is uls{ually taken as
—J r

the absolute value squared of the coefficient of (the scattered

wave). Thus,

(n; +3) "7 Pn; ()

2 .
I Pplpo) 1 - pa%y ) O Pmil Mol
On, 0

Tn6) =

and for backscattering (O = 0)

njj
4 (nj +3) et
oplo) = e .

2
Pn( o) (1 - (o) 0"Pn;( Kol
aniaju
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APPENDIX B

EQUIVALENCE OF RADAR AND DIFFERENTIAL SCATTERING
CROSS-SECTION

4ﬂr2§S
The radar cross-section g°(0) = 3
S
z
S = 1/2 RL(E X ﬁ*) (using the notation of Reference 1)
- * *
sr = 1/2 Ju (E, Hy - Ey4 Hy)
Eg = Eg + Ey; Hy = Hg + Hy
@ @ P ¢ ¢ ¢
- ‘ i S |\, 1% g¥ i S| o i* S*
Sr =1/2 )&EEG + Ee)(H¢ + H¢ ) - (E¢ + E¢)(H9 + Hy )]
_ i _i* i _i* s _s* s _.S*
-1/212‘EE9H¢ - E4 Hy) + (Eg Hy -E, Hyg )
i . s* i .s¥ s L i* s i
t(Bg By -Ey Hy +Eg Hy —E¢H9)]
=S S 5% S . S¥
5. =1/2 fie (Eg5 Hy - By Hg )

Now we are considering the radial component of the Poynting
vector, therefore, the direction of propagation for the scattered
wave 1is ir'

—

__)
Now /i\r x g° = Mo H° where Mo is the impedance of free
space (Reference 9, p. 289).

Then 7, Hy = - B, and %, Hy = Eg

Z]
This is computed for large r where we can write

S _Eoe_lkr f
Ep =~ fi(6)

s°

1 s |2
Then .- (1/2),'7; |E9| +

o
@
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o kr
s Loe
and E¢ ———r——- fz(e).
-jkr 2 -jkr 2
1
Then 5° - 7 Zoe” s(0)| +Zet " 19
O
2 2 2
3 . EBEo
Sr 27701“2 £,(0) +11,(0)
—i E%
Now S = ——. (Reference 9, p. 284)
Z 2770

f,(0)

Z]
This differs by a factor 4  from the differential scattering

cross-section defined as the absolute value-squared of the angular
-jkr

) 2
ww)=4ﬂﬂﬁww +

part of the scattered wave (i.e., the coefficient of £

).
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APPENDIX C

THE PHYSICAL OPTICS FORMULA DERIVED BY CONSIDERING
THE SURFACE CURRENTS

The plan of attack is as follows:

Assuming we know the power transmitted by the antenna we
may then calculate the power incident on the scattering surface
and hence the incident electric and magnetic fields. Making suit-
able assumptions about the surface, we may then determine the
surface current density which in turn yields the vector potential.
From this, the reflected fields; and hence, the received power can
be found. Upon using the radar range equation which relates the
received power, the transmitted power and the radar cross-section,
an expression for the radar cross-section may be determined.

Consider the antenna Aa’c ltheA origin of a rectangular coordinate
system with unit vectors i, j, k. Let r be the distance from the
origin to the scattering surfaces which is oriented along the z-axis
(r large compared to the dimensions of the target and the antenna).

For a radar which transmits an average power PT’ we may con-
sider the field at the target to be a plane wave and the power inci-
PT GT

dent on the target is PO T T (Ref. 21, p. 21) where GT is

the gain of the transmitting antenna.

-
Let the incident electric and magnetic fields, Ei and H, be di-

rected in the positive x and y directions respectively. Then

1 2
PO = 27/0 Ei (Ref. 9, p. 284), and
P_G
2 .2z | iwtks 21 o TOT  jwi-ke)
. = i]E.]e =i—-[—— ¢ .
1 i r 27

44




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN
UMM-87

From Maxwell's equations we have

A /e = / T T jlwt-kz)
Hi = k X —/J—'- E /1' \[ eJ .

We now invoke all the assumptions stated on page 3 where the
physical optics formula was derived from the Kirchoff-Huygens
principle. These assumptions postulating a perfectly conducting
surface, etc., then enable us to represent the surface current
density by

P G .
- - / wt-k
K=n X H=nX(ZH)-1 _ 0}1' TTeJ( zZ)

nok

where I'_is

o The k component is neglected since only

those components‘of current flowing normal to the line of sight
will contribute to the backscattering.

The vector potential is now represented in terms of the re-
tarded potential

N ()
A 47 r
S

ds where t' is the retarded time t! = t - % and

where s is taken to be the surface visible to the radar observer
since it is assumed that only that part has current flowing upon it.

The reflected field, Er, is

> 8K p OK() ds
r ot 477 ot r -

OK(D _ 2 | i € 1 [MEP18  jwikg
ot o, Jur T 27 ¢

But t' = t -Eand W = ke so that

wt' = wt - kr.
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z >~ r = constant

P, G
= i wr VEp! n i -2k
ThenEr=/i\|:lw# OTTer’C\/'e JI‘nods
s

2 I r? 2T

The received power, Pr’ is

E|® - w2ep' Pror

2
16 773 vt ’gi Ar

where g = \/e'_z‘]kr n_ ds and Ar is the effective area of the re-
S

. | ) A? ,
ceiving antenna. Now Ar = Gr T (Ref. 21, p. 20) where Gr is
1 .
the gain of the receiving antenna, and C? = —?—}7— Then since
o /o
P
TGTGr l |2

we are dealing with free space Pr = ——"—"(471)2 e

But the radar range equation states (Ref. 21, p. 21) that

b - PrGr) (o)) (G
r \47r? 4 I r? 47

47T'

so we have 0 (0) = — z,

XZ

46




WILLOW RUN RESEARCH CENTER ~ UNIVERSITY OF MICHIGAN

UMM-87

APPENDIX D
DERIVATION OF THE ORTHOGONALITY AND THE
NORMALIZING FACTOR FOR THE
ASSOCIATED LEGENDRE FUNCTIONS

Legendre's differential equation is

d dy m'?

—_— -l =L ) - —— = -
3 {[1 M J 3 } + {ni(nl-l-l) T 2} y =0 (D-1)

% {[1 -}1’-} gj—;} + {n'l (n'i +1) - ’f‘_n};j__Z} y' = 0. (D-2)

Multiply Equation (D-1) by y' and Equation (D-2) by y and sub-
tract. We obtain

Ay oA
4 El_#z)('y a +yduﬂ
d/u’ (ni—n'i)(ni+n'i + 1)

' o=

(D-3)

Now integrate both sides from 1 to Mo (the region of physical

interest).
Mo Ho
d dy'
(1-/1)2('}" Tty )
yy' d = T dﬂr dﬂ (D-4)
M (nj -nj ) (nj+ni + 1)
1 1
Now if we consider y = Pni(/u) and y' = Pnti(/,() we observe
if n; # n{ that the right side vanishes because at the lower limit
dPp. () dPyf.( )
(1 - u 2) = 0 and at the upper limit ——Iﬁl— and ———n—l—f—
dp du
dPn,( o)
vanish by virtue of the boundary condition T = 0. If we

consider y = P;li( M) and y' = P%li (pe) the right side again vanishes

under the same boundary condition as now for the upper limit y
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and y' are zero. This proves that the P,.( ) are orthogonal to
n;\ M g

each other and also that the P;li( M) are also orthogonal,

We will now derive the values of the normalizing factors

1
/[:Pni(/.l ):lz d,U and /‘El)xlli(/l{lz d/J .
Ho Ho

As we recall,the Taylor expansion takes the form
fla + h) = f(a) + hf'(a) + O (h?). (D-5)

: ! 1
Consider a = nj and h = n; - nj.

’ \ ' af(ni)
f(n;) = f(nj ) + (ny - n;) ani (D-6)
Thus substituting in the Taylor expansion
!
. . 9Pn{ ()
Pp, (u) = Ppt(u) +(n; - n}) —— (D-7)
n; ‘M nj A i 1 9 n;
Now letting m' = 1 or 0 we obtain by combining Equation (D-7)

and Equation (D-4):

Ho
/ [Pffil(/i)] [P,rfi (M )] dp -
B ! ! ! ' —
m! azPrIﬁ(/A) dpif;(,u) dpffi(/i) | Yo
(1 “ﬂz) EPH’I (/u) a/uanl + d dn; (ni-ni)z]
ni + n; + 1

L 1

Now taking the limit as n; approaches n,
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Ho

J i)

1

(L -u? {dpgil"f‘) Ph ) PR ) )
1

- P,. ()
2ni + 1 du dni a,uani n; \H

1-p? [dPn; (o) dPny (o) %Pn (o)  p

TR du dn; "~ dudn Pn; (fol
(D-8)
Now when m' = 0 we obtain
aZPn.(/lo)
.. 1-/0 o i i
/[Pn(,u)] du = 2n; 11 nl(/‘o) B0 n; . (D-9)
When m! =
/lo1 o dPIlli( Ho) dP;li( Ho)
[P Ry ):l du = Zn1+1 du " dn; -(D-10)
1

If in Equation (D-8) n, is replaced by m., m' = 1, and the

normalizing integral is evaluated for the boundary condition

dPl ( )
'—I‘I‘ll*‘}"l‘()— = 0 then one obtains
dp
1 2 pl
2 ; 0% PL,.( i)
1 -y m;i' o
/ P;ni(/l):] dp = Zmi +01 OO0 m; P;ni(/‘o)' (D-11)
Ho
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APPENDIX E

1
jkr
EVALUATION OF / el A P () dp
Ho

This integral may be evaluated approximately for large r by

making use of a limiting case of Bromwich's Theorem  (Ref. 22,
p. 230).

In order to apply the theorem we must first put our integral

into suitable form. Thus, changing variables by setting x = g -1
we obtain
}lo ) /.10"1
- jkru _ jkr(x+1)
e P d = - e P,(x+1) dx
/1 n(pt) du / b+ 1)
0
ejkr i i Ho~1
= - = j kr cos krx P (x+1) dx - kr sin krx Pp. (x+1) dx
jkr i i
0 0
e -1
Jkl" Ho
. 1-e' -¢€!
= - e. ] Lim (kr) X cos krx Pp (x + 1) dx
jkr €0 i
L0
Mo~ 1
l-€' -¢!
- | bim Ekr‘) X 6:] sin krx Pp (x +1) dx
€'-0 1
0
) Ho -1
jkr
. 1- € - £
= - e. lem j(kr) € X € cos krx Pp (x +1) dx
jkr  €-0 i
0
Ho-1
1-€! -¢!
- (kr) € X € sin krx Pp (x + 1) dx
i
0
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Now Bromwich's Theorem states that for v—>0

04
Vn xn—l F(x) sin px dx — F(+0) F(r]) sin U_ZZT_
0
if -1<1n £ 1, lim vy—ooand F(x) be of "limited total fluctua-

P —

tion"" for x Z 0 and
2d
-1 T
p xn F(x) cos p x dx — F(+0) [ (}?) cos ﬂ—z—
(0]

where, in addition to the above conditions 0 £ %7 < 1. In our

case, p = kr, F(x) = Pp(x+1), ) =1-€', Y= H, -1
1

Thus, for kr —— 00 (i.e., for r —— 00)

e AT L€ 1- €)1
(kr)' "€ ® %7€ cos kex Py b + 1) dx —Py (1) [ (1 - € '} cos ﬁ——;—’——
0
=["(1 - €') cos {-€enm ~26 s
Mo~ 1
-€! - e i -
and (1«:1*)l ¢ X € sin krx Pni(x + 1) dx-—>Pn§l)|_‘(1- €) sini—%'ﬂ—
0 -
=[" (1L - €"') sin d-elm .
Finally then, for r—-o0
1
jkry I, ' (1-€ )t . (l-e")7
+ e Pni(}l ) du — T €0 [(1 -¢) cos ———— - sin"————
Fo e
~ jkr
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