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Thin-walled cylinders, used in a variety of engineering applications, are often subjected 
to situations where the applied loading is not limited to a single loading type. The 
introduction of multiple loads alters the stability characteristics of the system in a manner 
that must be understood to maintain structural integrity and abide by safety regulations. 
The present study investigates the elastic buckling response of thin-walled cylindrical shells 
under a combination of torsional loads and circumferentially-varying thermal loads. 

Nomenclature 
E = Young’s modulus 
ν   = Poisson’s ratio 
α   = coefficient of thermal expansion 
L   = axial length of cylinder 
a   = radius of cylinder 
h   = thickness of shell wall 
m   = number of axial half sine waves 
n   = number of circumferential full sine waves 
NX,Nθ  = in-plane direct stress resultants 
NXθ   = in-plane shear stress resultant 
M   = in-plane moment resultants 
τ   = torsional load 
w   = out of plane displacement 
x   = axial cylindrical coordinate 
θ   = circumferential cylindrical coordinate 
r   = radial cylindrical coordinate 
To   = mean thermal load 
δ   = maximum temperature difference 
( ) q,   = first derivative of quantity with respect to variable q 

I. Introduction 
hin-walled cylinders are used in a variety of engineering applications, such as airplane fuselages, submarines, 
building construction, and manufacturing machinery. Often the applications are in situations where the loading 

cannot be limited to a single loading type such as axial compression, torsion, or pressure.1 The introduction of 
multiple loading alters the stability characteristics of the system in a manner which must be understood to maintain 
structural integrity and abide by safety regulations. 

T 
The buckling behavior of thin-walled cylindrical shells is understood for simple torsional loading, where 

classical elastic buckling theory uses the potential energy approach to describe the stability of the shell.2 Donnell 
equations, described in Refs. 3 and 4, are frequently used to determine the deformation of a cylindrical shell under 
combined loads. This study investigates the influence of thermal loads on the buckling behavior of thin-walled 
cylindrical shells subjected to torsional loads. 
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The motivation for the present investigation, including thermal forces, stems from an interest in examining the 
behavior of paper mill drying cylinders.6,7 These cast-iron, steam-heated pressure vessels are typically 150 to 300 
inches in length and have a radius of 6 to 9 feet. Since their shell wall thickness is on the order of 2-3 inches, these 
dryers can be analyzed as thin-walled cylinders. In paper machines, the dryers are positioned with their center axis 
of rotation horizontal with the floor. The dryer cylinder rotates at a frequency of up to 2 revolutions/second as moist 
paper is pressed on the surface to be dried via evaporation. In most dryers, an evenly spaced condensate removal 
system inside the structure extracts condensate from the internal surface. Typically, dryers have four or six locations 
where condensate is removed from the dryer. The action of the condensate removal and excess steam passing 
through the system creates bands of cooler and warmer temperatures in the shell, running axially along the length of 
the cylinder. A torsional load is introduced into the paper drying system by a linear load from a “crepe blade” which 
scrapes the dried paper from the cylinder. Since the rotation is driven from only one side of the cylinder, the 
tangential portion of the linear load resists the rotation of the system, resulting in a torsional load in the cylinder.  

On occasion, paper dryers have experienced a sudden and dangerous instability. When the instability occurs, the 
dryer shell distortion increases by an order of magnitude, compromising the operation of the equipment and the 
safety of the operators. It is the common belief in the industry that this is due to the thermal variation around the 
dryer. Whereas the temperature gradient does create deflection of the cylinder surface, dryers with both four- and 
six-node thermal variations are found to buckle into a five-node distortion pattern, indicating that the thermal 
loading is not the primary driving factor in the structural instability. One explanation is that the thermal distortion 
resulting from the normal action of the condensate removal system increases the torsional load produced by the 
crepe blade, ultimately reaching the critical load and producing torsional buckling of the dryer shell. 

In the present study, the thermal load investigated is applied as a sinusoidal temperature variation about the 
circumference, where the median temperature, amplitude of oscillation and the number of cycles around the cylinder 
are maintained as variables. The individual loading conditions are first considered separately then together in the 
combined loading state. The system is examined in such a way that the thermal loads are assumed to influence the 
behavior of the critical torsional buckling load. 

The present study is carried out under conditions of plane stress, according to the thin-walled shell assumption. 
The influence of thermal loading on the pre-bucked state of the cylinder is examined. Total strains are found by 
adding the thermal strain component to the mechanical strain using linear superposition. The second derivatives of 
the kinematic relations are manipulated to yield a relation between the strains and surface deflection. An Airy stress 
function is introduced and utilized to determine the resultant loads for the cylinder with circumferentially varying 
thermal loading. With this considered, the combined thermal and torsional loading buckling problem is solved by 
using a Galerkin approximation. The results from the analyses show the influence of thermal loads on the torsional 
buckling characteristics of thin walled cylinders. When the solutions are specialized to the case of the steam heated 
pressure vessels, good agreement is found between the analysis and the observed buckling modes. 

II. Fundamental equations for the thin-walled cylinder 
The analysis that is described in the present study considers thin-walled cylinders of isotropic materials. 

Directional properties relating to ply direction of a composite laminate can be integrated into the equations for an 
analysis of cylinders of orthotropic materials. However, for 
simplicity, the isotropic material assumption has been made. 

The following figure describes the shell in question, 
where h is the thickness, L is the length, and a is the 
undeformed-middle-surface radius. For this shell to be 
considered thin-walled, h must be considerably less than a. 

The thin-walled assumption allows the analysis to be 
carried out under conditions of plane stress. Whereas this is a 
good approximation of the true conditions, it also simplifies 
the equations and the solution significantly. 

The study of the behavior of a thin-walled cylinder under 
both thermal and torsional loading begins by examining force 
and moment equilibrium of a shell wall element, which 
provides Eqs. (1). 
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Figure 1: Circular cylindrical shell coordinate 
system reference diagram 
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(1) 

 
where p is the radial pressure, defined positive outward, and the forces and moments are described by the following 
constitutive Eqs. (2) involving the in-plane force and moment resultants (integrated over the thickness of the shell), 
mid-plane strains and curvatures of the shell. 
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(2) 

 
Equations (2) utilize the common structural rigidity constants C = Eh/(1-ν2) and D = Eh3/[12(1-ν2)]. The 

formulas for the strains and curvatures of the circular cylindrical shell are defined by the following Donnell 
kinematic relations, Eqs. (3). 
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(3) 

 
where the β’s are angles of rotation of the normal to the shell mid-surface and are assumed to be small. 
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III. Effect of thermal loading 
The thermal loading considered in the present study is applied as a sinusoidal temperature variation around the 

circumference of the cylinder, such as is introduced in the paper dryer shell by the condensate removal system. The 
median temperature, amplitude of variation and the number of cycles around the cylinder are maintained as variables 
to facilitate modeling multiple thermal loading scenarios. The application of the thermal load profile is relevant to 
many other situations involving structures. For instance, aircraft fuselages undergo a wide range of solar thermal 
loading while withstanding torsional loads from wind and control surfaces. Also, the radiation to which space 
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satellite structures are exposed can lead to large temperature variations through the system that, when combined with 
forces from propulsion, may lead to structural instabilities. 

The total strain on the surface when a thermal load is introduced will be the sum of the mechanical strain and the 
thermal strain in both the x and θ directions. The shear strain will not be effected by the thermal loading and will 
remain solely the mechanical strain in the x-θ direction. 

The mechanical strain is determined by evaluating the simultaneous equations for the normal load from Eqs. (2) 
and solving for the strain components. 
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(5) 

 
The total strains can then be found by adding the thermal strain component, α∆T(θ), to the mechanical strains in 

the axial and circumferential directions. 
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The second derivatives of the kinematic relations, Eqs. (3), are found to be 
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(7) 

 
which can be manipulated by substitution of the first two equations into the third equation to yield a relation 
between the strains and the mid-surface deflection. 
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(8) 

 
To simplify the solution, an Airy stress function, f(x,θ), is introduced, which is defined to satisfy Eqs. (1) 

identically. The function relates to the in-plane stress resultants such that 
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After the normal loads in the strain equations are replaced by the relations in Eqs. (6) and Eqs. (9), the strain-
deflection relation, Eq. (8), is determined. 
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This study is specific to thermal loading which varies only around the circumference. That is, ∆T(x,θ) = ∆T(θ). 

The temperature distribution of interest can vary sinusoidally around the cylinder as follows: 
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where the integer k represents the number of full sine waves in the thermal loading around the circumference, and δ 
represents the amplitude of the thermal variation. It can be assumed that the stress function will take the form of the 
temperature loading that is applied to the shell. 

 
 θθ kfff o sin)( 1+=  (12) 

 
Substituting these formulas into the strain-deflection relation, Eq. (10), leads to the simplification 
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Solving for the amplitude constant in the stress function, f1, leads to 
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(14) 

 
This function can then be used to determine the resultant loads for the cylinder with circumferentially-varying 

thermal loading. To complete the model, a uniform axial loading must be included, to account for the compressive 
reaction force at the boundaries of the shell. The cylinder is assumed to be sufficiently long such that boundary 
effects may be neglected and this uniform loading will not appear in either the circumferential or shear force terms. 
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IV. The torsional buckling problem 
With the thermal loading fully defined, the next step is to apply this information to the torsional buckling 

problem. The Donnell stability equation, Eq. (16), which is described in terms of the lateral displacement, will be 
used to solve for the critical buckling load. 
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The axial normal force is that determined from the thermal loading, Eqs. (15). Also incorporated is a mechanical 
torsion loading, τ, such that Nxθ = τh. The solution to this equation can be obtained by applying the Galerkin method. 
In the case of a cylindrical shell, the equations needed are obtained as follows: 
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where L(w) is, in this case, the Donnell stability operator and w is an assumed solution for the displacement of the 
buckled configuration. To accommodate the waves in the deflection that are coupled with a twisting behavior, an 
appropriate solution would be of the form 

 
 ( )θnxmkw n −= sin  (18) 

 
where m  = mπ/L, with m being the integer defining the number of half sine waves along the length of the cylinder 
and n defining the number of full sine waves around the circumference. 

 
This leads to an expression for the critical torsional buckling load. This approach may be verified by comparing 

the solution for the case where there is only a uniform torsional load with the accepted result from Ref. [2].   
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Here the circumferential wave number, n, is set to 2 to capture the lowest buckling load. If, however, the term is left 
in variable form, the solution for the torsional load becomes: 
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V. Discussion of results 
The Galerkin approximation described in the previous section was incorporated into a computer code using 

Mathematica. With geometric and material data entered, the code solves for the critical torsional loads for a matrix 
of mode shapes, such that m and n are allowed to vary as integers. From this information, the lowest torsional 
buckling load can be identified as the critical torsional load for the critical mode shape. 

The torsional shape function given in Eq. (18) was investigated for suitability in a combined torsional and axial 
loading state. The concern was that the torsional shape function would not allow consideration for the effect of axial 
loads on the torsional buckling. However, the analysis was performed for axial loading only, using both the torsional 
shape function and the classical axial shape function, Eq. (21).  

 
 ( ) ( )θnxmkw n sinsin=  (21) 

 
The calculated axial buckling load was the same for both shape functions, indicating the sufficiency of the 

torsional shape function for the combined loading case. So as to adhere to boundary conditions, the shape function 
used in the Galerkin approximation was altered from the form given by Eq. (18). The following equation is 
consistent with the boundary conditions which require the ends to be pinned into the original circular shape. 
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Table 1 depicts a section of the results output by the Mathematica code for a cylinder with a length of 250 
inches, a radius of 108 inches, and a shell thickness of 2 inches. The material properties are those for aluminum and 
the thermal distribution is that of a six-noded sinusoidal wave whose average temperature of 400±F varies by 100±F. 
The case corresponding to three circumferential wave (independent of the number of axial half-sine waves) leads to 
a zero denominator and is therefore labeled “Indeterminant.” This occurred only for circumferential mode values 
equal to half of the thermal nodal shape number. 

It can be seen that the lowest torsional load listed is 16.25·103 lb-in for the mode shape with seven full sinusoidal 
waves in the circumferential direction and two half sinusoidal waves in the axial direction. It should be noted that 
the wave number corresponding with the temperature distribution does not, in general, correspond to that of the 
buckled mode shape. It is noted that the number of circumferential waves corresponding to the buckling instability 
as predicted here correlates with field measurements as reported in References 6 and 7.  

 

Table 1: Torsional buckling load (103 lb-in) for cylinder under varying thermal load 

1 2 3 4
1 1680 1411 1068
2 263.2 378.9 387.9 343.4
3 Indeterminant Indeterminant Indeterminant Indeterminant
4 21.66 43.83 76.39 97.76
5 13.74 19.76 37.95 51.45
6 16.75 12.83 21.28 31.02
7 25.45 12.65 14.5 21.07
8 38.6 15.95 12.62 16.98
9 56.12 21.64 13.5 16.43

10 78.27 29.38 16.18 18.26

Axial Mode - Half Sine Wave
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The question that naturally follows is to what degree the thermal loading influences the torsional buckling of the 

cylinder. The conditions above were repeated with the thermal loading set to zero. Whereas the buckling mode is not 
altered by the removal of thermal loading, the critical torsional load is increased by 2.3·103 lb-in. This result is 
explained by appealing to the pre-buckling axial loading introduced by the thermal load, which contributes to the 
total strain energy of the system. 

 

Table 2: Torsional buckling load (103 lb-in) for cylinder under no thermal load 

1 2 3 4
1 1690 1429 1095 8
2 269.8 387.9 401.3 361.1
3 68.87 125.84 175.12 183.79
4 26.48 48.22 83.08 100.57
5 17.88 23.25 43.3 58.46
6 20.25 15.64 25.72 36.82
7 28.31 14.95 18.26 25.99
8 40.81 17.83 15.85 21.21
9 57.65 23.12 16.29 20.1

10 79.06 30.49 18.58 21.43

Axial Mode - Half Sine Wave
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It is clear that, although the buckling mode remains unchanged in this instance, the differences between adjacent 

critical loads is altered. This indicates that the mode shape will change for a sufficiently high thermal loading. For 
the cylinder in question, the mode shape drops to six circumferential waves and two half axial waves when the 
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constant thermal load nears 275±F. Further increases in temperature, above 350±F, changes the mode shape again to 
five circumferential waves and one half axial wave. The thermal variation has less effect on the changing mode 
shape since that part of the resultant load  alter 
the buckling are so high that materials 
with reasonable thermal conductivity 
would not maintain the given thermal 
state, and are not experienced in 
practical applications. 

The mode shape into which the 
cylinder buckles is dependent not only 
on loading conditions but also on the 
cylinder geometry. To illustrate this 
effect, the baseline thermally-loaded 
configuration described above was 
altered geometrically. Consideration 
was first given to the ratio between the 
length and the radius of the cylinder. It 
was found that scaling this ratio did 
not result in comparable buckling 
loads or modes. For the same 
thickness, radially larger cylinders 
demonstrated less rigidity and the 
critical torsional loads were reduced 
while the number of waves in the 
mode shape increased. 

A visual representation of the 
buckled shape of a cylinder under 
torsional load is shown in Fig. 2. The 
illustration is from the computational 
program Maple, based on the 
boundary condition shape function 
used in the Galerkin approximation, Eq. 
waves and one half sinusoidal axial wave 

The analysis performed on the torsion
distribution does alter the torsional buckl
loading increases the strain energy and 
influence is slight, awareness of the role 
the behavior of cylindrical shells subjecte

A mathematical model that accuratel
combined thermal (circumferential temp
development of this model will incorpora
cylinder rotation.  
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