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Based on the physics underlying turbulence anisotropy in the equilibrium and nonequi-
librium limits, a new physically-based, fully-realizable, nonequilibrium k − ε RANS model
has been developed. The model is based on an effective strain rate tensor that accounts for
the strain history to which the turbulence has been subjected. This new model is applied
to four distinctly different test cases for which the nonequilibrium history integral can be
evaluated analytically. Results obtained from this new closure model show dramatically
improved agreement with experimental and computational data when compared with the
standard k−ε (SKE) model, without the need to vary any model parameters. The introduc-
tion of a nonequilibrium effective strain rate allows this new model to be applied within
a similar framework as currently used for two-equation eddy viscosity models, thereby
permitting relatively simple implementation in existing CFD codes.

Nomenclature

k Turbulent kinetic energy
ε Turbulent dissipation rate
Sij Mean strain rate tensor
u′iu

′
j Reynolds stress tensor

νT Turbulent eddy viscosity
Pk Turbulence kinetic energy production

bij Reynolds stress anisotropy tensor
τT Turbulence time scale
τS Mean strain time scale
Λm Memory time scale
S̃ij Effective mean strain rate tensor
Ωij Mean rotation rate tensor

I. Introduction

Due to the overwhelming computational resources currently required for large eddy simulation, the vast
majority of engineering simulations of turbulent flows will continue to be done in the foreseeable future
with Reynolds-averaged Navier Stokes (RANS) codes. In the RANS approach, the single-point second-
order velocity fluctuation correlations (i.e., the Reynolds stresses) prevent closure of the governing equations
without the addition of one or more additional equations that ultimately relate the Reynolds stress tensor
to the mean flow pressure and velocity components. Finding accurate yet computationally feasible forms of
such closure approximations is the primary challenge in turbulence modeling.

The most accurate RANS closures today are “Reynolds stress transport” (RST) models, wherein a system
of coupled partial differential equations is solved for the six independent components of the Reynolds stress
tensor. While in principle the RST equations contain all of the relevant turbulence physics that affect the
evolution of the Reynolds stresses, these equations introduce yet higher-order correlations that ultimately
must somehow be modeled. Moreover, numerical integration of the six coupled partial differential equations
introduces an additional computational load that, while reasonably manageable with today’s computers,
originally hindered adoption of the RST approach in the most widely used CFD codes. For these reasons, it
has become standard practice to use simple algebraic “linear eddy viscosity models” (LEVMs) to close the
RANS equations.
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In LEVMs, the Reynolds stresses are modeled via the Boussinesq “gradient transport” hypothesis,
wherein a scalar eddy viscosity is used to linearly relate the stresses with the mean strain rate tensor.
In two-equation LEVMs, the eddy viscosity is calculated using two differential transport equations, and in
the most widely used two-equation model – namely the standard k − ε (SKE) model – transport equations
are solved for the turbulence kinetic energy k and its dissipation rate ε.1 However, these two equations also
introduce fluctuation correlations that must somehow be modeled. Despite a strong reliance on unphysical
ad hoc modeling in the transport equations for k and ε, the SKE model remains the most popular closure
method due to its computational simplicity and its modest success in simulating a surprisingly wide range of
flows. Numerous variations on the SKE model have been proposed, typically by recasting the eddy viscosity
in variables other than k and ε, but all such two-equation LEVMs show roughly similar levels of inaccuracy
over a broad spectrum of turbulent flows.

The errors inherent in two-equation LEVMs come from two sources. The first are the higher-order
correlations that appear in the additional transport equations for the two variables in which the eddy
viscosity is cast, which must typically be modeled by various ad hoc assumptions. The second and even
more fundamental source is the linear gradient transport hypothesis itself. The assumption of a scalar eddy
viscosity, and the further assumption that the Reynolds stresses depend on only the instantaneous mean
strain rate tensor, are known to be important shortcomings of LEVMs.2–4 In particular, modeling the
stresses in terms of the instantaneous mean strain rate tensor renders LEVMs inaccurate in nonequilibrium
flows, where the turbulence undergoes rapid time-dependent straining. Simple examples of such flows include
suddenly-sheared homogeneous turbulence, periodically-sheared turbulence, and turbulence that is rapidly
strained and destrained. To fully account for nonequilibrium effects, the model for the Reynolds stresses
must in principle account for the entire strain history, and cannot be based simply on the current strain
state.

Given the deficiencies of the linear gradient transport hypothesis, various nonlinear eddy viscosity models
(NLEVMs) have been developed to address some of the shortcomings of LEVMs. In NLEVMs, it is assumed
that the Reynolds stresses depend on all possible tensorial combinations of the mean strain and rotation
rate tensors, resulting in a stress-strain constitutive equation similar to those found in continuum mechanics
for viscoelastic materials.5–7 Closure of the RANS equations with such models thus reduces to determining
the coefficients in the tensorial expansion. Many researchers have used physical considerations such as rapid
distortion theory, material frame indifference, and full realizability to determine the coefficients (e.g., Shih et
al.8), although in recent years it has become popular to connect the constitutive equation and its coefficients
to the Reynolds stress transport equation itself.9,10

By including the mean rotation rate terms in the Reynolds stress closure, and due to the anisotropic eddy
viscosity that results from the nonlinear higher-order tensorial combinations of the stress and rotation rate
tensors, NLEVMs succeed in many of the flows where models based on the linear gradient transport hypoth-
esis fail. However, nonlinear models of the same order derived by different methods often have inconsistent
expansion coefficients, depending on the physical considerations used to achieve the closure.11 Moreover,
most NLEVMs only relate the Reynolds stresses to the instantaneous mean strain and rotation rate tensors,
rendering these models as insensitive to nonequilibrium effects as classical LEVMs. Speziale,12 Yakhot et
al.,13 Yoshizawa and Nisizima,14 and Huang and Rajagopal15 have attempted to include nonequilibrium
effects with some success, but because the resulting models cannot be readily substituted for the LEVMs
found in the most widely used CFD codes, these approaches have not found widespread applicability or
popularity. To date, despite their shortcomings, the SKE model and its variants remain the most popular
closure methods for simulating turbulent flows of engineering interest.

Here we use fundamental turbulence physics to develop a new NLEVM that correctly captures nonequi-
librium effects due to the strain rate history to which the turbulence has been subjected, but the resulting
model is in a form that can be readily substituted in CFD codes for standard models such as SKE and its
variants. In contrast to many previous NLEVMs, the present model does not assume an a priori form of the
turbulence constitutive equation, and instead acquires its nonlinearity through consideration of the physics
underlying turbulence anisotropy in the nonequilibrium limit. By accounting for nonequilibrium effects,
substantial improvements are achieved over the SKE model in a wide range of test cases. At the same time,
the new model retains much of the SKE framework, in particular the k and ε transport equations, and thus
provides an improved algebraic Reynolds stress closure that is relatively simple to incorporate in existing
CFD codes.

The paper is organized as follows. Section II first presents a description of turbulence anisotropy in the
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equilibrium limit of the standard k−ε model. Section III then describes the relation between nonequilibrium
effects and the turbulence anisotropy, and uses this to formulate a nonequilibrium k − ε (NKE) model in
terms of an effective strain tensor that accounts for the past strain history to which the turbulence has
been subjected. In Section IV, the resulting NKE model is applied to a variety of nonequilibrium turbulent
flows, including (i) impulsively-sheared homogeneous turbulence, (ii) periodically-sheared turbulence, (iii)
turbulence that is rapidly strained and then destrained, and (iv) the shock-turbulence interaction. For all
these cases, the effective strain tensor in the NKE model can be evaluated analytically, and either DNS
data or experimental data are available for model validation. Results obtained for the turbulence anisotropy
from the NKE model are seen to be in good agreement with the validation data. Section V shows that
full realizability constraints can be imposed on the NKE model, which allows the model to be applied at
very large shear values such as in near-wall turbulence. Section VI then discusses a number of additional
considerations, including the evaluation of the history integral in a CFD code, and the relation between the
present NKE model and various prior NLEVMs.

II. Equilibrium Turbulence Anisotropy

Averaging of the incompressible continuity and Navier-Stokes equations leads to the single-point RANS
system of equations commonly used in turbulence modeling

∂ui

∂xi
= 0 and

∂ui

∂t
+ uj

∂ui

∂xj
=

Dui

Dt
= − ∂p

∂xi
+

∂

∂xj

[
2νSij − u′iu

′
j

]
, (1)

where D/Dt denotes the mean flow material derivative, ui is the mean velocity field, u′i the fluctuation
velocity field, p the mean pressure, ν the molecular viscosity, and Sij is the symmetric mean strain rate
tensor, given by

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2)

The Reynolds stresses u′iu
′
j appearing in (1) prevent closure of the governing equations and are commonly

modeled as the sum of isotropic and anisotropic parts as

u′iu
′
j =

2
3
kδij − (u′iu

′
j)dev , (3)

where k = 1
2u′iu

′
i is the turbulence kinetic energy, and (u′iu

′
j)dev is the anisotropic contribution to the stresses.

In isotropic turbulence the deviatoric stresses are zero and the full Reynolds stress tensor is

u′iu
′
j =

2
3
kδij , (4)

where only the on-diagonal Reynolds stresses are non-zero. Since the trace of the Reynolds stress tensor
must equal 2k, the trace of the anisotropic stresses vanishes so that

(u′iu
′
i)dev = 0 , (5)

whether or not the turbulence is isotropic.
Since the isotropic contribution to the Reynolds stresses in (3) is known, only the anisotropic stresses

must be modeled in order to close the RANS equations. In LEVMs the anisotropic stresses are commonly
expressed using the gradient transport hypothesis

(u′iu
′
j)dev = νT

(
∂ui

∂xj
+

∂uj

∂xi

)
= 2νT Sij , (6)

where νT is the eddy viscosity. Typically νT is modeled as the product of length and velocity scales charac-
teristic of the turbulent flow, and in the SKE model is given by

νT = Cµ
k2

ε
, (7)
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Figure 1. Anisotropy in a turbulent channel flow. The
SKE closure agrees with the computational data of Kim et
al.16 for small values of Sk/ε outside the near-wall region.
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Figure 2. Channel flow anisotropy predicted by the RKE
closure, where the anisotropy is limited for the large values
of Sk/ε present in the near wall region.

where Cµ is a constant and ε is the turbulence kinetic energy dissipation rate. Closure is achieved through
the addition of the two modeled transport equations

Dk

Dt
= Pk − ε +

∂

∂xj

[(
ν +

νT

σk

)
∂k

∂xj

]
, (8)

Dε

Dt
= Cε1Pk

ε

k
− Cε2

ε2

k
+

∂

∂xj

[(
ν +

νT

σε

)
∂ε

∂xj

]
, (9)

where Pk is the kinetic energy production rate defined as

Pk = −u′iu
′
jSij . (10)

Standard values for the SKE model constants are1

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1, and σε = 1.3 . (11)

The resulting expression for the anisotropic stresses in the SKE model is then

(u′iu
′
j)dev = 2Cµ

k2

ε
Sij = 2kCµ

Sk

ε

Sij

S
, (12)

where S = (SijSij)
1/2 is the second invariant of the mean strain rate tensor. The SKE Reynolds stress

closure is not typically written in a manner that explicitly shows the linear dependence on Sk/ε, but as will
be seen in the next section, the parameter Sk/ε is physically related to the magnitude of the turbulence
anisotropy, and the formulation above is therefore informative.

The closure in (12) is relatively successful in equilibrium turbulent flows such as channel or other thin
shear flows where material derivatives of flow properties like k and ε are small. Figure 1 shows the agreement
between the anisotropy predicted by (12) and the DNS channel flow data of Kim et al.,16 where the anisotropy
tensor is defined as

bij = − (u′iu
′
j)dev

2k
. (13)

From Figure 1 it is clear that the SKE model and the data agree well for small values of Sk/ε, but the model
departs significantly from the data for large values of Sk/ε occurring in the near wall region. This issue is
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Figure 3. Plot of b12 for periodically sheared turbulence with ω/Smax = 0.5 and Smaxk0/ε0 = 3.3. The SKE closure
(dash-dot line) does not agree with either the amplitude or phase of the computational results from Yu and Girimaji17

(solid line). The applied shear is represented by the thin dashed line.

partly addressed by the realizable k− ε (RKE) model, where the constant Cµ appearing in (12) is limited in
the high Sk/ε limit as

Cµ =

{
0.09 for 0 ≤ Sk

ε ≤ 3.4
0.31

(
Sk
ε

)−1
for 3.4 < Sk

ε < ∞ . (14)

This limits the unbounded increase in the anisotropy predicted by the SKE model, but still does not follow
the computational data of Kim et al. in the near wall region where Sk/ε is large, as shown in Figure 2. Wall
functions are typically used to force better agreement in the near wall region.

III. The Nonequilibrium k − ε (NKE) Model

Neglecting the near wall region in Figure 1, the general success of the SKE model in equilibrium flows
motivates the use of (12) as the foundation on which further model improvements can be based. In general,
the SKE closure in (12) performs well in equilibrium flows, but does significantly less well in nonequilibrium
flows where Lagrangian flow properties change rapidly. An example of this is seen in periodically-sheared
homogeneous turbulence, for which Yu and Girimaji17 have recently obtained DNS data. In this case, the
velocity gradient and strain rate tensors are

∂ui

∂xj
(t) = Smax sin(ωt)δi1δj2 ⇒ Sij(t) =

Smax

2
sin(ωt) [δi1δj2 + δi2δj1] , (15)

where ω is the applied shearing frequency. Applying the conventional SKE closure to this flow, the only
nonzero components of the anisotropy tensor are

b12(t) = b21(t) = −Cµ
k

ε
S12(t) (16)

and the homogeneous k and ε transport equations become

∂k

∂t
= −4kb12S12 − ε and

∂ε

∂t
= −4Cε1εb12S12 − Cε2

ε2

k
, (17)

where the turbulent kinetic energy production appearing in Eqs. (8) and (9) has been written in terms of
the anisotropy tensor as

Pk = −u′iu
′
jSij = −2kbijSij . (18)

This system of coupled ordinary differential equations can be integrated numerically for the three unknowns
k, ε, and b12, yielding the anisotropy evolution in Figure 3 for a shearing frequency of ω/Smax = 0.5 with
Smaxk0/ε0 = 3.3. When compared with the results of Yu and Girimaji, Figure 3 shows that the SKE model
does not agree with either the amplitude or phase of the computationally obtained anisotropy (for larger
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values of ω/Smax there is even an offset in the computational results which the SKE model also does not
capture).

The poor phase agreement in Figure 3 results from the fact that the anisotropy in the SKE model is
assumed to depend on the instantaneous strain tensor, so that when S/Smax is zero the anisotropy is also
zero. The phase difference, or lag, between the applied strain and turbulence response is seen in many
other flows as well, such as homogeneous sheared turbulence, turbulence that is successively strained and
destrained, and even the decay of turbulence behind a grid, where a nonzero anisotropy persists after the
grid straining ends. Nonequilibrium effects must be included in the closure model to correctly account for
the lag between the applied strain and anisotropy.

III.A. Physics of Turbulence Anisotropy

Both equilibrium and nonequilibrium turbulence anisotropy can be understood from a quasi-Lagrangian
standpoint, where the turbulence is viewed as being composed of numerous material elements convecting
with the mean flow at velocity ui. Each element contains vortical structures that produce a combined
fluctuation velocity field u′i(x), from which a single Reynolds stress tensor u′iu

′
j associated with the element

as a whole is obtained.
In this quasi-Lagrangian picture, the anisotropy is determined by the alignment of the vortical structures

in the fluid element relative to the eigenvectors of the strain rate tensor that acts on the element. Maxi-
mum anisotropy is obtained when the vortical structures are fully aligned, while isotropy results when the
structures are randomly aligned. Thus in the quasi-Lagrangian picture, an understanding of the alignment
dynamics leads to an understanding of the turbulence anisotropy.

Fundamentally, the relative alignment of the vortical structures is determined by the competing effects of
alignment by the externally imposed mean strain rate tensor and misalignment by the local strain induced
by vortical structures within the element. Specifically, the mean strain tends to align the vortical structures
with the direction of the most extensional eigenvector of the mean strain rate tensor, while the local and
self-induced strain tends to ruin the alignment with this eigenvector.

The degree of vortical structure alignment can be quantified by considering the ratio of the misalignment
(or turbulence) time scale τT = k/ε to the mean strain time scale τS = 1/S, such that the anisotropy
magnitude is characterized by the parameter

τT

τS
=

Sk

ε
. (19)

If the turbulence time scale is small compared to the mean flow time scale (Sk/ε is small), then the vortical
structures are misaligned more rapidly than they are aligned, resulting in isotropic turbulence. On the other
hand, if the mean flow time scale is small compared to the turbulence time scale (Sk/ε is large), then the
vortical structures are aligned more rapidly than they are misaligned and maximum anisotropy results. Thus
the mean strain rate tensor determines the direction and degree of turbulence anisotropy.

In equilibrium turbulence, the mean strain rate imposed on each fluid element changes very slowly as
the elements move with the mean flow, and the vortical structure alignment depends completely on the
instantaneous value of Sij experienced by the element. The formulation of the equilibrium SKE closure in
(12) is therefore justified by the quasi-lagrangian picture of turbulence, where the anisotropy magnitude is
explicitly determined by the instantaneous value of Sk/ε, and the elements of the Reynolds stress tensor are
proportional to the elements of the instantaneous mean strain tensor Sij . Moreover, the linear dependence of
the anisotropy magnitude on Sk/ε in the SKE model is qualitatively consistent with the relationship between
the anisotropy and Sk/ε developed in the quasi-lagrangian picture of turbulence (that is, for example, as
Sk/ε increases the anisotropy magnitude also increases).

In nonequilibrium turbulence, however, it is no longer appropriate to let the anisotropy depend on the
instantaneous values of Sij and Sk/ε. For example, consider isotropic turbulence that is suddenly subjected
to the shear S12 = S21 = S/2 at time t = 0. Since the applied shear is known, the k and ε transport
equations can be integrated numerically using the SKE model, and Figure 4 shows the resulting turbulence
kinetic energy evolution compared with the LES data of Bardina et al.18 It is clear that the modeled kinetic
energy is over-predicted due to excessive initial kinetic energy production, which is in turn caused by initially
over-predicted turbulence anisotropy.

The over-predicted anisotropy arises because the applied shear does not instantly align all of the initially
isotropic vortical structures with the most extensional eigenvector of the mean strain rate tensor. This much
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Figure 4. Evolution of the turbulent kinetic energy k/k0 for initially isotropic turbulence that is homogeneously sheared,
where ε0/Sk0 = 0.296. Compared to the LES data of Bardina et al.,18 the SKE model over-predicts the kinetic energy
for all times.

is apparent from the inviscid vorticity transport equation

Dωi

Dt
= Sijωj , (20)

where alignment with the most extensional eigenvector proceeds on a time scale τS = 1/S. The random
self-induced straining, which proceeds on the turbulence time scale τT = k/ε, tends to further slow the
alignment process. Moreover, once the shear is applied the vortical structures do not immediately reach
a degree of relative alignment that can be fully characterized by the instantaneous value of Sk/ε (as in
the equilibrium SKE closure). Rather, they retain some memory of their initially isotropic state, and
the anisotropy magnitude relaxes to its final value in some finite, non-zero, time. For suddenly sheared
homogeneous isotropic turbulence, the anisotropy at initial times is therefore not as large as the SKE closure
predicts, and the real kinetic energy production is lower. Thus the quasi-Lagrangian picture validates the
SKE closure as a reasonable model for anisotropy near the equilibrium limit, and motivates a physically-valid
description of the relaxation process by which vortical structures approach their equilibrium anisotropy state.

III.B. The Effective Strain Rate

The anisotropy relaxation process can be understood by dividing the vortical structures in each fluid element
into separate ensembles characterized by different mean strain rates. For example, immediately after the
straining is applied in homogeneous shear turbulence, only a fraction of the vortical structures have reached
an anisotropy state determined by the instantaneous value of Sij , while the rest of the vortical structures are
still in an anisotropy state determined by the previous value of the mean strain tensor (which is, incidentally,
Sij = 0). Thus, the vortical structures can be divided into one ensemble with anisotropy determined by
Sij(t) and another ensemble with anisotropy determined by Sij(t−∆t), where in both cases an equilibrium
expression (such as the SKE closure) is used for the ensemble anisotropy. Over time, the fraction of vortical
structures that have reached the new anisotropy state increases, until all of the structures have effectively
reached the new state when t À Λm, where Λm is a memory time scale that characterizes how quickly the
vortical structures ‘forget’ about their past. At any time, the total anisotropy in the fluid element is equal
to the weighted average of the anisotropy associated with all ensembles, where the weighting is determined
by the size of each ensemble.

The physics of the anisotropy ensembles can be incorporated within the framework of the SKE closure
in (12) by defining an effective strain rate S̃ij , so that

bij = −Cµ
k

ε
S̃ij = −Cµ

S̃k

ε

S̃ij

S̃
, (21)
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where S̃ is the second invariant of the effective strain tensor. Due to the linear relationship between the
anisotropy and the mean strain rate in the SKE closure, a weighted average of the ensemble anisotropies is
equivalent to a weighted average of the strain rates that characterize the anisotropy in each ensemble. The
effective strain rate is thus defined as the normalized weighted average over the past straining history, so
that

S̃ij(t) = g0Sij(t) + g1Sij(t−∆t) + . . . =
∞∑

i=0

giSij(t− i∆t) , (22)

where the gi are non-dimensional history weighting coefficients, with

∞∑

i=0

gi = 1 . (23)

This is written in equivalent continuous form via the convolution integral

S̃ij(t) =
∫ t

−∞
h(t− τ)Sij(τ)Dτ , (24)

where now h(τ) is a history function with units of t−1 normalized so that
∫ ∞

0

h(τ)dτ = 1 . (25)

By definition h(τ) is a maximum at τ = 0 and h(τ) → 0 as τ → ∞. With h(τ) of this form the effective
strain rate is most affected by strain rates near time t, while all past strain rates have a lesser impact. Note
that the integral in (24) is with respect to the material differential Dτ because the strain rate experienced
by a fluid element varies due to both temporal unsteadiness and convection by the mean flow.5 Thus, by
‘straining history’ we specifically mean the history of the strain rates experienced by a quasi-Lagrangian
fluid element.

The history function is loosely connected to the temporal autocorrelation of the turbulence, and this
motivates an exponential form as

h(τ) =
1

Λm
e−τ/Λm , (26)

where Λm is the memory time scale. The effective strain rate is thus written in full form as

S̃ij(t) =
∫ t

−∞

e−(t−τ)/Λm

Λm
Sij(τ)Dτ . (27)

A natural time scale for Λm is the turbulence time scale τT = k/ε, where the randomizing effect of
the turbulence is taken as the source of the vortical structure memory loss. While it is possible that the
magnitude of the mean strain tensor, and in particular the parameter Sk/ε, could play a role in setting Λm

for flows where Sk/ε is large, it is sufficient here to define

Λm = CΛ
k

ε
. (28)

It will be seen herein that a universal value of CΛ = 0.26 gives good agreement with widely differing
nonequilibrium test cases.

III.C. The NKE Model

The nonequilibrium model developed in the preceding sections can be summarized by the system of equations

u′iu
′
j =

2
3
kδij − Cµ

S̃k

ε

S̃ij

S̃
, (29)

where the effective strain rate is

S̃ij(t) =
∫ t

−∞

e−(t−τ)/Λm

Λm
Sij(τ)Dτ (30)
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and the memory time scale is

Λm = CΛ
k

ε
; CΛ = 0.26 . (31)

Consistent with the general framework of the SKE model, the system of equations is closed using the k and
ε transport equations in (8) and (9), where the constants appearing in the equations are defined in (11). The
model represented by Eqs. (29) - (31) will be referred to as the nonequilibrium k−ε (NKE) model. In Section
IV, this model is applied to predict the turbulence response in four distinctly different nonequilibrium test
cases for which the effective strain rate in (30) can be determined analytically. Section VI describes how this
history integral can be evaluated for implementation in standard RANS modeling codes.

Before continuing, a few general comments on the NKE model should be mentioned. First, as noted
in Eq. (5), the trace of the anisotropic stresses in any valid RANS model must vanish. The NKE model
satisfies this constraint, since S̃ii(t) = 0 in (30) by virtue of the fact that Sii(τ) = 0 due to continuity.
Secondly, the NKE model reduces to the SKE model in the equilibrium limit of slowly-varying mean strain
rate. If ΩS is some frequency that characterizes the rate at which the strain rate is changing in a flow,
then as ΛmΩS → 0 it can be verified that S̃ij(t) → Sij(t). Finally, it should be pointed out that through
an analysis of the connection between turbulence and non-Newtonian viscoelastic fluids, Crow5 obtained a
Reynolds stress closure somewhat similar to that used in the NKE model. However, that model assumed an
a priori connection between turbulence and viscoelasticity that is not needed here.

IV. Analytical Tests of the NKE Model

There are several test cases for which the NKE model can be applied analytically. These include the
impulsively sheared homogeneous turbulence of Bardina et al.18 and the periodically-sheared turbulence of
Yu and Girimaji,17 for which DNS data exist for comparison with the model results. A third analytical
test case is turbulence that is strained, relaxed, and then destrained, for which experimental results using
particle image velocimetry (PIV) have recently been reported by Chen et al.19 A final test case involves the
interaction between a shock wave and initially homogeneous isotropic turbulence.

In the first three cases, the turbulence is homogeneous and the applied strain varies only in time. The k
and ε transport equations are thus written in homogeneous form as

∂k

∂t
= Pk − ε and

∂ε

∂t
= Cε1Pk

ε

k
− Cε2

ε2

k
, (32)

where Pk is defined in (18) and the nonequilibrium anisotropy is

bij = −Cµ
k

ε
S̃ij . (33)

Calculation of the effective strain rate in (30), where now the integral is with respect to simply dτ , closes
the coupled system of equations, which can then be integrated numerically. For all test cases, the memory
time scale is taken as

Λm = 0.26
k

ε
; (34)

it will be seen that the prefactor 0.26 gives good agreement with experimental and computational validation
results in all test cases.

IV.A. Impulsively-Sheared Homogeneous Turbulence

The applied mean strain rate tensor for the homogeneous shear turbulence of Bardina et al.18 is

S12(t) = S21(t) =

{
0 for t < 0
S/2 for t > 0

, (35)

where all other components of the strain tensor are zero. The resulting effective strain rate for t > 0 is

S̃12(t) = S̃21(t) =
S

2

[
1− e−t/Λm

]
, (36)
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Figure 5. Evolution of the turbulent kinetic energy k/k0 for initially isotropic turbulence that is homogeneously sheared.
The new NKE model clearly shows better agreement with the LES data of Bardina et al.18 than the SKE model.

and the anisotropy calculated using (33) is

b12(t) = b21(t) = −Cµ
k

ε

S

2

[
1− e−t/Λm

]
, (37)

where the turbulence for t < 0 is isotropic and bij(t < 0) = 0. Note that the SKE model predicts

b12(t) = b21(t) = −Cµ
k

ε

S

2
, (38)

and it is thus clear that the anisotropy in the NKE closure is reduced below the SKE result for small times
when t < Λm.

Integration of Eqs. (32) and (37) from time t = 0 yields the kinetic energy evolution shown in Figure (5)
for Sk0/ε0 = 3.4. The inclusion of nonequilibrium effects and the subsequent reduction in the anisotropy
magnitude for small times lowers the initial kinetic energy production, resulting in improved agreement with
the LES results of Bardina et al.18 For times t À Λm the nonequilibrium correction to the anisotropy in
(37) is negligible and the kinetic energy growth rate is similar to that obtained for the SKE model.

IV.B. Periodically-Sheared Turbulence

The applied mean strain rate for the periodically sheared turbulence simulated by Yu and Girimaji17 is

S12(t) = S21(t) =

{
0 for t < 0
(Smax/2) sin(ωt) [δi1δj2 + δi2δj1] for t > 0

, (39)

where ω is the shearing frequency and all other components of the applied mean strain tensor are zero. For
t > 0, the resulting effective strain rate is

S̃12(t) = S̃21(t) =
1

(ωΛm)2 + 1
Smax

2

[
sin (ωt)− ωΛm

(
cos (ωt)− e−t/Λm

)]
, (40)

and the corresponding anisotropy for the nonequilibrium model is

b12(t) = b21(t) = − Cµ

(ωΛm)2 + 1
Smax

2
k

ε

[
sin (ωt)− ωΛm

(
cos (ωt)− e−t/Λm

)]
. (41)

In contrast, the SKE model simply yields an anisotropy of the form

b12(t) = b21(t) = −Cµ
Smax

2
k

ε
sin(ωt) . (42)
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Figure 6. Plot of b12 for periodically sheared turbulence with three different shearing frequencies. In all cases, the
NKE model shows better agreement with the computational data of Yu and Girimaji17 than the SKE model.
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The NKE model therefore predicts a decrease in the anisotropy amplitude and an increase in the phase
difference with the applied shear as the quantity ωΛm increases. In addition, there is a decaying nonzero
offset that also depends on ωΛm. This dependence on the shearing frequency is completely unpredicted by
RANS closures that take into account only the instantaneous mean strain tensor, such as the SKE closure
in (42).

Periodic shear integration results for shearing frequencies ω/Smax = 0.5, 1.0, and 10 are shown in Figure
6, where Smaxk0/ε0 = 3.3. Comparison with the DNS results of Yu and Girimaji17 indicates that the NKE
model agrees with the data much more closely than the SKE model. In particular, the anisotropy amplitude
for the NKE model is reduced ever more strongly and the phase difference between the applied shear and
anisotropy approaches π/2 as the shearing frequency increases.

Of considerable interest in periodically-sheared turbulence is the relative phase difference between the
anisotropy b12 and the applied shear, since a phase lag between the two results in negative turbulence kinetic
energy production. This phase lag reaches a constant value after several shear oscillations, and can be
measured accurately for all shearing frequencies by simulating the turbulence to times much greater than
Smaxt = 50. The resulting phase plot for the NKE model in Figure 7 shows excellent agreement with the
Yu and Girimaji results. By comparison, note that the SKE model predicts a constant phase difference of
φ/π = 1, independent of the shearing frequency.

IV.C. Straining, Relaxation, and De-Straining of HIT

Turbulence subjected to straining, relaxation, and destraining was recently investigated using PIV by Chen
et al .19 The applied strain in those experiments can be represented as

S11(t) = −S22(t) =





0 for 0 ≤ t ≤ t1

a1(t− t1) for t1 < t ≤ t2

−a2(t− t3) for t2 < t ≤ t3

0 for t3 < t ≤ t4

−a3(t− t4) for t4 < t ≤ t5

a4(t− t6) for t5 < t ≤ t6

, (43)

where the ai have dimensions of 1/t2 and are chosen, along with the ti, to give reasonably good agreement
with the experimentally applied strain, as shown in Figure 8. The effective strain rate is again calculated

12 of 20

American Institute of Aeronautics and Astronautics



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

S
k 0/ε

0

tε
0
/k

0

Chen et al.

Approximate 
Strain

Straining

Destraining

Relaxation

Figure 8. The approximate applied mean strain rate,
where good agreement is obtained with the experimen-
tal straining-relaxation-destraining cycle of Chen et al.19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

b 11

tε
0
/k

0

NKE
SKE

Chen et al.

Figure 9. Evolution of b11 as determined by the NKE and
SKE models, where it is clear that the NKE model agrees
much more closely with the PIV data from Chen et al.19

using (30) and the resulting piecewise expression is

S̃11(t) =





0 for 0 ≤ t ≤ t1

a1Λm

(
e−(t−t1)/Λm − 1

)
+ a1 (t− t1) for t1 < t ≤ t2

((a1 + a2)t2 − a2t3 − a1t1) e−(t−t2)/Λm+
Λm

(
a1e

−(t−t1)/Λm − (a1 + a2)e−(t−t2)/Λm + a2

)− a2 (t− t3) for t2 < t ≤ t3

((a1 + a2)t2 − a2t3 − a1t1) e−(t−t2)/Λm+
Λm

(
a1e

−(t−t1)/Λm − (a1 + a2)e−(t−t2)/Λm + a2e
−(t−t1)/Λm

)
for t3 < t ≤ t4

((a1 + a2)t2 − a2t3 − a1t1) e−(t−t2)/Λm+
Λm

(
a1e

−(t−t1)/Λm − (a1 + a2)e−(t−t2)/Λm + a2e
−(t−t1)/Λm

)−
a3Λm

(
e−(t−t4)/Λm − 1

)− a3 (t− t4) for t4 < t ≤ t5

((a1 + a2)t2 − a2t3 − a1t1) e−(t−t2)/Λm+
Λm

(
a1e

−(t−t1)/Λm − (a1 + a2)e−(t−t2)/Λm + a2e
−(t−t1)/Λm

)−
((a3 + a4)t5 − a4t6 − a3t4) e−(t−t5)/Λm−
Λm

(
a3e

−(t−t4)/Λm − (a3 + a4)e−(t−t5)/Λm + a4

)
+ a4 (t− t6) for t5 < t ≤ t6

. (44)

The only nonzero components of the anisotropy are b11 and b22, for which the NKE closure yields

b11(t) =
u′1u

′
1

2k
− 1

3
= −Cµ

k

ε
S̃11(t) = −b22(t) . (45)

Integration of the k and ε equations yields the anisotropy evolution shown in Figure 9, where the NKE
model shows excellent agreement with the PIV results of Chen et al. In particular, the NKE model correctly
predicts the slow decay of the anisotropy during the relaxation phase as well as the gradual increase to
positive anisotropy during the destraining phase. By comparison, the result from the SKE model in Figure
9 shows far poorer agreement with the experimental data.

IV.D. Shock-Turbulence Interaction

The interaction between a shock wave and homogeneous isotropic turbulence is typically modeled as steady
and one-dimensional, resulting in the compressible k and ε transport equations20

ρu
∂k

∂x
= −ρu′u′

∂u

∂x
− ρ (ε + εc) + p′θ′ and ρu

∂ε

∂x
= −Cε1ρu′u′

∂u

∂x

ε

k
− Cε2

ε2

k
, (46)

13 of 20

American Institute of Aeronautics and Astronautics



where ρ is the density, εc is the compressible dissipation rate, and p′θ′ is the pressure dilatation term.
Following Sinha et al.,20 the dissipation terms ε and εc, as well as the pressure dilatation, are taken to have a
negligible effect on the evolution of k and ε across the shock. The resulting transport equations are therefore
dominated by kinetic energy production and are written as

u
∂k

∂x
= −u′u′

∂u

∂x
and u

∂ε

∂x
= −Cε1u′u′

∂u

∂x

ε

k
, (47)

which can be integrated with respect to x.
The straining imposed by the shock is represented by a top-hat function of the form

S11(x) =
∂u

∂x
=





0 for x ≤ xi

S for xi < x ≤ xf

0 for xf < x

, (48)

where S is the shock strength and δ = xf − xi is the shock width. In order to properly simulate a shock
wave, the shock-turbulence interaction will ultimately be examined in the limit as the shock width δ goes to
zero.

The effective strain rate integral is written in spatial form as

S̃ij(x) =
∫ x

−∞

e−(x−τ)/Λm

Λm
Sij(τ)dτ , (49)

where note that Λm now has units of length instead of time. For the applied strain in (48), the effective
strain rate is

S̃11(x) =





0 for x ≤ xi

S
[
1− e−(x−xi)/Λm

]
for xi < x ≤ xf

S
[
e−(x−xf )/Λm − e−(x−xi)/Λm

]
for xf < x

, (50)

and the maximum value attained by S̃11 in the shock region is

S̃11(xf ) = S̃11,max = S
[
1− e−δ/Λm

]
. (51)

It is clear from (51) that as the width of the shock becomes small with respect to Λm, the maximum value
of the effective strain rate in the shock goes to zero. Thus, in the limit as δ/Λm → 0, the Reynolds stress
predicted by the NKE model becomes simply

u′u′ =
2
3
k . (52)

This is essentially a zero eddy viscosity model of the shock-turbulence interaction, and the k and ε transport
equations in (47) are easily integrated to obtain

k2

k1
=

(
u1

u2

)2/3

and
ε2
ε1

=
(

u1

u2

)(2/3)Cε1

, (53)

where subscripts 1 and 2 are the states upstream and downstream of the shock, respectively.
The zero eddy viscosity model gives closer agreement with DNS data21,22 than either the SKE or RKE

models, as shown in Figures 10 and 11. Note however, that further reductions in the eddy viscosity are
required to obtain better agreement with the DNS data, and this is not possible in the NKE model. Sinha
et al. were able to obtain improved agreement by considering shock unsteadiness,20 and it is possible that
the NKE model could be extended in the future to account for this effect.

V. Full Realizability

The NKE model

bij = −Cµ
S̃k

ε

S̃ij

S̃
(54)
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can also be made fully realizable. Note that in this regard, the distinction between the SKE model in (12)
and the NKE model is irrelevant. Following the basic approach used in the realizable k − ε (RKE) model
but changing the formulation slightly, the anisotropy is allowed to depend on a general function of S̃k/ε such
that

bij = −f

(
S̃k

ε

)
S̃ij

S̃
. (55)

For small S̃k/ε the agreement with the channel flow computational data in Figure 1 indicates that the closure
in (54) holds and

f

(
S̃k

ε

)
= Cµ

S̃k

ε
as

S̃k

ε
→ 0 . (56)

For large S̃k/ε, Figure 2 and the RKE model motivate an anisotropy independent of S̃k/ε such that

f

(
S̃k

ε

)
= C∞ as

S̃k

ε
→∞ , (57)

where C∞ is a constant. This large S̃k/ε limit is also consistent with the quasi-Lagrangian picture of turbu-
lence anisotropy, since for large S̃k/ε the vortical structures become completely aligned and the anisotropy
magnitude approaches a constant finite value associated with the maximum alignment.

Thus the anisotropy function f(S̃k/ε) is written in piecewise form as

f

(
S̃k

ε

)
=

{
Cµ

S̃k
ε as S̃k

ε → 0
C∞ as S̃k

ε →∞ . (58)

However, this function only renders the anisotropy model in (55) realizable, not fully realizable. To be fully
realizable, the anisotropy model must be able to access all regions of the Lumley turbulent state triangle23

in Figure 12, where the three invariants of the anisotropy tensor are

Ib = bii, −IIb =
1
2
bijbji and IIIb =

1
3
bijbjkbki , (59)

and the allowable turbulence states are bounded by
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i. −IIb ≤ 1
9 + 3IIIb,

ii. −IIb ≥ ±3
(

1
2IIIb

)2/3.

Any turbulence model that produces deviatoric stresses corresponding to anisotropy states (IIIb,−IIb) out-
side these bounds is predicting physically unrealizable state of turbulence. At the same time, any turbulence
model that cannot produce all possible states (IIIb,−IIb) within the turbulent state triangle (such as the
RKE model) is unable to represent all physically realizable turbulence states. Through the correct definition
of the constant C∞ in the equilibrium anisotropy function f(S̃k/ε), it is possible to obtain a fully-realizable
model that remains bounded within the turbulent state triangle and is at the same time able to access all
possible states within the triangle.

Using the general anisotropy model in (55), the second and third anisotropy tensor invariants are

−IIb =
1
2
bijbji =

1
2
f2 and IIIb =

1
3
bijbjkbki = −1

3
βf3 . (60)

The variable β is related to the second and third invariants of the mean strain rate tensor and is written

β =
S̃ijS̃jkS̃ki

S̃3
. (61)

Since −IIb and IIIb are completely determined by β and f , it is possible to conduct the realizability analysis
purely in terms of these variables. Thus, rather than restricting IIb and IIIb as in i. and ii., equivalent
restrictions are placed on the allowable values of β and f .

Realizability bounds on the value of β are determined from realizability condition ii, which yields

− 1√
6
≤ β ≤ 1√

6
. (62)

These bounds effectively ensure that the turbulence states predicted by (55) always remain within the left
and right sides of the turbulent state triangle in Figure 12, though they do not ensure that the states remain
below the upper limit of the triangle. For this, realizability must be imposed on the maximum allowable
value of f , which is equivalent to limiting the maximum degree of anisotropy. Since maximum anisotropy
occurs in the high S̃k/ε limit where f(S̃k/ε) = C∞, it is through the upper bound on f that an appropriate
value for C∞ is defined.

From realizability constraint i., we obtain a conditional equation for f of the form

βf3 +
1
2
f2 − 1

9
≤ 0 . (63)

For a given value of β, this cubic relation is solved by defining the parameter

θ = cos−1

[(
12
β
− 1

β3

)
|β|3

]
, (64)

where for β > 0

f ≤ 1
3β

cos
(

θ

3

)
− 1

6β
, (65)

and for β < 0

f ≤ − 1
3β

cos
(

θ + 4π

3

)
− 1

6β
. (66)

Note that in order for θ to be defined, β must be bounded as in (62). If β = 0 then equation (63) is no
longer cubic and the upper bound on f is

f ≤
√

2
9

. (67)

For a given value of β, these expressions provide upper bounds on the anisotropy magnitude f allowed by
realizability. In the sense that C∞ is the degree of anisotropy in the high S̃k/ε, maximum anisotropy limit,
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we define C∞ ≡ g(β), where

g(β) =





− 1
3β cos

(
θ+4π

3

)− 1
6β for β < 0√

2
9 for β = 0

1
3β cos

(
θ
3

)− 1
6β for β > 0

. (68)

This function is plotted versus β in Figure 13, where it is clear that the upper and lower bounds on g(β)
correspond to the two limits on β in (62).

Thus, the requirement of full realizability sets the constant C∞ appearing in (55), and the anisotropy
magnitude is now written as

f

(
S̃k

ε
, β

)
=

{
Cµ

S̃k
ε for 0 ≤ S̃k

ε ≤ g(β)
Cµ

g(β) for g(β)
Cµ

< S̃k
ε < ∞ , (69)

where g(β) is defined in (68) and θ is defined in (64).

VI. Additional Considerations

The explicit history integral that accounts for nonequilibrium effects in the NKE model is acceptable for
model validation on test cases that permit an analytical solution, such as in Section IV, but implementing
the model in a CFD code requires that only local, instantaneous variables can be used. To accommodate
this, the term Sij(τ) appearing in the effective strain integral can be Taylor expanded in a Lagrangian sense
about the current time t as

Sij(τ) = Sij(t)− S∇ij
∣∣
t
(t− τ) +

1
2

S∇
2

ij

∣∣∣
t
(t− τ)2 + . . . , (70)

where S∇ij denotes the Jaumann derivative, defined as

S∇ij =
DSij

Dt
+ SikΩkj − ΩikSkj , (71)

and

Ωij =
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
(72)
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is the mean rotation rate tensor. Whereas the material derivative DSij/Dt describes the change of the strain
rate tensor in a fluid element translating with the mean flow, the Jaumann derivative additionally accounts
for changes in the strain tensor due to rotation of the fluid element by the flow.

Employing the Lagrangian Taylor expansion in (70), the effective strain rate integral in (30) is written

S̃ij(t) =
∫ t

−∞

e−(t−τ)/Λm

Λm

[
Sij(t)− S∇ij

∣∣
t
(t− τ) +

1
2

S∇
2

ij

∣∣∣
t
(t− τ)2 + . . .

]
Dτ . (73)

Since all of the derivatives of Sij depend on t only, it is possible to write

S̃ij(t) = Sij(t) +
∞∑

n=1

(−1)n

n!
S∇

n

ij

∣∣∣
t

∫ t

−∞
(t− τ)n e−(t−τ)/Λm

Λm
dτ , (74)

and evaluating the moments of the history function in the integral, we finally obtain the expression

S̃ij(t) = Sij(t) +
∞∑

n=1

(−Λm)n
S∇

n

ij

∣∣∣
t

. (75)

It is computationally impractical to calculate all higher order Jaumann derivatives of the strain rate tensor,
so only the n = 1 term is retained, yielding an approximate expression for the effective strain rate

S̃ij(t) ≈ Sij(t)− CΛ
k

ε
S∇ij

∣∣
t
= Sij − CΛ

k

ε

(
DSij

Dt
+ SikΩkj − ΩikSkj

)
. (76)

This representation of the effective strain rate replaces the integral form in (30), thereby rendering the NKE
model described by Eqs. (29)-(31) suitable for implementation in RANS modeling codes.

The fully-realizable nonequilibrium NKE turbulence closure model is thus summarized by the following
set of equations:

u′iu
′
j =

2
3
kδij − 2kf

(
S̃k

ε
, β

)
S̃ij

S̃

S̃ij(t) ≈ Sij(t)− CΛ
k

ε

(
DSij

Dt
+ SikΩkj − ΩikSkj

)

S̃ =
√

S̃ijS̃ji; β =
S̃ijS̃jkS̃ki

S̃3

f

(
S̃k

ε
, β

)
=

{
Cµ

S̃k
ε for 0 ≤ S̃k

ε ≤ g(β)
Cµ

g(β) for g(β)
Cµ

< S̃k
ε < ∞ (77)

g(β) =





− 1
3β cos

(
θ+4π

3

)− 1
6β for β < 0√

2
9 for β = 0

1
3β cos

(
θ
3

)− 1
6β for β > 0

θ = cos−1

[(
12
β
− 1

β3

)
|β|3

]

where the k and ε transport equations from the SKE model close the system of equations, with CΛ = 0.26 and
Cµ = 0.09. Despite the fact that the NKE model above involves several additional equations when compared
to traditional two-equation closures such as the SKE model, it can be relatively easily implemented in
CFD codes. Once the effective strain rate tensor is calculated, all other relations in (77) are algebraic and
straightforward.

Lastly, we note that the NKE model in (77) indirectly bears some similarities to certain types of NLEVMs
(e.g., Speziale,12 Yakhot et al.,13 Yoshizawa and Nisizima,14 and Huang and Rajagopal15). The link between
these NLEVMs, which are derived on entirely different grounds, and the NKE model enters through the

18 of 20

American Institute of Aeronautics and Astronautics



Taylor expanded approximate effective strain rate. The NKE model can also be connected to more traditional
NLEVMs, where the low S̃k/ε form of the Reynolds stress closure in (77) is written explicitly as

u′iu
′
j =

2
3
kδij − 2Cµ

k2

ε
S̃ij =

2
3
kδij − 2Cµ

k2

ε
Sij + 2CµCΛ

k3

ε2

(
DSij

Dt
+ SikΩkj − ΩikSkj

)
. (78)

The material derivative of Sij can be expanded using the transport equation for Sij , which is derived from
the RANS equations as

DSij

Dt
= −SikSkj − ΩikΩkj −Πij + ν∇2Sij − 1

2
∂

∂xk

(
∂u′iu

′
k

∂xj
+

∂u′ju
′
k

∂xi

)
, (79)

where Πij is the pressure hessian

Πij =
1
ρ

∂p

∂xi∂xj
. (80)

For simplicity the last three terms in (79) are defined as

Fij ≡ −Πij + ν∇2Sij − 1
2

∂

∂xk

(
∂u′iu

′
k

∂xj
+

∂u′ju
′
k

∂xi

)
(81)

so that equation (79) is written
DSij

Dt
= −SikSkj − ΩikΩkj + Fij . (82)

The resulting Reynolds stress closure in the low S̃k/ε limit is then

u′iu
′
j =

2
3
kδij − 2Cµ

k2

ε
Sij − 2CµCΛ

k3

ε2
(SikSkj + ΩikΩkj − SikΩkj + ΩikSkj − Fij) . (83)

The expansion can be continued to even higher order by including additional terms in the expression for the
effective strain rate. It is the appearance of the second-order products of the strain rate and rotation rate
tensors above that is of interest in this connection, since terms of this type are commonly found in nonlinear
eddy viscosity models (NLEVMs). Thus the present consideration of nonequilibrium turbulence effects has
led to a model that reveals implicit connections to some existing nonlinear Reynolds stress closures, but in
general should be able to address much deeper nonequilibrium effects than do these previous models.

VII. Conclusion

Through an analysis of the physics underlying turbulence anisotropy in the equilibrium and nonequilib-
rium limits, a new physically-based, fully-realizable, nonequilibrium k− ε RANS model has been developed.
In four distinctly different test cases for which the nonequilibrium history integral can be evaluated analyti-
cally, this new closure model shows dramatically improved agreement with experimental and computational
data when compared with the SKE model. For the test cases considered, good agreement was obtained
without the need to vary any model parameters. In particular, the formulation of the memory time scale
Λm was identical for all flows examined, introducing the possibility that the new model may be closer to
achieving universal accuracy than current models. Moreover, the introduction of a nonequilibrium effective
strain rate allows this new model to be applied within a similar framework as currently used for two-equation
eddy viscosity models, thereby permitting relatively simple implementation in existing CFD codes.
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