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General Dynamical Equations of Motion
for Elastic Body Systems

Shui-Lin Weng* and Donald T. Greenwoodf
University of Michigan, Ann Arbor, Michigan 48109

A modeling technique capable of determining the time response of a single body (rigid or flexible) that is, in
general, undergoing large elastic deformations, coupled with large, nonsteady translational and rotational
motions, is presented. The derivations of the governing equations of motion are based on Lagrange’s form of
d’Alembert’s principle. The general dynamical equations of motion are expressed in terms of stress and strain
tensors, kinematic variables, the velocity and angular velocity coefficients, and generalized forces. The formu-
lation of these equations is discussed in detail. Numerical simulations that involve finite elastic deformations
coupled with large, nonsteady rotational motions are presented for a beam attached to a rotating base. Effects
such as centrifugal stiffening and softening, membrane strain effect, and vibrations induced by Coriolis forces
are accommodated. The effects of rotary inertia as well as shear deformation are also included in the equations
of motion. Although discussions here are restricted to a single body, the formulation allows the capability of a
general dynamical formalism for handling multibody (rigid or flexible) dynamics.

1. Introduction

OOKER and Margulies! as well as Roberson and Witten-

burg? wrote early papers in the mid-1960s that dealt
primarily with spacecraft dynamics. The methodologies they
presented were applicable only to systems of rigid bodies with
simple joints in a restricted configuration. Later, a number of
studies based on these methods were published.?* A typical
modern spacecraft consists of structural subsystems, some es-
sentially rigid and others extremely flexible, frequently inter-
connected in a time-varying manner. Formulation dealing with
this category of spacecraft is a procedure that employs discrete
coordinates to describe the unrestricted motions of those
structural subsystems idealized as rigid bodies, in combination
with distributed or modal coordinates to describe the time-
varying deformations of those structural subsystems idealized
as flexible elastic appendages.>® Advances also have been
made concerning the coupling effects between gross transla-
tional or rotational motion and the elastic deformation of
elastic bodies.” !

Repeated numerical simulations are needed to establish a
satisfactory design for the prototype of a spacecraft. In an
effort to facilitate the simulations of multiple interconnected
bodies, analysts have come to rely more and more on general
multibody dynamics formalisms. A dynamical system may be
translating or spinning in whole or in part and may be expected
to undergo large changes in inertial position and orientation.
It has become necessary to devise methods of dynamic analysis
that combine the generalities of nonlinearities and large mo-
tions with the computational efficiency afforded by the use of
modal coordinates in describing the vehicle deformations.

Mathematical modeling tools are used to analyze the prob-
lems and to derive the dynamical equations of motion for a
multibody system. Comparative studies!? suggest that Kane’s
method!3!* or some related generalization of Lagrange’s form
of d’Alembert’s principle!® most closely combines the two com-
putational advantages: 1) the nonworking constraint forces
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and torques do not appear and 2) the resulting equation set is
of minimum dimension.

A modeling technique capable of determining the time re-
sponse of a rigid or flexible body that is, in general, under-
going large elastic deformations, coupled with large, non-
steady translational and rotational motions, is considered. The
derivations of the governing equations of motion are based on
Lagrange’s form of d’Alembert’s principle. The general dy-
namical equations of motion are expressed in terms of stress
and strain tensors, kinematic variables, the velocity and angu-
lar velocity coefficients, and generalized forces. These equa-
tions can be derived systematically.

It is well known that when flexible structural elements are
attached to a rotating base, the apparent stiffness of the struc-
tural elements varies with the magnitude of the inertial angular
velocity of the spinning base. Also, in linear structural theory,
the transverse vibration of a beam is calculated without consid-
ering axial forces. But in some cases, €.g., in rapidly rotating
turbine or helicopter blades, it is not possible to ignore the
effect of axial forces on the bending vibration of blades. When
the beamlike blade is spinning, so-called centrifugal stiffening
effects that are due to the presence of axial (centrifugal) forces
come into play. Coupling betwen centrifugal forces and bend-
ing moments makes a rapidly spinning beam stiffer than is
predicted by linear theory. In the light of this situation, it is
important that a multibody formulation correctly reflects mo-
tion-induced stiffness.

To resolve the difficulties, a single generalized formalism,
the general dynamical equations of motion, is introduced. It is
distinguished from a method using the shortening effect!6-18
explicitly in that here the centrifugal stiffening terms enter the
final equations through the potential energy rather than
through the kinetic energy. Also, we investigate the mecha-
nism of motion-induced stiffness variations in various types of
elastodynamic structures undergoing large overall motions.
Effects such as centrifugal stiffening and softening, membrane
strain effect, and vibrations induced by Coriolis forces are
accommodated. The effects of rotary inertia as well as shear
deformation are also included in the equations of motion.

In Sec. I1, we include the finite displacement theory of elas-
ticity, the principle of virtual work, and the preliminaries to
the actual dynamical problem for the purpose of complete-
ness. In Sec. III, a generalized formalism to analyze the dy-
namical system, the general dynamical equations of motion
based on Lagrange’s form of d’Alembert’s principle, is devel-
oped. In Sec. IV, an analysis of a single flexible beam is pre-
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sented to illustrate the formulating procedures of the general
dynamical equations of motion. Section V applies the flexible
beam theory of Sec. IV to several problems. Section VI pre-
sents the conclusions.

II. Modeling of Flexible Bodies

In this investigation, we assume that a rigid or deformable
body may experience large translational or rotational displace-
ments relative to an inertial coordinate system. Although a
body-axis system that is rigidly attached to a point on the body
is commonly employed as a reference for rigid components,
there are many arrangements for the body axes of flexible
components.'®?® The origin of this reference frame does not
have to be rigidly attached to a point on the deformable body,
but frequently it is so chosen. We will attach the body axes to
a small rigid volume element at one end of the beam.

Analysis of Strain

In the present section, we shall treat the finite displacement
theory of elasticity in rectangular Cartesian coordinates and
employ the Lagrangian approach, in which the coordinates
defining a point of the body before deformation are employed
for locating the point during the subsequent deformation.

Let a rectangular Cartesian coordinate system x!x2x? be
assigned to each body, and let the relative position vector of
an arbitrary point P©@ of the body before deformation be
represented by

rO=rOe!, x2, x3) 6}

as shown in Fig. 1, where the superscript (0) means that the
quantity refers to the state before deformation. The base vec-
tors in this coordinate system are given by

aro

k=1,2,3) (3]

where the notation ( ) , denotes differentiation with respect to
x*. The base vectors are unit vectors in the direction of the
coordinate axes and are mutually orthogonal.

The body is now assumed to be deformed into a strained
configuration. The points P@, Q©@, RO, SO and T® move
to new positions denoted by P, Q, R, S, and 7, respectively,
and the infinitesimal rectangular parallelepiped is deformed
into a parallelepiped that, in general, is no longer rectangular.
Let us denote the position vector of the point P relative to
the body frame by

r=r(x!, x% x% 3)

where (x!, x?, x%) are actually the Cartesian coordinates of
P©_ Introduce the lattice vectors defined by

=T =Ty, (r=1,2,3) “@

Fig. 1 Geometry of an infinitesimal parallelepiped.

Fig. 2 Geometry of body axes and inertial axes.

In general, the lattice vectors are neither unit vectors nor are
they mutually orthogonal.
Next, let us express the position vector of the point P as

r=r%+d (5)

where d is the elastic displacement vector expressed in the
Jj-frame. From Eqgs. (4) and (5), we have

L,=(&+d})ix ©

where 6% is the Kronecker symbol. The summation conven-
tion will be employed hereafter. Therefore a Greek letter index
s $ X, or k that appears twice in the same term indicates a
summation over (1, 2, 3). Consequently, Green’s strain tensor
can be calculated in terms of the displacement components as
follows:

e, = Va(dh+di +dX dX%) )

Analysis of Stress and Stress-Strain Relations

The force equation for the equilibrium of the deformed
parallelepiped is given by?!

o +F=0 ®)

where ¢* is the second Piola-Kirchhoff stress vector acting on
the uth face of the deformed parallelepiped, and Fis the body
force acting in this parallelepiped. We note that ¢# is defined
per unit area, and F is defined per unit volume, both with
respect to the undeformed state.

Assume that the material is isotropic. The stress-strain rela-
tion is?!

Ev
= ——————— e, 0, + 2Ge 9
A+l -2 “H v ®
where Young’s modulus E, Poisson’s ratio », and the shear
modulus G are related by E=2(1+»)G.

Dynamics of an Elastic Body

Let a rectangular Cartesian coordinate system X! X2.X3 be
fixed in inertial space, and let the corresponding unit vector
system be i, i, i3, as shown in Fig. 2. The origin of the body-
axis system x'x2x3 is located at a position rg relative to the
origin of the inertial frame. Then the inertial position vector r
(see Fig. 2) of a representative point P of the elastic body is

r=rc+r9+d (10)
where we recall that r@(x!, x2, x?) is its position relative to the

body frame before deformation, and d is its elastic deforma-
tion vector relative to the body frame. The vector rg is ex-
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a Center of Mass

Fig. 3 Geometry of a rigid body.

pressed in terms of its inertial components, but @ and d are
expressed in j-frame components; that is,

rO=x#j, and d=d*j, 11)

From Eq. (10), we obtain

dr ~ dr

where the absolute angular velocity of the j-frame is

dd
dr _drg | <E> + o x (rO+d) (12)

w=Pji+ Qj:+ Rj3 (13)

and where (dd/d¢), is the rate change of d as viewed from this
rotating frame in which the j, unit vectors are constant.

The dynamical equations of motion are obtained by using
d’Alembert’s principle in its Lagrangian form involving vir-
tual work. Here we lump the inertia force — p(d?r/dt?) with
the body force F, each per unit volume. We consider an elas-
tic body that is subject to body forces F(x!, x2, x3,¢) dis-
tributed throughout the body, surface forces B(x!, x2, x3,¢)
applied on the surface S, and specified surface displacements
r(x', x2, x3,t) on the surface S,. The virtual work expression
for the dynamical problem is

d*r
[

—SS B-6rdS=0 (14)
Sy

The first integral represents the first variation of the stored
elastic energy, whereas the second integral represents the vir-
tual work of the body forces and inertia forces, and the third
integral represents the virtual work of the surface forces acting
on §;. As the motion of the surface S, is prescribed, it does not
enter into the virtual work expression. The virtual displace-
ment ér is given by

dr = drg + 8d*j, + 60 X (rO+d) (15)

where 60 is the virtual rotation of the body axes; i.e., the
j-frame.

III. General Dynamical Equationé of Motion

Let us begin with the matrix equation relating the unit vec-
tors of the body-axis j-frame and the inertial i-frame, where
A is an orthogonal matrix:

Jx=Al; 16
Using Eq. (6), we see that L, and i are related by

L,=Zj,=ZAi, (17)

where Z is the nonorthogonal matrix:

1+d} d3 d3
(Z1=} dy 1+d% d3 (18)
dh di 1+d}

General Case: Elastic Body

We can write Eq. (14) in the following form and see each
term more explicitly:

m FXj,-6rii dV; + ” BYj,-brfi,dS
v 5
azrx. .
- j“vp—d—t—z—tx-érﬁ;dV

- SH oL, - (6rfi;),,dV =0 19)
14
We can also rewrite Eq. (15) as follows:
8riiy=0drfic+8d5j + 805 x (rO%j, +d¥j,) 20)

Let {o% } be the L-frame skewed components and let {o}} be
the {-frame components of the same stress vector ¢*. Then

{of ) =1A4171Z)" {0} } @n

Now we revert to the notation {¢f } = {0*} and write Egs. (19)
and (20) in matrix form as

m ([A]T{F})Tlér}dV+H (1A17¢{B})"{sr} dS
14 $

dzr)7T
] ol oo

- m (1A17[Z]17{o*})T(or,,} AV =0 (22)
14

and
(6r) = (6rg) + [A17(8d} + [A]1T(6B1({(r@} + {d}) (23)

Here [6~6] is a 3 X3 skew-symmetric matrix representing the
vector cross-product. In addition to the preceding two expres-
sions, we still need to know {4r ,}. Note that {rg} is not a
function of body axis variables; we obtain

(6r,) = [A17(8d,} + [A1T[801((rQ} + (d,))  (24)

Suppose we have n generalized coordinates, and those corre-
sponding to elastic displacements are associated with assumed
deflection forms. Then, in terms of x and ¢, we have

{re} ={ro(g,0)}, r®}=[{rO)}, {d}={d(x,q)} 25

beam

Fig. 4 Rotating cantilever beam.
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where x represents the spatial variables (x!, x2, x3). The abso-

lute velocity of the point G is

I, d 2
{vg) = lra) _E— {ralq; + — trg} (26)
j=10dq ot

Next, let us define the velocity coefficient {,yjc_;] due to g; as

d d
['Y,}—a;j{vc}“gtzirc} 27

where i-frame components are chosen. The virtual displace-
ment {6rg} can be expressed as

n a n
ors} =Y 30, {re}ég; = X vy )bq; (28)
Jj=104g; Jj=1

The virtual displacement {6d} can be derived using a similar
procedure. The velocity {d} due to §; of the generic point P
is a relative velocity, and we find that

5 0
— ; 29
; 24, (29
The relative velocity coefficient {‘yf} due to g; is
a . a
)= {d} = —— (d} (30)
o g, { aq;

where the components are expressed in the j-frame. So the
virtual displacement {6d } can be expressed as

0
{6d}=j§15cz—,{ Jégq; = E {v]}dq 3D

and the spatial derivative of the virtual displacement {dd } can
also be expressed as

n

a
(éd,y =X Y {d,}oq; = E {v]..)8q (32)
qj

j=1

To obtain the virtual work due to inertial moments, we first
define the angular velocity coefficient {3;} as follows:

2
{8;} =7 v} (33)
J aql
where {w} is the absolute angular velocity of the j -axis system.
Then we can express a small virtual rotation {60} in the form

n

(80} = X {B,}8q; (4

Jj=1

rigid wheel

Fig. 5 Flexible beam cantilevered at the rim of a rigid wheel.

Now we are ready to consider the first integral of Eq. (22).
When we substitute Eq. (23) into this integral, and use j-frame
components, we obtain

m ([A]T{F})T{arw=m (F17 (141676 )
|4 14

+(8d) +[601((r®) + {d})) av 3%)

The terms on the right-hand side of Eq. (35) represent the
virtual work due to the resultant applied forces. By intro-
ducing the virtual displacements of Eqs. (28) and (31), and
the virtual rotation of Eq. (34), into the right-hand side of
Eq. (35), we obtain

mv(mmm)%r} dV=j)§:1 mymmm dvsq; (36)
where the superscript B denotes an applied body force. Also,
(v} =1A100) + () + BA(r9) + (d)) 6D

and
(55) = () (38)

By a similar procedure, we obtain the second integral of
Eq. (22) in the form

” (1417(B)T(or} ds = ﬁs (F5)7(y;) dSég; (39)
S, J= 1

where the superscript S denotes an applied external surface
force and

(5%} = (B} (40)

Next, let us consider the third integral of Eq. (22) where we
need to compute {7}. We know from Eq. (10) that r can be
expressed in matrix form as

{r}=1{re} +[AI"(r?) + [4]7(d} 41)
Now [A4], {rs], and {d} all vary with time, but {r©@} does

not. So, taking the derivative of Eq. (41) twice, with respect to
time ¢, we obtain

{F} = {Fo} + [A]T[@1{r@} + [A]7[@]*(r)}
+[A]7[@]{d} + [A]7[@]*(d)
+2[4)7[@)(d) + [A]7(d) 42)
where we note that [A]= — [@][4] = [&]T[A].
Substitute Eqs. (42) and (23) into the third integral of Eq.
(22), and then substitute the virtual displacements of Egs. (28)

and (31) and the virtual rotation of Eq. (34) into the former
result, obtaining

—ng &l;} {6r}dv = Eﬁg {F*}7{y;} dVéq; (43)

where the asterisk denotes an inertial force. Using j-frame
components,

(5*) = —p(1A1{F6 ) + [B1{rO) + [&]*(r©)
+[0){d) + @12 (d ) +2[al{d) + (d)) 44)
Finally, we shall consider the fourth integral of Eq. (22),

which involves the stress tensor. If we substitute Eq. (24) into
the fourth integral of Eq. (22), and use the derivative of virtual
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Fig. 6 The x displacement u vs time ¢.

displacement of Eq. (32) and of virtual rotation of Eq. (34), we
obtain, after switching to j-frame components,

—my(m]TIZV{M})TW,,J av

where the superscript E denotes an elastic force and
(FE) = ~[Z] (0¥} (46)

Note that no elastic energy is stored due to a rigid body dis-
placement, so only elastic displacements are considered here.

Next, in accordance with d’Alembert’s principle, we can
sum the virtual work of the applied and inertial generalized
forces to obtain

1<HSV<<{§B} +(5*1) 1y ) + {EFE“}T{Vf,M}) av

+ H {(F5 7y dS>5ij =0 CO)
8y

where 6g conforms to any constraints.

Let Q;, QF and QJ-E be the generalized external applied
forces, the generalized inertia forces, and the generalized elas-
tic forces, respectively, and we obtain the following expres-
sions:

-

H

J

Q= m {F5) Ty} dV + SL (F5)7(v,; 1 ds
14 1

of = m (F*}7{y;} dV
|4
QoF = m (FET(y] ) av
|4
Hence, we see that d’Alembert’s principle leads once again to
Zl (Q;i+QF+0)8g; =0 (48)
j=

More explicitly, however, with the aid of Eqs. (36), (39), (43),
and (45) we obtain

) <Q, - my(p([chl +[G)(rO} + [3]2(r©)
-
+[31d) +[a12(d ) +2[a1(d) + (d}) ()

+(1Z17{o*})T(),)) dV>5qj=0 49
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Fig.7 The y displacement v vs time 7.

Next, let us make the further assumption that the various
q are independent. Then each coefficient of &q; vanishes in
Eq. (48) and we obtain

Q;+Qf+0f =0,

or in greater detail,

(U=12,...,n) (61}

ﬁg p([A1(F6 ) + (@l (rO) + 312 (r @) +[G](d)
V

+[@)Pd) + 201 (d) + (d)) (v ) AV

+ m (1Z17{0"}) 7L} dV = Q;,
14

(G=1,2,...,n) (51

Equation (51) is the matrix form of the general dynamical
equations of motion for a system that is not subject to holo-
nomic and nonholonomic constraints on the generalized coor-
dinates. Now, let us take a closer look at the problems of
representing the dynamical equations of constrained systems.

Constrained Systems

Consider a system whose configuration is given by n gener-
alized coordinates g1, 43,...,4q,. Suppose there are m inde-
pendent constraints of the form

Elaji(q,t)fli*‘ajt(q,t):(), UG=12,...,m) (52)
i=
where these expressions are not integrable for the case of non-

holonomic constraints. If the constraints are actually holo-
nomic and of the form

$i(g,1)=0, G=12,...,m) (53)

‘then, upon differentiation with respect to time, they have the

form of Eq. (52) but are integrable. In either case, let us
introduce a set of (n — m) independent velocity parameters u;,
known as generalized speeds,'* which are consistent with the
constraints and are related to ¢ by the equations

uj= ig ¥,i(q,0)q + ¥ (q,0), (J=12,...,n—m)  (54)

where u may represent true velocities or quasivelocities; i.e.,
there is no integrability requirement on Eq. (52). If Eqs. (52)
and (54) are solved for ¢ in terms of #, one obtains

n—m

ai= L %;(@0u; + ®ul@.0,  (i=1.2,...,m) (55
J=
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For this constrained system, one can use Eq. (55) to elimi-
nate ¢ in favor of a set of (n —m) independent u as velocity
parameters. Then Eq. (51) still applies if one defines the veloc-
ity coefficients and angular velocity coefficients with respect to
these new velocity parameters, that is,

oy 9 . iy 9 -
vil= au, trcl, {vi}= au; {d}

il . [i]
‘.1 E i = —
{9} au; {d,}, {81 3u; o)
Thus, we obtain (n —m) dynamical equations

“S p(IAl{F6 ) + (O {r@) + 312 (r@) + [@] {d}
14
+[@12(d} +20@1{d} + (d})T{y;) dV

+ m (1Z17¢o* ) T(v] ) AV = Q;,
|4
(j=1,2,...,n—m) (56)

where Q represents generalized forces associated with u and
where

() =418} + Y + IBI(r@) +(d))  (57)

Special Case: Rigid Body

Now, consider the special case of a rigid body motion. The
origin G is the reference point and we assume that this point is
fixed in the body (see Fig. 3). The mass of the body is 7, and
its center mass position relative to G is p¢c. Also, we know that

US pdV =m and “S pr@dV = mpc (58)
v v

After some algebraic manipulations, the general dynamical
equation of motion (51) becomes,?? in vector form,

mFg+pc) v8 + I @+ woXI-w+mpeXic) B; =Q;
(j=12,...,n) (59)

where there are n independent generalized coordinates. Notice
that the inertia dyadic 7 is taken about its reference point at G..

flexible beam

rigid body
(circular disk}

Fig. 8 Rotating pinned-pinned beam.

IV. Analysis of Flexible Beams

When flexible structural elements are attached to a rotating
base, as shown in Figs. 4 and 5, the apparent stiffness of the
structural elements varies with the magnitude of the inertial
angular velocity of the spinning base. For some base-element
attachment configurations as in Fig. 4, the stiffness of the
elements increases with base angular speed,?? whereas for oth-
ers, such as Fig. 5, the stiffness decreases.?* In this section we
analyze the deflection of a flexible beam with large overall
motions, which performs a prescribed planar rotational mo-
tion around the i;-axis (or j;-axis), by using the general dynam-
ical equations of motion.

Now let us derive the differential equations of motion for
this rotating beam (see Fig. 4), whose motion is confined to the
X-Y plane. We choose xyz as body axes and the origin G as the
reference point for the beam. Generalized coordinates g;
(/=1,2,...,n) will be used to represent the configuration of
the rotating beam at any time #. The velocity of the reference
point G is zero. This leads to the velocity coefficients {7}3]
being equal to zero. The angular velocity of the j-frame is
prescribed as a function of time, so the corresponding angular
velocity coefficients {8;] all vanish. Also, we assume that
there are no applied forces, so the generalized external applied
forces Q; are zero. But the velocity coefficients {'yf} resulting
from elastic deformations and their spatial derivatives are
nonzero.

Next, let us make the following assumptions. First, by the
choice of axes and from the definition of the central line as the
line of centroids of the cross sections, we have

”ydydz=”zdydz=”yzdydz:0 (60)
A A A

where A is the area of the cross section. Second, the centroidal
displacement vector {D}={u v w}Tis a function of x and ¢
only, and we set w =0. Third, we assume that the stress com-
ponents ¢?, ¢%, ¢*%, and ¢”* may be neglected in comparison
with the other stress components, and then the stress-strain
relations of interest are

0¥ =FEe,, and o™ = 2Ge,, 61)
Fourth, we employ the hypothesis that the cross sections per-
pendicular to the centroidal locus before bending remain
plane. Also, the shape of the cross section does not change
during bending.

Assume that the displacement in the x direction is

u(x,0) = £ 61,004, (62)

where ¢;(x) is an assumed deflection form, g, is a general-
ized coordinate, and p, is the number of spatial functions
representing u(x,q). The lateral displacement (y displace-
ment), which is due to bending and shear deformations, is

H2 83
V(xX,q) = vp(X,q) + vs(x,9) = 10 b2;(X) G + X $3,(%)q3;
j=1 Jj=1
63)
where ¢,;(x) and ¢;;(x) are assumed deflection forms due to
bending and shear, respectively, g,; and gs; are the correspond-
ing generalized coordinates, and u, and u; are the correspond-
ing numbers of spatial functions representing bending and
shear displacements v,(x,q) and v,(x,q).

We shall now consider a large deflection of an elastic beam.
However, we will be satisfied to limit the problem by assuming
that, although the deflection of the beam is no longer small in
comparison with its height, it is still small in comparison with
the longitudinal dimension of the beam. We may then employ
the following expressions for total elastic displacements d*, d”,
and d* to third order in the small quantities y, u, v, and v;:

X—y v, d’=v—Yiy())?:  di=0  (64)
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where v is the beam slope due to bending deformation, and
( )’ represents a( )/dx.

The strains e, can be calculated in terms of y, u, v, and v,,
to third order,

e =u’ —yvi + Va(u' Y+ %O’ Y —yu'v
ey = 1/2(1/’ —vy—u’'vg — 1/zv’(v,,’)z)
€, =0 65)

Since the shear deformation is small in our examples, the ex-
pression for e,, can be simplified to

ey =2V ~vy) =Yy (66)
which shows that the strain e,, is equal to one-half the beam
slope due to shear deformation.

Finally, we obtain the nonlinear differential equations of
motion:

T

V. Numerical Simulations

Recently it has been showr that the geometric nonlinearities
arising from the coupling of longitudinal and transverse defor-
mations have a considerable effect on the deformation of
beams with large, nonsteady translational and rotational mo-
tions.?>-32 In this section we simulate some rotating beam sys-
tems by using the general dynamical modeling method dis-
cussed in the previous seciton. The angular velocity w of the
spinning system as a function of time ¢ for the first two exam-
ples is

0 - (ws/ T [t = (Ty/2m) sin@nt /T))) j
“e= wsf3 t>T;

O<t=<T,

(68)

where T is the time to reach the steady-state angular velocity
w,. This motion is sometimes called a spin-up motion since the
speed smoothly increases from 0 to w;. It represents a particu-
lar example of general overall motion. The geometrical and

ou
e AN e rn2 _ \ ‘i —
@V~ x+u)—2wv+i 3,
v ., ov . vy
AY @(x +u)—w?v +2wit+ v — dx+§1 /74 dx+w§1 — dx
§Lp ) ag; P ag; L dg;
0 0
EA(u’ +%(")2+3/2u")?+ Yau'(v')? + Ya(u')?) %ﬂq—
J
v’ avg . avy
+ EA(u'v’' + %)+ YVau’)2v’ = dx+SE1v"——dx+SkGAv' dx =0
I, e ) e x| pros b ac | ko B
0 0
(J/=12,...,n) (67)

where we retain terms up to third order for the first five
terms, which involve u, v,, and v, and to first order for the last
term resulting from v,. The terms with the rotary inertia
I, ={§40y2dy dz treated as second order are included in the
equations of motion during the analysis. In determining orders
of magnitude, we consider area A4 ={{4 dy dz to be of zero
order, and moment of inertia I, = [{ 4 y* dy dz to be of second
order. The factor k in the expression is appended to take
account of the nonuniformiity of the éxy over the cross section.

w0
IS
o

u-(meters)

e

0.0 Lmlinan it enn it

00 50 100 150 200 250 300
t (sec)

Fig. 9 Midpoint x displacement u vs time 7.

numerical data used for simulation of the system are listed in
Table 1.

Example 1

A cantilever beam attached to a rigid base is shown in Fig. 4.
The rigid base performs a prescribed spin-up rotational
motion w [Eq. (68)] around a vertical axis, assuming w; =6.0
rad/s and beam length L =10.0 m. Figures 6 and 7 show the

v (meters)

-0.15 AT Ll S |
00 50 100 150 200 250 300
t (sec)

Fig. 10 Midpoint y displacement v vs time 7.
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Table 1 Beam properties

Density, kg/m3 p =3.0x103
Young’s modulus, N/m? E =7.0x10'0
Shear modulus, N/m? G =2.5x1010

Length, m L

Cross section area, m?2 A=40x10"1%
Area moment of inertia, m? I;=2.0x10"7
Spin-up time, s Ts=15.0
Steady-state angular velocity, rad/s Wy

0.000 —

-0.002

]
(=]

.004

u {meters)

-0.008

40.0 60.0 800 1000
t (sec)

-0.010

Fig. 11 The x displacement u vs time ¢.

v (meters)

e S P B I SPIF R S
00 200 40.0 60.0 80.0 1000
t (sec)

Fig. 12 The y displacement v vs time ¢.

plots of the x displacement u and the y displacement v of the
free end of the cantilever beam.

Example 2

A beam pinned at both of its ends to a rigid body is shown
in Fig. 8. The rigid body performs a rotational motion around
a vertical axis passing through one end of the beam. For this
system, the same type of prescribed spin-up motion is given as
in Eq. (68). Three cases of final steady-state angular velocities
ws =2.219, 2.0, and 6.0 rad/s are considered with the same
beam length L =20.0 m. The first case gives the critical angu-
lar velocity, and a comparison of the last two cases shows the
existence of residual lateral displacements if the angular veloc-
ity is larger than the critical angular velocity. Figures 9 and 10
show the plots of the x displacement # and the y displacement
v, respectively, of the midpoint of the pinned-pinned beam vs
time ¢ for wy =2.219 (dashed line), 2.0 (dotted line), and 6.0

(solid line). The physical meaning of the existence of the resid-
ual lateral displacement for w; = 6.0 in Fig. 10 is that the trans-
verse centrifugal inertial force, created by the steady-state an-
gular velocity, increases rapidly enough with v to cause
buckling. Nonlinear membrane forces are important in deter-
mining the final steady displacement in v.

Example 3

Figure 5 shows a beam cantilevered at the rim of a rigid
wheel, which performs a constant rate of rotational motion
around a vertical axis. By assuming the initial conditions of
nonzero displacements (g) and zero velocities (g), the plots of
the x displacement u and the y displacement v of the free end
of the cantilever beam vs time ¢ for four constant angular
velocities w; =3.236 (dashed line), 3.237 (chain-dashed line),
3.238 (dotted line), and 3.239 (chain-dotted line) in radians/
second are shown in Figs. 11 and 12, respectively. Beam length
L =10.0 m is used for these simulations. When the angular
speed is larger than the critical angular speed, the solution
diverges. The physical meaning of the simulation result is that
buckling occurs when the centrifugal inertial force, created by
the steady-state angular velocity, is stronger than the elastic
restoring force, and remains so with increasing deflection.

V1. Conclusions

A general formalism has been presented, based on La-
grange’s form of d’Alembert’s principle and including non-
linear strain relations. This theory can be used to determine the
time response of flexible structures undergoing large elastic
deformations coupled with large, unsteady rotational motions.
Various assumptions, such as plane sections remaining plane,
are added when appropriate, but are not included in the orig-
inal formulation. Several examples are included that involve
the dynamics of rotating beams. The same formulation applies
to cases emphasizing centrifugal stiffening, membrane effects,
and buckling. No special assumptions are needed in these
cases. The formulation is suitable for elastic systems with pre-
scribed forces or displacements as functions of time, and it can
be extended to the analysis of multibody systems.
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