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A discrete cohesive zone method finite element is used to evaluate traction law effi-
ciency and robustness in predicting decohesion in a finite element model. Three traction
laws are reported and are compared from the perspective of their computational efficiency
and robustness. The smooth traction laws (based on the beta distribution and sine func-
tions) are found to have greater computational efficiency than the trapezoidal traction law.
Efficiency gains are due to the elimination of the stiffness discontinuities associated with
the generalized trapezoidal traction law. The sinusoidal traction law is found to be more
robust and efficient than the other traction laws.

I. Introduction

Finite element modeling and other forms of computational analysis have become indispensable tools in
system design and mission preparation. An active area of research is the application of these methods

to the field of adhesive systems, bonded joints, and delamination. Though finite element (FE) modeling of
adhesively bonded joints began as early as 1971,1,2 the field is not yet mature. Recent efforts include the
following techniques: continuous cohesive zone method,3–7 discrete cohesive zone method,8–15 virtual crack
closure technique,16–22 element internal cohesive segments,23 and other adhesive region models.24–27 The
references provided here are not an exhaustive list.

The continuous cohesive zone method (CCZM) and discrete cohesive zone method (DCZM) models are
particularly well suited to analysis of decohesion in composite materials. The length scale associated with
the process zone is larger than any characteristic length of the material.28–34 Cohesive zone models have
begun to be incorporated into commercial software including Abaqus R©35,36 and Genoa R©37 as well as freely
available research codes like Tahoe R©.38

The DCZM technique is seen as a promising alternative to the CCZM. Continuous cohesive zone elements
have been found to be mesh sensitive (in some circumstances), to suffer from convergence difficulty during
the softening portion of the cohesive law, and to have sensitivity to aspect ratio.23,39–41 A rich description
of the strengths and weaknesses of the cohesive zone methodologies is provided by Xie and Waas.13 In
contrast, the DCZM methodology treats the process zone as a point-wise spring foundation that is discretized
to node pairs of adjoining surfaces. The method is scalable to the node spacing and is claimed to be free of
mesh dependency.8,13 The stiffness matrix is sparse and is therefore computationally efficient. Though it
does not avoid instability due to strain softening, careful application of damping stabilization can improve
convergence.

Though they are an important advancement, these “production level” continuum cohesive elements have
not been widely adopted. A primary obstacle to their widespread use is the local and highly non-linear
constitutive response of the adhesive materials and their adherends. In addition, the analyst often encounters
the physical phenomenon that a joint (poorly designed or by necessity) can be subject to catastrophic failure
modes that are accompanied by large and sudden changes in load and structural stiffness. These two
analytical obstacles, when coupled together, cause great difficulty in obtaining a converged solution. To date
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they have prevented widespread deployment of the available analysis techniques. There are ongoing efforts
to develop improvements to the available methods.42–44

Using simple and elegant arguments, Hillerborg et al.8 proposed the essential components of a spring-
based traction law element capable of analyzing crack formation and propagation. The “fictitious crack”
element featured the ability to predict new cracks based on a stress criterion (σc) while also predicting
crack growth based on an energy criterion (Gc). The concept has experienced a (independently conceived)
revival and found application to laminated composite materials,9,10 geometrically non-linear behavior,14

and Mode II fracture,13 and has recently been referred to as the DCZM. Similar elements have also been
presented.45,46

Reliable and efficient convergence remains the largest computational hurdle in deployment of robust
cohesive models. The propagation of a softening law through a structure is computationally challenging.47

Methods to address this difficulty have had mixed success. Arc length methods have been attempted by
several authors,7,48,49 however they tend to suffer from large spurious oscillations. It was reported that this
was due to a lack of mesh refinement, however it is unclear what role the strain softening traction law may
have played in the oscillations. Line search algorithms are often considered a remedy for lack of convergence,
however complications arise for non-conservative problems.50 When used in conjunction with the primary
methods of this work, neither of these methods were found to have significant additional benefits.

The present approach to obtain robust convergence is to apply a traction law with “smooth” stiffness
gradients while simultaneously using viscous damping for stabilization when necessary. Others have em-
ployed “smooth” laws, though it does not appear that they were chosen with improved convergence as their
primary goal. For example, Goyal et al.26 used a law based on the exponential function which therefore
has no stiffness discontinuities. A line search algorithm was employed and the stiffness was set to zero
when the law was undergoing strain softening. It was claimed that convergence difficulties were eliminated,
however independent verification is still pending. Alfano and Crisfield48 claim that the use of the tangent
modulus should give better convergence of the residual norms and this method was used for the bulk of the
current work. Corigliano et al.51 also used an exponential traction law, however no claim was made about
convergence.

In this article, a DCZM element and several traction laws are evaluated from the perspective of efficiency
and robustness for use in modeling decohesion in structures. The element features a computationally efficient
traction separation formulation, optional viscous damping for stabilization, standard 2D and 3D interfaces,
and a modular interface for specifying the desired traction law. Three traction laws are presented, one
of which is commonly used and the others which are designed specifically for convergence efficiency. A
comparison of the convergence efficiency and robustness of the three laws is provided based on models of
two coupon-level tests.

II. Solution efficiency

In Gustafson and Waas,15 it was reported that crack stability depends on the specimen loading and
the traction law. A more detailed description of this dependency is reported in this section. Two topics
must be considered when addressing solution efficiency for the computation of cohesive problems: structural
instability and numerical convergence.

A. The critical crack separation

In structures that can decohere, structural instability primarily arises from the sudden failure of the bonded
interface. In this case, the absence of a formulation accounting for kinetic energy can cause an imbalance
between the strain energy release rate and the energy dissipation due to permanent deformation. This
imbalance causes a sudden and large change in the stiffness and load of the system. As a result, an incremental
FE solver can struggle to find an equilibrium solution.

At a given level of strain energy release rate, the structural stability margin is primarily dependent on
the critical crack separation (δc) in figures (1, 2, and 4). If the value of δc is large, the system is “soft”.
For a given displacement in this state, load transfer occurs over a large material volume and the strain
energy is relatively small for the global displacement. As the global displacement increases, the loads are
“smoothly” transitioned to neighboring elements via a gradual and dispersed stiffness change. The solver
finds the equilibrium path with relative ease. Conversely, if δc is small, the load transfer is concentrated
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into a small material volume with a relatively large strain energy. An increase in global displacement causes
a very localized change in stiffness and displacement field and it is more difficult for the solver to find the
equilibrium path.

Based on these arguments, larger values of δc result in more efficient solutions due to ease of convergence.

B. The stiffness gradient

A second consideration in solution efficiency is the continuity of the traction law. Consider the Newton
solver as described by Simulia.35 Linearization of the virtual work equations yields:

FN (uM
i + cM

i+1) = 0 (1)

FN is the force component conjugate to the Nth variable in the problem. uM
i and cM

i+1 are the values of
the Mth variable in increment i and the absolute error of the Mth variable in increment i + 1. A Taylor
expansion of Eq. (1) gives:

FN (uM
i ) +

∂FN (uM
i )

∂uP
i

cP
i+1 +

∂2FN (uM
i )

∂uP
i ∂uQ

i

cP
i+1 cQ

i+1 + ... = 0. (2)

If the force functions are sufficiently smooth and uM
i is a close approximation of the true solution, the

higher order terms in Eq. (2) are negligible. The value of the incremental error (the correction to the true
displacement) can be iteratively computed via:

KNP
i cP

i+1 = −FN
i , (3)

where KNP
i is the tangent stiffness matrix defined by:

KNP
i =

∂FN (uM
i )

∂uP
, (4)

and the residual force vector is:
FN

i = FN (uM
i ). (5)

Subsequent iterations are computed as:

uM
i+1 = uM

i + cM
i+1, (6)

until a converged solution is obtained.
In this scheme, the value of the correction is linearly computed from the current residual vector and the

current tangent stiffness matrix. Convergence is accepted when the values of FN
i and cM

i+1 are sufficiently
small. However, if the higher order derivatives (the stiffness gradient) in Eq. (2) are large, then the higher
order terms can be non-negligible. This causes Eq. (4) to compute a poor approximation for the correction
vector, leading to convergence difficulties. When this occurs, it is necessary to reduce the solver increment
size. The reduction results in higher computational cost. In this way, the smoothness of the traction law is
a critical component of the solution efficiency and robustness.

III. The traction laws

The DCZM element described in Gustafson and Waas15 is modular in the application of traction laws.
It has been shown that the form of the traction law is not critical in the global load displacement re-
sponse.7,13,52–57 Therefore, the modularity of the DCZM element offers some flexibility in controlling different
aspects of the cohesive model. More specifically, the form of the traction law can be specified to suit one of
several purposes. For example, the law applied in the FE model can be “most accurate” representation of the
actual traction separation response. The law can also be formulated for the simplicity of implementation,50

or for the purposes of numerical efficiency and robustness. In this section, these last two philosophies are
adopted and three traction laws are reported and evaluated.

A feature of each implementation is that the element will unload following along a line from the origin
to the force associated with the extreme separation. Reload follows the same path as the prior unloading
path, preserving any material degradation.
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A. The trapezoidal traction law

The trapezoidal traction law (schematically shown in figure 1) is perhaps the most commonly used law.
It is a generalization of the triangular law used in the Xie element13 and elsewhere. Furthermore, it is a
convenient implementation due to the simplicity of formulating the three linear regions of the law. The three
regions are referred to as the initial linear response region, the optional “plastic deformation” region, and
the strain softening region.

Each fracture mode (I, II, III) requires three parameters to implement the trapezoidal traction law (TTL).
In two dimensional problems, the required parameters are the critical energy release rates (GIc, GIIc), the
critical stresses (σIc, σIIc), and the plasticity fractions (αI

pl, αII
pl ). In the TTL, the “plastic” fraction (the

rectangular area below the flat section of the traction law in figure 1) is a user controllable variable bound
by zero (restoring a triangular law) and one.

0

σc

0 δc

σ

δ

G
Gc −G

Initial Load
Unload/Reload

αpl

Figure 1: The trapezoidal traction law

1. Efficiency considerations related to the TTL

Despite being simple in implementation, the TTL is an example of a law that can suffer from severe con-
vergence difficulties. For example, as the peak stress is crossed in the triangular law, the tangent stiffness
suffers a change in sign from positive to negative. The stiffness gradient is infinite at that point, potentiallya

causing a significant decrease in the the increment size. These discontinuities were recognized by Alfano and
Crisfield48 and were referred to as limit points. Furthermore, once the separation has passed the critical zone
at a given integration point, large solution increments can be restored only if no other integration points are
near their critical separation. When hundreds or thousands of discontinuous integration points are present,
the solution can fail to converge or the average increment size can cause the analysis to be prohibitively
expensive.

If plasticity is introduced into the TTL, the effect on convergence may be positive as the magnitude of
the step stiffness change is reduced. However, in doing so a second step change in stiffness is necessarily
introduced. Therefore, the overall effect can be either an improvement or a worsening of the computation
efficiency.

Beyond the stiffness discontinuities, the efficiency of the TTL is also effected by the magnitude of the
three parameters that are used to define it. The value of δc is dependent on the cohesive strength (σc),
the plasticity fraction (αpl), and the critical energy release rate (Gc). The efficiency is also effected by the

a It is common to use step changes in constitutive response in FE modeling and doing so does not always cause convergence
difficulties. It is the magnitude of the step that is important as well as the number of integrations points that are actively
transitioning.
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critical energy release rate (Gc) through the effects directly described by classical fracture mechanics and
crack stability.

In order to improve the convergence efficiency, it is worth investigating the use of a “smooth” constitutive
law which avoids the issues surrounding a discontinuous stiffness. Traction laws with “smooth” derivatives
have been examined before,49,58 however the form of the law appears to be chosen for mathematical conve-
nience instead of numerical considerations. Further, no quantitative assessment of the relative “convergence
efficiency and robustness” of the laws were reported.

The objective of the remainder of this article is to find a traction law that also has a smooth derivative
in order to have a more continuous stiffness matrix. Two smooth traction laws are proposed based on the
beta distribution and sine functions.

B. The beta distribution traction law

0

σc

0 δc

σ

δ

G
Gc −G

Initial Load
Unload/Reload

Figure 2: The beta distribution traction law.

Consider the beta probability distribution:

β (x, a, b) =
xa−1(1− x)b−1∫ 1

0
ua−1(1− u)b−1 du

, (7)

where the denominator is the beta function. As a probability distribution, the value of its integral is one
over the interval x = [0, 1]. ∫ 1

0

β (x, a, b) dx = 1 (8)

Therefore, the distribution can be mapped to a finite traction-separation space with known values of Gc.

1. Mapping the BDTL to the critical energy release rate

Two parameters are required (Gc, σc) and two requirements must be met to complete the mapping. First, the
maximum value of β (x, a, b) is mapped to the critical stress through a multiplicative constant. Subsequently,
the traction law can be written as:

σβ

(
δ

δc
, a, b

)
=

σc β
(

δ
δc

, a, b
)

βmax (a, b)
. (9)

5 of 16

American Institute of Aeronautics and Astronautics Paper 2008-1847



In Eq. (9), βmax (a, b) is the maximum value of the probability density function (PDF). Second, the traction
law must integrate to the value of Gc.∫ δc

0

σc

βmax (a, b)
β

(
δ

δc
, a, b

)
dδ = Gc (10)

A change of variables is required to map the integral in Eq. (10) into the space of the PDF:

dδ = δc dx, (11)

which allows Eq. (10) to be written as:

σc δc

βmax (a, b)

∫ 1

0

β (x, a, b) dx = Gc. (12)

In Eq. (12), the integral portion of the left hand side evaluates to one, therefore the critical displacement is
calculated as:

δc =
βmax (a, b)

σc
Gc. (13)

The final calculation is of the maximum value of the beta distribution (βmax (a, b)). After multiplying
the right hand side of (7) by its denominator, one must extremize:

(1− x)b−1
xa−1. (14)

Taking the derivative of Eq. (14) with respect to x and equating it to zero yields:

(a− 1) (1− x)b−1
xa−2 − (b− 1) (1− x)b−2

xa−1 = 0. (15)

Eq. (15) can be solved for xmax which is a maximum for values of a and b that are appropriate for the beta
distribution traction law (BDTL):

xmax =
a− 1

b + a− 2
. (16)

Inserting Eq. (16) into the distribution function, the maximum value is given by:

βmax (a, b) =
xmax

a−1(1− xmax)b−1∫ 1

0
ua−1(1− u)b−1 du

. (17)

With Eq. (17), the mapping of the traction law is complete. The BDTL, shown in figure 2, has been
implemented as a traction law module to accompany the DCZM element created for Abaqus R©.

2. Efficiency considerations related to the BDTL

It has been established that the form of the traction law affects the computational efficiency through the
increment size. Specifically, it was shown that the second derivative of the traction law, when large, can
cause difficulty is obtaining an accurate correction vector. Here it will be shown that the BDTL can ensure
a smooth traction law.

The parameters a and b have a significant effect on the efficiency of the solution as well as the ability of
the solution to obtain a converged equilibrium. In order for the traction law to be reasonable and resemble
the more commonly used laws, the appropriate ranges are 1 < a < 3 and a < b < 10. These values are
not all appropriate for use in an element, where the primary criteria for appropriateness are the resulting
stiffness gradients and the overall shape of the distribution.

As shown in the figure 3(a), low values of a skew the beta distribution to the left. High values of b do
so also, but with the additional effect of causing an increase in concavity on the down slope of the curve.
At first glance, it would appear that a value of a just larger than 1.0 would closely match the traditional
triangular traction law while providing a continuous derivative.

However, the further to the left the curve is skewed, the more difficult it is to obtain a converged solution
due to larger stiffness gradients. Similarly, the system itself is less stable since smaller portions of the
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structure are transferring load, resulting in a higher energy release rate. Beyond generalities, figure 3(c)
shows that the stiffness gradients near x = 0 approach infinity as a approaches 1.0. For a greater than 2.0,
the stiffness gradients remain large around the origin, where the stiffness starts at zero. Figures 3(b) and
3(d) examine the effect of small variations around the value a = 2.0 and show that even small diversions
cause significant stiffness gradients. Therefore, a = 2.0 is most appropriate for this traction law.b A value
of b = 5.0 was assigned based on the general shape of the BDTL, though the parameter is not as critical to
model convergence (subject to its constraints).
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(a) The effect of a broad variation of the parameter a on the
normalized BDTL. Small values of a skew the distribution
to the left.
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(c) The effect of a broad variation of the parameter a on the
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departs from 2.0.
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on the stiffness. Even a small departure from a = 2.0 causes
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Figure 3: The effect of the parameter a on the BDTL

C. The sinusoidal traction law

Although the BDTL is a much more smooth law than the TTL while resembling the shape of the TTL,
it is certainly possible to conceive of a law that is more smooth. In the limit of obtaining a (non-zero)
smooth stiffness derivative, a parabolic traction law could be assumed. Unfortunately, such an assumption
would require that all cohesive integration points are simultaneously in zones where the stiffness is changing
(since the resulting stiffness gradient would be a non-zero constant). Although the maximum stiffness

b This result could have be anticipated upon examining the form of the beta distribution equation, however the figures 3(a)-
3(d) provide an efficient means of interpretation.
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derivative would be minimized, the linearity assumptions underlying the Newton solver would be a poor
global approximation of the response during every increment.

In a typical analysis, only a small portion of the cohesive integration points are in critical zones. The
remainder of the cohesive elements are likely to be loaded with relatively low traction loads. Therefore, it
is desirable for the assumed law to have regions of near linearity, particularly in the lower traction loads,
such that only a relatively small number of critical integration points are undergoing a significant change in
stiffness.

The BDTL provides this feature at some level, however the initial derivative of the stiffness (in the low
traction region) is non-zero. A very simple function with a zero initial derivative and a low maximum
derivative is the sine function. As a result, it may be a good function upon which to model a traction law.

As with all the traction laws, the integral of a sinusoidal stress-relative displacement curve must equal the
critical energy release rate (Gc) and the maximum value must map to the critical stress (σc). The following
traction law meets these requirements:

σβ

(
δ

δc

)
= σc sin(π

δ

δc
),

δc =
πGc

2σc
.

(18)

The stiffness at a given point takes the form of a constant times the cosine function and the second
derivative remains relatively small as a constant times the sine function. The traction law in Eq. (18) is
shown in figure 4.

The sinusoidal traction law (STL) provides a mathematically convenient formulation for a traction law.
It does not resemble the commonly used laws, as it is symmetric about its midpoint and its initial stiffness
is relatively low. However, the STL offers a clear advantage over the traditional laws. The initial stiffness
derivative of the STL is zero while the maximum stiffness derivative is relatively small. Therefore, it is worth
evaluating the efficiency of the STL.

0

σc

0 δc

σ

δ

G
Gc −G

Initial Load
Unload/Reload

Figure 4: The sinusoidal traction law

IV. The DCZM FE models

The core of the FE models in this work is the DCZM element of Gustafson and Waas.15 That element has
been extended to include the traction laws described in section III. The DCZM element is illustrated (in 2D
form) in figure 5 and conforms to the layout for a 2D four-node element in Abaqus R©. A similar 3D version of
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element has also been developed. A typical peeling process zone associated with crack propagation is shown
in figure 6.

1 2

3 4

x

y

Figure 5: Four-node 2D DCZM element with surrounding elements. Adhesion is enforced with non-linear
springs between node pairs.

Figure 6: Typical process zone using the DCZM element

Two FE models were created for the efficiency and robustness comparison. The models are shown in
figures 7 and 8. Each consists of linear plain strain elements (CPE4I) and the solver is Abaqus R© Standard.
DCZM elements were used to model the adhesive layer. Abaqus R© contact algorithms were used to manage
post-failure contact and sliding in the end notch flexure (ENF) model. For each model, a minimum increment
fraction of 10−15 was set and time incrementation controls were used.c The purpose of the incrementation
controls was to allow the solver to search beyond default levels for a deeper reliability assessment. Model
size is reported in tables 1 and 2.

Table 1: Approximate quantities in the SLJ FE model

Number of elements 7400
Number of user nodes 7900
Number of variables 51000

V. Comparison of traction law solution efficiency and robustness

In brief summary of the section III, the form of the traction law affects the solution efficiency through the
stiffness gradient as well as through its effect on δc. The critical stress is also a factor in solution efficiency
through its effect on the value of δc.

c*CONTROLS, PARAMETERS=TIME INCREMENTATION
4,8,18,32,10,10,24,10,12,10
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(a) A typical SLJ model

(b) A typical SLJ experiment

Figure 7: Typical SLJ model and experiment. These images were taken just prior to failure.

(a) Global view of the ENF model

(b) Local view of the ENF model

(c) A typical ENF experiment

Figure 8: Typical ENF model and experiment

Table 2: Approximate quantities in the ENF FE model

Number of elements 16000
Number of user nodes 14000
Number of variables 97000
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The purpose of the smooth laws is to improve the overall solution efficiency and robustness by minimizing
the stiffness discontinuities and gradients. Whereas solver convergence and stability are well defined, solution
efficiency is not well defined at the level of the constitutive law. Therefore, to evaluate the solution efficiency
of the traction laws, it is useful to compare available metrics.

Two metrics for solution efficiency will be used to compare the traction laws. The first is the average size
of a set of minimum size increments during a given solution. The stiffness gradient affects the likelihood of
obtaining a converged solution and the minimum increment size is a simple metric which correlates to the
ease of convergence. The second efficiency metric is the number of solver passes required to obtain a given
solution. This is a reproducible metric of the CPU cost of a given solution. The number of solver passes will
be identical across job repetition regardless of system resources, provided that the solver algorithm remains
fixed.d

Two efficiency metrics will be used since neither metric (on its own) is an adequate representation of the
solution efficiency. For example, it is possible in an unstable solution (like the single lap joint) for a solver to
converge without finding the peak load point.59 This is particularly true if large increments are maintained.
As a result, a cap on increment size is often required in order to ensure that the peak load is found in a given
model. Efficiency conclusions would be misleading if the peak load is not captured, however the cap adds a
significant number of solver passes that would not otherwise be required. This makes the number of solver
passes an imperfect metric of efficiency. On the other hand, the number of solver passes (the direct CPU

cost) is not the same for each increment. A given increment could converge in one pass or tens of passes,
making the increment size an imperfect metric of efficiency. Since neither metric is perfect, both will be used
in the comparison.

The incrementally based solution efficiency is defined as the ratio of the mean increment size for the
smallest ten increments (∆t10) to the maximum allowed increment size (∆tmax).

ηInc = Mean
∆t10

∆tmax
(19)

The smallest ten increments in a given analysis are exclusive of any step completion increments. ∆tmax is
specified to ensure that the peak load is captured. Ten increments are averaged in order to remove any
isolated effects and to allow for some indication of increment size recovery.

The solver pass based solution efficiency is defined as:

ηPass =
ΓMin

ΓActual
. (20)

ΓMin is the minimum number of passes which would be required to solve the system (based on the specified
size limits) and ΓActual is the actual number of passes that were required. In both Eq. (19) and Eq. (20),
the solution efficiency is set to zero if the job does not converge.

A comparison of the effective solution efficiency for a large set of single lap joint (SLJ) and ENF analyses
were run with threee traction laws. The two model types exhibit different failure mechanisms and global
stabilities. The SLJ analysis exhibits catastrophic failure, however there is very little surface interaction once
the cohesive bond has failed. The ENF analysis maintains global stability, however the surfaces remain in
contact and continue to interact after adhesive failure. The two model types are representative of many of
the applications of cohesive elements.

A. Efficiency comparison

For the SLJ models, a histogram of the solution efficiency based on minimum increment size is shown in
figure 9(a). Figure 9(b) provides a similar comparison of the solver pass efficiency. Each is based on 1024
SLJ model runs. In the figures, the differences between the jobs within a given traction law are the governing
parameters of the law (GIIc, σIIc, etc) and the geometry.f The TTL models each have unique values of
plasticity fraction (αpl), whereas the triangular law models all have zero plasticity (by definition). In all SLJ

d Alfano and Crisfield48,50 established a precedent for using the average increment size and the total number of iterations
as metrics for convergence efficiency.

e The three laws are the trapezoidal traction law, the beta distribution traction law, and the sinusoidal traction law. In the
plots of efficiency, the trapezoidal traction law is subdivided into a triangular law and the general trapezoidal law.

f The kriging analysis sites from Gustafson and Waas60 are used to set an array of parameter values for the efficiency
comparison.
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analyses, a viscous damping coefficientg of µ = 104 was used to assist in convergence due to the catastrophic
failure associated with the test.

From the SLJ pass efficiency results (ηPass), it is apparent that the smooth traction laws require fewer
solver passes (on average) than does the TTL. However, the overall effect of the traction law on the minimum
increment efficiency (ηInc) is inconclusive as there are no definitive trends present in the data. It is likely
that the catastrophic failure mode of the SLJ test drives the minimum increment size downwards at the point
of failure and that the success of viscous stabilization is quasi-random among the different models. Inter-
estingly, the triangular and general forms of the trapezoidal traction law have nearly identical convergence
characteristics for the SLJ test.

A more definitive result is found in the ENF model efficiency. Figures 9(c) and 9(d) report minimum
increment and solver pass efficiencies for 1024 ENF model runs. As with the SLJ models, the difference between
the models within a law are the values of the adhesive parameters (GIIc, σIIc, etc) and the geometry. In this
set of figures, it is clear that the smooth traction laws outperform the laws based on the TTL. The minimum
increment size remains larger and the number of solver passes is smaller for the smooth laws. Among the
triangular and trapezoidal forms of the TTL, there is a negligible difference in performance. In comparing
the smooth laws, the STL clearly outperforms the BDTL in both metrics of efficiency.

B. Robustness comparison

A final metric of traction law performance is the overall ability of the solution to converge for an analysis
type. Key to this metric is the reliability of convergence. If a traction law is very fast for some analyses
but fails to converge for other analyses, then the law is non-optimal. An analyst is likely to choose a more
reliable law with a cost that is somewhat higher than a cheap law that is suspect with respect to convergence
reliability.

Table 3 reports the percentage of jobs that were successfully completed for the two model types. Using
the TTL as the baseline, the BDTL was slightly less reliable and the STL was significantly more reliable for
the SLJ model type. The ENF model type was more definitive as the BDTL and STL were both very robust in
comparison to the TTL. More than twice as many jobs were successfully completed when the smooth laws
were used than when the TTL law was used. Of all the traction laws, the STL was the most reliable in both
model types by a relatively large margin.

Table 3: Percentage of jobs that converged to completion

Triangle TTL BDTL STL

SLJ 65.9% 65.9% 61.4% 80.7%
ENF 29.8% 25.0% 61.7% 76.7%

VI. Conclusion

A DCZM finite element and its associated traction laws have been evaluated from the perspective of
efficiency and robustness for use in modeling decohesion in structural applications. Three traction laws are
presented, one which is commonly used and the others which are developed with computational efficiency
and robustness in mind.

A comparison of the efficiency of the three laws has been shown in the context of their application to
two coupon-level experiments. In both model types, the smooth laws (the beta distribution traction law
and the sinusoidal traction law) have been shown to reduce the number of solver passes required to converge
to a completed solution. The effect of traction law on the minimum increment size is mixed. The smooth
laws have a clear net positive effect on the minimum increment size in the ENF models, whereas in the SLJ

model they do not have a clear positive or negative effect. The global instability of the SLJ structure likely
dominates this result, driving the minimum increment size down in both model types. Of the two efficiency
metrics, the number of solver passes is the most direct metric of computation cost. The efficiency based on

gDamping is managed internally by the DCZM element15 and is enforced only on the relative displacements of the cohesive
element nodes.
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(a) A measure of efficiency for SLJ models based on increment
size. The ηInc metric is inconclusive for this model type.
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(b) A measure of efficiency for SLJ models based on the num-
ber of solver passes. The smooth laws are significantly more
efficient based on the ηPass metric for this model type.
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(c) A measure of efficiency for ENF models based on increment
size. The smooth laws are significantly more efficient based on
the ηInc metric for this model type.
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(d) A measure of efficiency for ENF models based on the num-
ber of solver passes. The smooth laws are significantly more
efficient based on the ηPass metric for this model type.

Figure 9: Model efficiency
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minimum increment size is a useful metric primarily when the number of solver passes is influenced by other
modeling requirements.

The choice of traction law was found to have a significant effect on the overall solution robustness. SLJ

models based on the BDTL were found to be slightly less likely to complete than the TTL whereas SLJ models
based on the STL were found to be more likely to complete. For ENF, models with either of the smooth
traction laws were significantly more likely to obtain a converged solution than models with the TTL. Of the
three laws, the STL was found to be the most efficient and the most robust. The BDTL is more efficient than
the TTL, but robustness depends on the problem being solved.

With a general trend towards improved convergence and robustness resulting from use of the smooth
laws, it is shown that the form of the traction law should be considered when modeling adhesively bonded
structures. The use of a smooth law is likely to reduce the overall cost of computation without effecting the
global response or accuracy of the solution.

A. List of acronyms

BDTL beta distribution traction law

CCZM continuous cohesive zone method

CPU central processing unit

DCZM discrete cohesive zone method

ENF end notch flexure

FE finite element

PDF probability density function

SLJ single lap joint

STL sinusoidal traction law

TTL trapezoidal traction law

VCCT virtual crack closure technique

CPE4I linear plain strain elements
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