THE UNIVERSITY OF MICHIGAN

INDUSTRY PROGRAM OF THE COLLEGE OF ENGINEERING

VAPOR-LIQUID EQUILIBRIUM RATIOS IN HYDROGEN HYDROCARBON MIXTURES

Howard F. Silver

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The University of Michigan Department of Chemical and Metallurgical Engineering 1961

May, 1.961

Doctoral Committee:

Professor G. Brymer Williams, Chairman Associate Professor Lee O. Case Professor Donald L. Katz Professor Joseph J. Martin

ACKNOWLEDGMENT

I would like to take this opportunity to express my appreciation to those who have given me support and encouragement during the period of time that I have worked on this dissertation.

Mr. J. J. Merrill of the California Research Corporation was one of the first to encourage me to undertake graduate research on the doctoral level. Professor Wayne C. Edmister, formerly of California Research Corporation, participated actively in the initial phases of this work. Without his encouragement, this work would most likely have remained unattempted.

At the University of Michigan, I am particularly indebted to my doctoral committee chairman, Professor G. Brymer Williams for his interest and support throughout my entire graduate school career. I also appreciate the support of the members of my committee; Associate Professor Lee O. Case, Professor Donald L. Katz, and Professor Joseph J. Martin. Frank Drogosz, of the Chemical and Metallurgical Engineering Department staff, not only played an indispensable role in the construction of the experimental apparatus, but also worked beyond any reasonable expectation to provide the best possible analytical results from the mass spectrometer. Further, the staff of the Computing Center at the University of Michigan provided a substantial amount of time on the IBM 704 computer for correlation purposes.

Finally, I am indebted for the financial support provided me by the Chemical and Metallurgical Engineering Department in the form of funds for experimental equipment, for hydrocarbons and hydrogen used in this work, and for the use of the department mass spectrometer, by the Shell Oil Company in the form of a fellowship, and by the Esso Research and Engineering Company in the form of a research grant.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	iii
LIST OF TABLES,	vii
LIST OF FIGURES	ix
LIST OF APPENDICES	X
NOMENCLATURE	xi
ABSTRACT.	xiv
INTRODUCTION,	1
EXPERIMENTAL CONDITIONS OF STUDY	5
MATERIALS USED IN STUDY	6
EQUIPMENT DESIGN	7
DESCRIPTION OF THE EQUIPMENT	9
Feed System Equilibrium Section Sampling System	9 9 13
PROCEDURE	15
Feeding Components Equilibrium Sampling	15 15 16
ANALYSIS	19
DISCUSSION OF ERRORS	20
Measurement of Temperature and Pressure	20 21
SMOOTHED EXPERIMENTAL DATA	24
CORRELATION	30
Introduction	30 31 36

TABLE OF CONTENTS CONT'D

	Page
Vapor Phase Fugacity CoefficientLiquid Activity Coefficient	37 46
Fugacity Coefficient of the Pure Liquid Component	49
Phase Rule Considerations	51 54
CONCLUSIONS	63
APPENDICES	66
BTBLTOGRAPHY	130

LIST OF TABLES

<u>Table</u>		Page
I	Purity of Materials	6
II	Summary of Experimental Results	26
III	Summary of Experimental Results at 100°F	27
IV	Summary of Experimental Results at 200°F	28
V	Interaction Virial Coefficients for Hydrogen- Hydrocarbons	46
VI	Coefficients in the Pure Liquid Fugacity Coefficient Equations	51
VII	Physical Constants	51
VIII	Vapor-Liquid Equilibrium Ratios for Benzene Using the Virial Equation of State	58
ΤX	Vapor-Liquid Equilibrium Ratios for Cyclohexane Using the Virial Equation of State	59
X	Vapor-Liquid Equilibrium Ratios for Hexane Using the Virial Equation of State	60
XI	Vapor-Liquid Equilibrium Ratios for Hydrogen Using the Virial Equation of State	61
XII	Solubility Parameters	70
XIII	Thermocouple Calibration Data	72
XIV	Gauge Tester Evaluation	73
XV	Equilibrium Data Sources for Hydrogen-Hydrocarbon Systems	7 ⁴
XVI	Equilibrium Data Sources for Hydrocarbon-Hydrocarbon Systems	74
IIVX	Tabulated Calculation Results	77
XVIII	Analyses of Cyclohexane on Hydrogen-Free Basis	93

LIST OF TABLES CONT'D

<u>Table</u>		Page
XIX	Analysis of Hydrogen Compositions for Run 33	94
XX	Complete Experimental Data Results	95
XXI	Repetitive Analyses Results	99
XXII	Fortran Program for Prediction of Experimental Results Using IBM 704 Digital Computer	126

LIST OF FIGURES

Figure		Page
1	Flow Diagram of Experimental Equipment	10
2	Sketch of Equilibrium Cell and the Magne-Dash Shaker Assembly	11
3	Solubility of Hydrogen in the Liquid Phase at Constant Temperature	29
<u>)</u> 4	Second Virial Coefficient of Benzene	40
5	Second Virial Coefficient of Cyclohexane	41
6	Second Virial Coefficient of Hexane	42
7	Second Virial Coefficient of Hydrogen,	43
8	Second Virial Interaction Coefficient for Hydrocarbon Mixtures	7+7+
9	Generalized Second Virial Interaction Coefficients for Hydrogen Systems	45
10	Hydrogen Vapor-Liquid Equilibrium Composition Ratios in Hexane-Benzene	102
11	Hydrogen Vapor-Liquid Equilibrium Composition Ratios in Hexane-Cyclohexane	103
12	Hydrogen Vapor-Liquid Equilibrium Composition Ratios in Benzene-Cyclohexane	104
13	Hydrogen Vapor-Liquid Equilibrium Ratios at 500 Psi as a Function of UOP K Factors of Hydrogen Free Solvent	105
14	Hydrogen Vapor-Liquid Equilibrium Ratios at 1000 Psi as a Function of UOP K Factors of Hydrogen Free Solvent	106
15	Vapor-Liquid Equilibrium Composition Ratios of Hydrogen as Function of the Solvent's UOP K Factor	107
16	Benzene Vapor-Liquid Equilibrium Composition Ratios	109
17	Cyclohexane Vapor-Liquid Equilibrium Composition Ratios	110
18	Hexane Vapor-Liquid Equilibrium Composition Ratios	111
19	Vapor-Liquid Equilibrium Composition Ratios of Hydro- carbons in Presence of Hydrogen as a Function of the System Pressure and the Ratio of Hydrocarbon Boiling Point Temperature to System Temperature	112

LIST OF APPENDICES

	Page
SOLUBILITY PARAMETER ESTIMATION	67
THERMOCOUPLE CALIBRATION	71
CHANDLER GAUGE TESTER CALIBRATION	73
EQUILIBRIUM DATA SOURCES FOR BINARY SYSTEMS	74
CALCULATION RESULTS	75
EXPERIMENTAL DATA	92
GPAPHICAL PRESENTATION OF THE DATA	100
SAMPLE CALCULATION	114

NOMENCLATURE

$A_{ m N}$	constant in Chao's equation
A,B	constants in Redlich-Kwong Equation of State
A,B	constants in Van Laar Equation
B(T)	second virial coefficient
C(T)	third virial coefficient
D	vapor product stream flow rate
E	internal energy
F	feed stream flow rate
F.	Fahrenheit
G	Gibbs Free Energy
H	enthalpy
K	vapor-liquid equilibrium composition ratio
K.	Kelvin
L	liquid product stream flow rate
N	number
P	pressure
P.E.	probable error
R	gas constant
S	entropy
T	temperature
V	volume
a,b	constants in van der Waal's Equation of State
a,b	constants in the Redlich-Kwong Equation of State
n	moles

mole fraction in the liquid phase Х mole fraction in the vapor phase У compressibility factor Z Δ difference constant in hydrogen second virial coefficient quantum mechanical Λ correlation coefficient of thermal expansion α solubility parameter δ liquid activity coefficient γ function relating virial coefficients to volume pure component liquid fugacity coefficient density standard deviation vapor phase fugacity coefficient φ accentric factor ω ω¹ pseudo-accentric factor

Subscripts

В	second virial coefficient
C	critical property
F	property of feed stream
M	mixture
Mix	mixing
N	component designation
V	vaporization
i,j,k	component designation

- r reduced property
- molar quantity

Superscripts

- L liquid
- V vapor
- partial molal quantity
- o pure component property

ABSTRACT

This research was undertaken for the purpose of providing vapor-liquid equilibrium composition data in multi-component mixtures of hydrogen and hydrocarbons of varying molecular structure. The experimental results have been used to evaluate the applicability of one of the more promising current analytical correlations, based on experimental vapor-liquid equilibrium data for binary systems, for use in predicting equilibrium compositions in multi-component systems.

Experimental equipment was built to operate at pressures to 5000 psi and at temperatures to 400°F. The equilibrium cell was internally agitated and had sample ports through which samples of multicomponent liquid phase and vapor phase were withdrawn for analysis on a mass spectrometer.

Compounds studied in this work were hydrogen, benzene, cyclo-hexane and hexane. Data was taken on three ternary systems and on one quaternary system at temperatures of 100° and 200°F. and at pressures of 500 and 1000 psi. All systems contained hydrogen. A total of 170 vapor and 170 liquid samples, representing 28 different equilibrium mixtures, was obtained.

The correlation evaluated in this work was modified to improve the prediction of experimentally obtained hydrogen equilibrium composition ratios. The modified equation gave results comparable to existing correlations for hydrocarbon equilibrium composition ratios. Parameters

used in this correlation were evaluated from pure component data as well as from experimental data on binary systems which had been reported in the literature. The vapor-liquid equilibrium composition ratios of all components in the multi-component mixtures were predicted to within approximately 20% of the measured ratios despite the relatively low hydrogen liquid and hydrocarbon vapor concentrations encountered in this work. This suggests that correlations developed from binary vapor liquid equilibrium data can be applied to multi-component data. However, further efforts in this area are indicated in order to reduce the deviation of the predicted from the measured equilibrium ratios.

INTRODUCTION

At present, engineers are utilizing vapor-liquid equilibrium composition ratios obtained from such generalized correlations as the NGAA K-Value charts (15) and the Kellogg Charts (30) for design work. These charts are the culmination of over thirty years work, which began with the recognition that a combination of Raoult's and Dalton's Laws were inadequate to describe a vapor-liquid system in equilibrium over ranges of pressure and temperature of interest.

A basic parameter in the NGAA charts is a parameter called "convergence pressure." The concept of convergence pressure evolved through a realization that the phase rule variables in two component systems are completely defined by the specification of two of the variables generally known to the design engineer -- namely, the system temperature and pressure. Further, it was recognized that there is a unique critical point locus for any two component system. This led to an attempt to classify any multi-component system as a pseudo-binary system consisting of a pseudo-light and a pseudo-heavy component. It was found that the composition of the pseudo-binary system could be specified with satisfactory accuracy if the system temperature and pressure were extrapolated along a constant temperature line to the critical locus of the system, rather than along a constant composition line. The intersection of this isothermal extension of the system pressure and temperature with the critical locus is used as a correlating pressure, called the convergence pressure,

hydrocarbons, and as the physical properties of this homologous group happen to have a definite regularity, this correlation method seemed to meet with success. However, Solomon (56) has shown that these charts may give results in error by as much as 250% for hydrocarbon mixtures containing aromatics. Further, as more experimental data has become available, it has been found that these charts are less and less reliable as the convergence pressure parameter increases. For example, the convergence pressure of close boiling mixtures such as toluene and hexane may be less than 500 psi, whereas the convergence pressure for wide boiling mixtures such as hydrogen and hexane will generally be greater than 10,000 psi.

The concept of convergence pressure has always been a difficult concept to apply. In order to improve the usefulness of the existing NGAA charts, a considerable amount of effort has been expended on improving the prediction of convergence pressures. Lenoir and White (36,37) developed an empirical method of estimating convergence pressures using effective boiling temperatures and weighting factors. They found that each component contributed to the effective boiling points of the pseudobinary components, and proposed the use of weighting factors to account for the fact that the lightest component in the mixture contributed more to the effective boiling temperature of the pseudo-light component than some intermediate component, whereas the heaviest component had the greatest effect on the pseudo-heavy component boiling point. This method presupposes a knowledge of liquid phase composition.

In order to improve the predictability of wide boiling mixtures, Lenoir and Hipkin (35) developed a generalized convergence pressure

correlation for systems containing hydrogen and aliphatic hydrocarbons. This correlation was based on the data existing at the time of their paper, but failed to predict experimental convergence pressures for the system hydrogen-hexane that were later reported by Nichols, Reamer and Sage. (41)

Another set of charts currently in use is the "Kellogg Charts" (30), developed from the Benedict-Webb-Rubin Equation of State (1,2,3) by Benedict, Webb, Rubin and Friend (4,5). These charts utilize the molal average boiling point for each phase as the composition parameter. Vapor-liquid equilibrium values for 12 aliphatic hydrocarbons, from methane to heptane, are represented on 324 charts, including pressures between 14.7 and 3600 psi and temperatures from -100° to 400°F.

However, these charts do not include aromatic compounds, and interpolation is tedious and often inaccurate. DePriester (13) has attempted to consolidate the charts to show the effect of all the variables continuously. He has reduced the number of graphs required for each hydrocarbon to two, while retaining almost the same accuracy contained in the original charts.

At present, further efforts are being made to develop vaporliquid equilibrium correlations based on the use of equations of state. These correlation techniques may be programmed for a modern computer, or they may be drawn up in the form of nomographs and charts. However, most of the work thus far is based on experimental data from binary systems.

This research has been undertaken to provide vapor-liquid equilibrium data on wide-boiling, multi-component mixtures. The light

component studied is hydrogen, while the heavy components are hydrocarbons with relatively similar physical properties, but different molecular structure; namely, benzene, cyclohexane and hexane. The data thus obtained has been used to evaluate the applicability of one of the more promising current analytical correlation methods to multi-component mixtures, and an attempt has been made to improve this correlation.

EXPERIMENTAL CONDITIONS OF STUDY

Ternary and quaternary mixtures of hydrogen, benzene, cyclohexane and hexane have been studied at 100° and 200°F. and at pressures of 500 and 1000 psi.

The equipment built to study these systems was theoretically capable of operating at pressures to 5,000 psi and at temperatures to 400°F. The equipment was statically pressure tested to 7500 psi.

Although the experimental apparatus was located near large windows in the laboratory, there was no means provided for holding and venting fumes directly from the temperature control bath. As glycerine, the heat transfer medium, gives off heavy vapors at elevated temperatures, the operating temperatures in this experiment were arbitrarily limited to 200°F.

A gas compressor unit was incorporated into this equipment, but in this experiment, hydrogen was used directly from the high pressure supply cylinders. The maximum operating pressure studied was approximately 1100 psi.

MATERIALS USED IN STUDY

The hydrocarbons used in this study were obtained from the stock of the Chemistry Department at the University of Michigan. Hydrogen was obtained through the University Plant Department. The manufacturers of these raw materials and the approximate purity of the components, as measured by means of a mass spectrometer, are tabulated below.

TABLE I PURITY OF MATERIALS

Component	Manufacturer	Analyzed Purity
Benzene	Phillips Petroleum Co., Pure	99.5%
Cyclohexane	Merck Chemical Co., Reagent Grade	99.67%
Hexane	Eastman Kodak Co., Red Label	99.54%
Hydrogen	Mathieson Co., Electrolytic, water pumped	99.5%

EQUIPMENT DESIGN

As a first step in the study of vapor-liquid equilibrium in systems containing hydrogen, attention was directed to the many different types of experimental apparatus that might be used. The initial criteria used in examining possible designs was that the equipment be simple and that analysis of the sample be relatively fool-proof.

A glass bubble-point dew-point apparatus, similar to that used by Professor Webster B. Kay at Ohio State University, was first considered, as this is probably one of the less complex types of apparatus, and the analysis of vapor and liquid samples is simple and accurate. The apparatus is described in detail by Kay (27,28). However, the utility of such apparatus for determining vapor-liquid equilibrium is limited to binary mixtures for which complete phase diagrams may be drawn. Further, the entire scheme is dependent upon the fact that the composition of the sample charged to the cell be known accurately at all times.

Professor Kay has pointed out that hydrogen is difficult to contain within a glass system at high temperatures. (29) Soft glass seems to be best, but it is also the least able to withstand large temperature variations. If a component, such as hydrogen, should leak out of this apparatus during the run, the data obtained would be worthless.

After considering the limitations of this type of apparatus and considering the fact that multi-component systems would be of interest, attention was directed to systems in which samples could be withdrawn and analyzed independently of the equilibrium apparatus. Here, the choice was between a dynamic type of system, perhaps similar to a recirculating type

still, and a static type system, in which samples would be withdrawn from the cell itself, after they had come to equilibrium.

equilibrium cell, because of the questionability of attaining true equilibrium in such apparatus. Generally, the maintenance of steady state conditions in a dynamic type cell over a period of time is considered to be equivalent to the attainment of equilibrium. Yet the process of flow itself suggests that potentials exist within the system. Entrainment also appears to be a major problem in such systems. Therefore, attention was directed toward a static type equilibrium cell.

Considering the equipment that was available within the University for use on this project, the choice of an equilibrium cell narrowed to a decision between a rocking bomb apparatus, and an Autoclave Engineering Magne-Dash cell, which was designed by Standard Oil Co. of Indiana. Because of possible problems with moving parts and connections at the high pressures anticipated for the rocking bomb, and because the Magne-Dash cell lends itself to use with a liquid temperature control bath, the decision was made to use the Magne-Dash cell as the equilibrium cell in the vapor-liquid equilibrium equipment.

DESCRIPTION OF THE EQUIPMENT

The system finally decided upon may logically be divided into three main parts; a feed system, an equilibrium section, and a sampling system. These are shown in the schematic diagram in Figure 1.

Feed System

The feed system consisted of a source of high pressure gas and a means of compressing gas to pressures above those available in the source cylinder. It also contained a gravity flow feed tank, through which liquid hydrocarbons were introduced.

The compressor was designed and built by H. J. Aroyan and Riki Kobayashi. It has been described in detail by $\operatorname{Benham}^{(6)}$ and by $\operatorname{Cosway.}^{(10)}$

Equilibrium Section

The equilibrium cell consisted of an Aminco Micro Reaction

Vessel, made of type 316 stainless steel, modified to contain the

stirring mechanism provided by an Autoclave Magne-Dash stirrer. The

approximate volume of the cell was 200 cubic centimeters. Agitation

of the cell contents was produced by the reciprocating motion of the

dasher assembly, shown in Figure 2. This motion was made possible by

the thrust induced on a magnetic core, when the solenoid surrounding this

core was energized. By the use of two coils, a positive thrust in

either direction was possible. This action was controlled by a timer

which regulated the current flow to both coils, energizing them alter
nately.

HIGH PRESSURE GAS CYLINDER TEMPERATURE CONTROL BATH GRAVITY FLOW FEED TANK TEMPERATURE CONTROLLER MERCURY MCLEOD GAUGE COLD TRAP PRESSURE GAUGE DEAD WEIGHT TESTER EQUILIBRIUM CELL SOLENOID HOUSING IMMERSION HEATER HIGH PRESSURE LOCK THERMISTOR SENSOR EXPANSION BOTILE MERCURY MANOMETER SAMPLE BOTTLE RUPTURE DISC. CATHETOMETER VACUUM PUMP COMPRESSOR MIXER LEGEND EQUILIBRIUM SECTION O FLOW DIAGRAM OF EXPERIMENTAL EQUIPMENT mmmmmmm 0 TO VENT TO VENT 0 S 0 0 0 4 FEED SYSTEM

Figure 1. Flow Diagram of Experimental Equipment.

SAMPLE SYSTEM

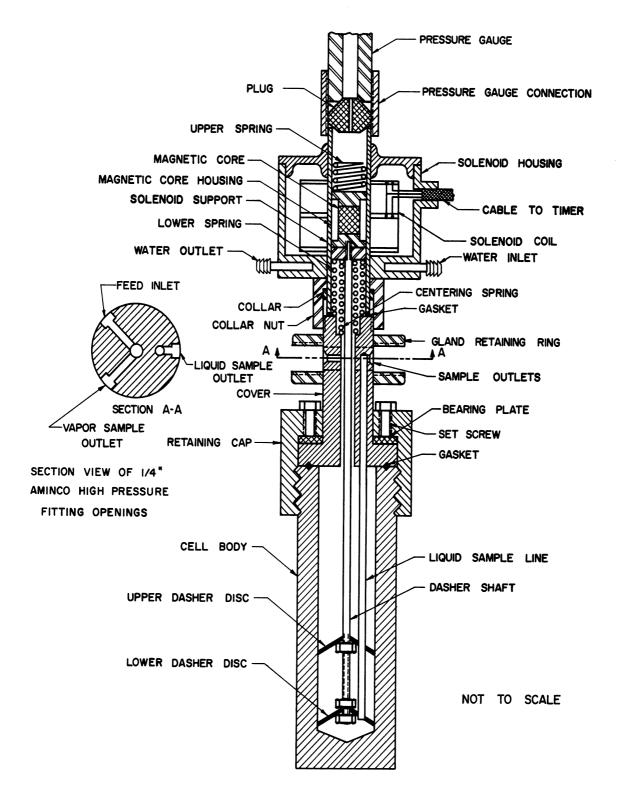


Figure 2. Sketch of Equilibrium Cell and Magne-Dash Shaker Assembly.

The duration of each stroke and hence the degree of agitation was controlled by the rheostats on the timer. This action could be regulated from about 4 cycles per second to one cycle approximately every 4 seconds. The dasher moved back and forth over a linear distance of approximately 1 1/2-inches to accomplish the required agitation. The agitation could be further modified by changing the position of the disks on the dasher shaft, by adding disks, or by using perforated disks.

The upper and lower springs acted as stops for the magnetic core. The centering spring positioned the dasher assembly, supported the weight of the magnetic core, and aided the lower spring on the upward stroke.

The magnetic coils were contained within a water jacket, which was used to remove excess heat from the coils during operation of the agitator.

This cell was immersed up to the top of the retaining cap in a temperature control bath. Insulated heating tapes were wrapped around those portions of the equilibrium cell that protruded above the bath, up to the solenoid housing. The temperature of the glycerine, the heat transfer medium, was controlled by means of a Fenwal Thermistor Temperature Indicating Control Unit. A thermistor sensor, which had a resistance that was extremely sensitive to temperature, was used in a simple bridge circuit. This controller was supplied with three modes of control; on-off control, on-off control with fully adjustable differential, and proportional control with broadly adjustable proportional band limits. The unit was insensitive to stray magnetic fields, vibration

and shock, and contact potential in the thermistor leads. Heat was supplied to the bath by means of a set of General Electric hairpin type electric immersion heaters.

In addition to the temperature indicated by this control unit, a series of chromel-alumel thermocouples were placed at various strategic positions on the apparatus, both in the equilibrium section and in the sampling section. The feed inlet line and the sample outlet lines from the cell were wrapped with heavy-duty electrical heating tapes.

Pressure within the cell was indicated by means of a pressure gauge located above the Magne-Dash shaker assembly, and was measured by means of a pressure gauge tester, No. D3-13, supplied by the Chandler Engineering Company. A monel rupture disc, rated at 3175 psi at 72°F., was used in this section.

Sampling System

Both vapor and liquid samples were withdrawn through pressure locks, each consisting of two high-temperature, high-pressure Aminco valves made of super alloy N-155. This alloy consisted of 20% nickel, 21% chromium, 3% molybdenum, 2% tungsten, 20% cobalt, 0.15% carbon, with the balance iron. The valves were designed to operate at temperatures to 1000°F. and at pressures to 25,000 psi. The pressure on the samples was reduced from elevated cell pressure to subatmospheric pressures in these locks, which were totally immersed in the temperature control bath.

The sampling system up to the valves marked "a" in Figure 1 had a volume of approximately 20 cc. and was constructed of stainless

steel. This section was provided with pressure gauges and a means of venting the sample, should the high pressure lock system fail. From valves "a" on, the system was made of pyrex glass. Expansion bottles were used to receive the sample expanded from the high pressure lock. Sample bottles were attached to the sample system by means of tapered glass joints. Mercury manometers and a mercury McLeod Gauge were used to measure the pressure within the sample system. A Central Scientific Company Cathetometer was used to measure the height of the mercury legs in the manometers.

Heating tapes and heating lamps provided temperature differentials within the sample system in order to provide convective currents for mixing of the samples.

PROCEDURE

The experimental procedure followed in this work can be divided into three parts -- feeding components to the cell, approaching equilibrium, and sampling.

Feeding Components

Liquid hydrocarbons were first introduced into a clean equilibrium cell at atmospheric conditions. Approximately 150 ml. of a mixture of hydrocarbons were mixed thoroughly in the feed tank, and 10 to 20 ml. of this solution were allowed to flow by gravity into the equilibrium cell. The cell was then valved off, and the hydrocarbon in the cell was evacuated into the cold trap.

When the pressure in the equilibrium cell had been less than 0.05 mm. of mercury for at least two hours, the cell was considered to be flushed and clean. Approximately 120 ml. of solution were then admitted to the cell. Next, hydrogen was introduced to raise the pressure, and heat was applied to the temperature control bath to raise the temperature of the cell to the desired operating levels.

If the pressure in the cell appeared to be too high after the operating temperature had been reached, hydrogen was bled from the cell through the high pressure valve lock system. The Magne-Dash stirrer was then activated.

Equilibrium

It was felt that equilibrium should be reached within two or three hours after operating conditions had been attained. However,

to insure that equilibrium was reached, the sampling schedule followed was conservative.

The Magne-Dash stirrer was set for approximately one stroke per second, and was allowed to operate for a minimum of 12 hours. At the end of this period, at least three liquid and three vapor samples were taken in order to flush out the sample lines. Generally, hydrogen vapor was found present in the liquid sampling line.

This operation reduced the pressure in the equilibrium cell. In order to counteract this pressure drop, the contents of the cell were then allowed to remain without agitation in the equilibrium cell, including the high pressure lock, for periods ranging from two to twelve hours. Each time a sample was taken thereafter, this same procedure was followed.

Sampling

Before any sample was withdrawn from the equilibrium cell, the sampling system was evacuated. The pressure in the sampling system was less than 0.05 mm. of mercury at this time.

The first step in sampling, after the vacuum had been attained, was to close the inner valve, closest to the equilibrium cell in the high pressure lock system, and to allow the sample trapped within the lock to expand into the all metal safety volume. If the total pressure in the safety system did not increase with time, the sample was then allowed to expand into the glass portion of the sampling system.

The total pressure in the sampling system after the sample had been expanded into the glass expansion bottles was

approximately 3 cm. of mercury as measured on a manometer by means of a cathetometer. This pressure was approximately 25% of the vapor pressure of the heaviest hydrocarbon present at room temperature.

The expanded sample was then allowed to mix by diffusion for periods ranging from three to twelve hours. During some runs, convection currents were set up in the sampling system by applying heat to spots on the outer surface of the system, in an attempt to determine if any improvement in sample mixing took place.

At the end of the mixing period, the sample was allowed to expand further into a 15 ml. sample bottle for a period of ten minutes. The sample bottle and the glass expansion bottle were then valved off, and the sample bottle was removed from the system.

A second sample bottle was placed in the system and evacuated to a pressure less than 0.05 mm. of mercury. The remaining 97% of the original sample that had been held in the glass expansion bottle was then allowed to re-expand up to the second sample bottle. At the end of one to three hours, the second sample bottle was opened for ten minutes.

The entire procedure was repeated at least three times. Hydrogen was then added to or removed from the equilibrium cell in order to establish a new pressure level, and the temperature of the cell was readjusted. The same sampling techniques were then repeated after the mixture had been allowed to come to a new equilibrium.

After samples had been taken at 100° and 200°F., and at 500 and 1000 psi, the equilibrium cell was cleaned and a new hydrocarbon

mixture was added. A total of 170 vapor and 170 liquid samples, representing 28 different equilibrium mixtures, was obtained.

ANALYSIS

The samples obtained from this work were analyzed on a Consolidated Engineering Company 21-103B Mass Spectrometer. The theory and routine operation of this instrument have been discussed in great detail by Benham (6) and by Cosway. (10)

All hydrogen-rich vapor samples were run in a group before the hydrocarbon-rich liquid samples were run. This reduced the effect of possible molecular adsorption from one sample and desorption into the next sample in the mass spectrometer. Sample standards were run at least once during each set of analyses. The sensitivity of the instrument to these standards was found to vary not only from day to day, but also to vary during the same day.

Efforts were made to establish the best method of introducing the sample into the mass spectrometer in order to eliminate a possible throttling effect. It was feared that as a result of the wide molecular weight difference in the components to be analyzed, throttling would cause a certain amount of separation between the molecules. No one method of introducing the sample into the mass spectrometer appeared to give better results than any other method.

Several samples were analyzed at least twice -- some during the same day, and others on different days. The spread in the results of the analysis of the same sample was at least as great as the spread between different samples of the same set.

DISCUSSION OF ERRORS

Two groups of errors were involved in this experiment. The first group involved the measurement of the conditions under which equilibrium was attained, while the second group involved the sampling procedure and analysis of the equilibrium samples.

Measurement of Temperature and Pressure

The reported temperature of the glycerine bath was measured by means of a chromel-alumel thermocouple used in conjunction with a Leeds-Northrup portable type potentiometer. This system was calibrated against mercury thermometers which had previously been calibrated by the U.S. Bureau of Standards. The temperature-EMF relationship for this thermocouple was found to be:

$$E = -0.69005 + 0.0213531T + 6.59597T^2 \times 10^{-6}$$

where T is the temperature in degrees Fahrenheit. The temperature of the bath was known to within approximately 0.1°F.

The annulus between the Magne-Dash dasher shaft and the solenoid support and equilibrium cell cover, the feed line and portions of the sample lines were outside of the temperature control bath. This accounted for approximately 3% of the total volume of the equilibrium cell. All lines that protruded above the bath level, except for the annulus beneath the solenoid housing and the bourdon tube in the pressure gauge above the cell, were wrapped with a heavy duty heating tape. The temperature of the wrapped lines was measured by means of a second

thermocouple, and was maintained approximately 1°F. above the bath temperature in order to reduce condensation of hydrocarbons in the vapor-phase.

Pressure in the cell was measured by means of a Chandler Engineering Company pressure gauge tester, No. D3-13. This instrument had an absolute accuracy of \pm 3 psi, in the pressure range studied here.

Sampling Errors

The most significant errors involved in this work consisted of those errors which occurred in the sampling and in the analysis of the equilibrium sample. The effect of these errors could not be measured individually, but appeared as a total error found in running duplicate samples.

A 1% expansion of the equilibrium cell was introduced when samples were admitted to the high pressure valve lock system. During the experiment, the time during which the sample was allowed to remain in this lock under pressure from the unagitated equilibrium cell was varied from two to twelve hours. However, analyses did not indicate that the composition of the phases was effected by this change in length of time. The pressure composition diagram of the binary hydrogen systems also indicated that the change in pressure experienced during sampling would produce a composition change beyond the accuracy of the analysis.

The possibility of selective adsorption within the sample system also was investigated. Experimentally, no adsorption effect could be found. This finding was confirmed by data measured by

Van Voorhis. (61) At 25°C., Van Voorhis found that hexane, cyclohexane and benzene were physically adsorbed on silica in an amount asymptotically approaching zero at pressures below one-half the vapor pressure of the hydrocarbon. To insure that selective adsorption would not occur in this work, the pressure in the sample system was maintained at one-third the vapor pressure of the heaviest component in the mixture, or lower.

Lack of complete mixing of samples withdrawn from the equilibrium cell was also a possible source of error. The liquid sample was withdrawn as a liquid, and had to evaporate and mix in the sample system. Evaporation of the liquid sample was followed as a pressure increase by measuring heights of the mercury legs in the sample system manometers, and was completed within one hour.

A simplified mathematical model of the system indicated that at the pressures involved, essentially complete mixing by diffusion would have occurred within one hour after the sample had been completely vaporized. Samples were therefore allowed to mix by diffusion for periods ranging from 2 1/2-hours to one week. No effect of mixing time could be found from the results of the analysis. As one further attempt to study the effect of mixing, heat was applied at points to the sample system. This should have caused further mixing by means of heat convection, but did not affect the results.

The main source of error in running duplicate samples has been experimentally determined to be in the analysis obtained from the mass spectrometer. Duplicate analyses of the same sample bottle

showed as much variation as the analyses of six different sample bottles. With such large variations in the mass spectrometer results, possible errors from the sources already discussed have been masked.

It is believed that the reason for this discrepancy in the analyses of duplicate samples from the same sample bottle may be attributed to the extreme size variation in the molecules being analyzed. Several different experiments were attempted in an effort to eliminate this source of error, but the only successful method was to run a minimum of six samples for each pressure-temperature-composition point studied. These results have been analyzed statistically, and the results of this type of analysis are summarized in the discussion of the data.

It is believed that the maximum probable error found occurred in the analysis of the hydrogen in both the liquid and the vapor phases, and is less than 0.5 mole per cent. The average spread in the results of analyses for all components is approximately 1 mole per cent.

SMOOTHED EXPERIMENTAL DATA

Ternary and quaternary equilibrium mixtures of hydrogen, benzene, cyclohexane and hexane have been studied at temperatures of 100° and 200°F., and at pressures of 500 and 1000 psi. At least six samples of each phase have been obtained at each pressure-temperature-composition point studied. A material balance and statistical techniques have been used in order to eliminate gross errors from the results reported here.

Since of the approximately one mole of liquid hydrocarbon added to the equilibrium cell, only 0.001 to 0.005 moles vaporized, it seemed reasonable to assume that the composition of the liquid phase on a hydrogen-free basis might be the same as the composition of the hydrocarbon mixture added to the equilibrium cell. Further, approximately 20% or less of the liquid hydrocarbon charged to the cell was removed during sampling over the complete temperature and pressure range studied. The possibility that there was no significant change in the hydrogen-free liquid compositions between additions of hydrocarbon to the cell was examined statistically. It was found that this assumption was valid within a 9% confidence level. Scattered data points that fell outside this limit have been deleted from the results reported here.

A similar analysis of the vapor phase results revealed that there was no significant difference in its hydrocarbon composition on a hydrogen-free basis. These results imply that over the range of conditions studied, the relative volatilities of the hydrocarbons were constant for a given hydrogen-free mixture.

The results of this analysis are summarized in Table II.

The analyses of the hydrogen compositions did not allow the use of a similar statistical treatment. In this case, solubility data on the three binary hydrogen-hydrocarbon systems was used to reject obvious errors. Hydrogen in the liquid phase appeared to follow Henry's Law over the entire range of conditions studied. This permitted the interpolation of hydrogen concentrations in the liquid phase from hydrogen binary data reported by different experimentalists. However, at these relatively low pressures, the vapor phase hydrogen concentrations in binary mixtures did not appear to lie on a straight line between the results of different authors. Thermodynamic calculations confirmed this hypothesis. Consequently, only the system hydrogen-hexane could be used as an estimate of the hydrogen solubility in the vapor phase.

The results of hydrogen analyses from the mass spectrometer have been examined by means of small sample statistical techniques.

These techniques are based on the number of samples, the sample mean, and the range between the lowest and the highest sample values. (62) The reported values of hydrogen compositions are based on a combination of experimental results, statistical analyses and data from the literature.

Analysis of the final results indicated that an azeotrope reported at 0.502 mole fraction benzene in the benzene-cyclohexane system at atmospheric pressure has been shifted to lower benzene concentrations at higher pressures (57,65) in the presence of hydrogen.

Tables III and IV summarized the smoothed experimental results obtained in this work. Hydrogen solubility in the liquid phase at constant temperature is plotted in Figure 3. Complete experimental results are appended.

TABLE II

(Hydroc les Analysis on a Hydrogen Free Basis) SUMMARY OF EXPERIMENTAL RESULTS

				Liquid	d Phase				Vap	Vapor Phase	a)	
	Mc	Mole Fraction (1)	tion(1)				Mole	$\operatorname{Fraction}^{(1)}$	n(1)			
Runs	BZ	CX	HX	N(2)	(2)	P.E. (4)	BZ	CX		N(2)	σ(3)	P.E. (4)
18,19,20,21	.219			13	.0078	.0015	.239			21	.0182	.0026
22,23,24,25			.217	10	.0055	.0013			.250	11	.0169	9200.
30,31,32,33		.200		15	.0023	t/000°		.200		20	.0051	.0008
34,35,36,37			.179	20	,0128	.0020			.258	22	.0518	.0078
54,54,14,04	.299			23	.0065	6000.	.298			25	.0100	.0015
24,94,34,44		.139		7,4	9800.	9100.		.157		17	.0133	4 2 00.
50,51,52,53	, 500			35	.0317	.0037	455			33	9540.	4500.
50,51,52,53		.173		35	9210.	.0020		.168		33	.0266	.0031
50,51,52,53			.327	35	.0279	.0032			.377	33	7460.	.0065

NOTES:

Mole fraction of hydrocarbon solute on hydrogen free basis Number of samples Standard deviation, $\sigma = \sqrt{(x-\overline{x})^2/(N-1)}$ Probable error, P.E. = 0.674 σ/\sqrt{N} EM (D)

TABLE III

SUMMARY OF EXPERIMENTAL RESULTS AT 100°F.

		P.E. (1)	.002 .001 .001	.005 .005 .002	001 005 001 003	001
		P. I				
	Phase	H2	.985 .987 .989	. 998. . 998. . 991.	. 986 . 990 . 599 . 499	. 989
	. Vapor	HX	.011 .003 .008	.013 .006 .002		†00°.
	In	CX		.003 .007 .007	.010 .002 .005	.002
Fraction		BZ	.010 .003 .005		.000. .0008 .000. .0005	.005
Mole Fr		P.E. (1)	.002 .004 .005	.003 .005 .001	900. 4000. 4000.	.001
	. Phase	H2	.039 .026 .072 .053	. 036 . 062 . 020	.021 .019 .044 .029	.058
	Liquid	HX	.751 .211 .724 .205	.771 .750 .175		.308
	In	CX		.193 .188 .803 .783	.686 .136 .670	.168
		BZ	.210 .763 .203 .7 ⁴ 1		. 293 . 845 . 836 . 836	.487
	Ė	(psia)	567 580 1100 1102	577 1060 563 1106	582 588 1122 1088	544 1074
		Run	18 22 21 25	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 † † † 1 t 1 t	50

NOTE:

(1) Probable error of hydrogen analysis, based on small sample statistics

TABLE IV SUMMARY OF EXPERIMENTAL RESULTS AT 200°F.

		P.E.(1)	.005 .003 .005	.005	.005 .005 .007	.002
	Phase	H2	.940 .960 .944 .970	.941 .965 .970 .955	.960 .960 .974 .975	974.
	Vapor P	HX	.046 .030 .014	.047 .028 .008 .008		.010
	In	CX		.012 .007 .022 .033	.028 .006 .018 .006	.010
action		BZ	410. 010. 940. 929.		.012 .034 .008 .009	.012
Mole Fraction		P.E. (1)	.002 400. 500.	.002	.001 .005 .002	.005
	Phase	H2	.046 .082 .035	.046 .082 .072	.035 .024 .066	.081
	Liguid	НХ	.745 .717 .209	.763 .734 .166 .172		.300
	In	CX		.191 .183 .762	.136 .136 .655	.159
		BZ	.209 .201 .756		. 289 . 841 . 279 . 822	.482
	ſ	Press. (psia)	588 1057 570 1067	568 1089 1067 574	579 589 1076 1108	1085 541
		Run	000 000 4	333 34 37 37	6074 444	52 53

NOTE:

(1) Probable error of hydrogen analysis, based on small sample statistics

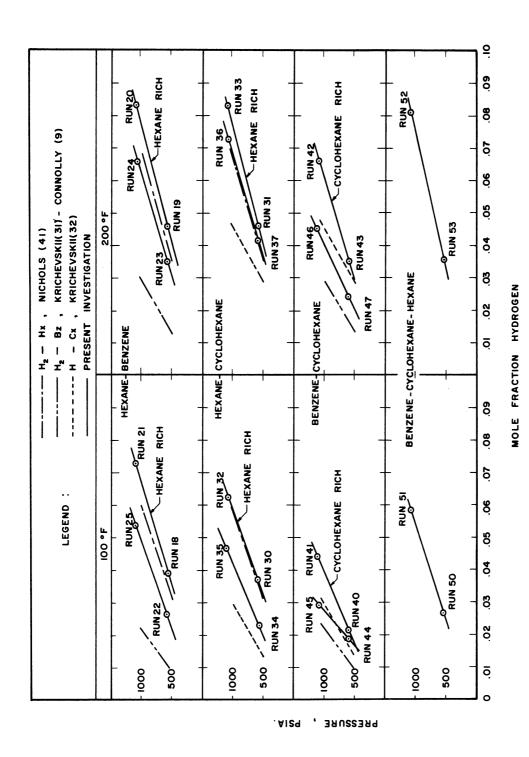


Figure 3. Solubility of Hydrogen in the Liquid Phase at Constant Temperature.

CORRELATION

Introduction

In developing any method of correlating experimental variables, much insight can be gained by making use of theoretical models. Theory must be judged, however, on how well it represents actual data. But it can provide direction to an experimentalist, and it can insure that the maximum amount of utility is obtained from the experimental data.

In the field of vapor-liquid equilibrium, a considerable amount of theory does exist, which should be accounted for by any correlation.

From the second law of thermodynamics, it can be shown that for a constant temperature process:

State 2
$$\Delta G = \int V dP$$
State 1

$$= RT \ln \frac{f_2}{f_1}$$

At equilibrium, there should be no available work between the liquid phase, state 1, and the vapor phase, state 2. This condition is satisfied if the difference in the Gibbs Free Energy, ΔG , between the states is zero.

The Gibbs Free Energy can be evaluated directly from the second law of thermodynamics, if some relationship between pressure, volume and temperature is known. The relationship may be in the form of experimental data, or it may be in the form of an equation of state.

The equation of state has the advantage of providing an analytical tool for the evaluation of the free energy of the state.

Equations which relate pressure, volume and temperature for the vapor phase have been studied extensively. Most of these equations have been developed in studying single component systems. The same forms of the equations are used to predict properties of mixtures of gases, although the methods of predicting mixture coefficients have remained substantially empirical.

Equations of state contain parameters that are generally evaluated from experimental data. In order to eliminate the necessity of having experimental data available before the equation can be used for a specific component, considerable attention has been directed toward generalizing these equation coefficients. The theory of corresponding states has been developed to the point that experimental data for one component can be used with relative confidence to predict the coefficients in an equation of state for a different, but similar, pure component.

Although equations of state have been rather highly developed to predict the behavior of vapors, they are of questionable validity when applied to the liquid state. Knowledge of the liquid state is limited. For example, although the shear strength of a liquid is more nearly like that of a vapor than of a solid, its compressibility and its density are more nearly like that of a solid. Neither a theoretical model based entirely on a solid model nor a theoretical model based entirely on the vapor will predict all the aspects of the liquid phase.

Single Equation of State Methods

A method of predicting vapor-liquid equilibrium ratios that is again receiving attention is the single equation of state method.

One equation is used to predict the Gibbs Free Energy in both the vapor and the liquid phases. This method is limited, however, to the range of the validity of the equation of state. One of the better equations of state, the Benedict-Webb-Rubin Equation (1,2,3), is valid only up to twice the critical density of the component being studied. This equation is the basis of the Kellogg Charts. (30)

A major limitation to an equation of state as involved as the Benedict-Webb-Rubin equation has been that experimental data was required before it could be applied to a specific component. Opfell, Sage and Pitzer (42) made a definite contribution to the elimination of this problem by showing that a three parameter theory of corresponding states could be used to define reduced Benedict-Webb-Rubin coefficients. However, although the reduced coefficients predicted thermodynamical properties of pure components as well as the specific coefficients for the same components, neither set of coefficients was as satisfactory in predicting properties as the compressibility factors tabulated by Pitzer (45) This indicated a need for a more precise analytical representation of the P-V-T behavior of pure components. A generalized equation of state proposed by Hirschfelder, Buehler, McGee and Sutton (21) has been proposed to fill this need.

Other equations of state, such as the Redlich-Kwong Equation of State (50), are more easily applied than the Benedict-Webb-Rubin Equation with reduced coefficients, in that their empirical coefficients are given directly in terms of reduced physical properties. In their present form, however, these latter equations have a range of applicability

that is limited to densities less than half of the critical density of the component of interest.

The Redlich-Kwong Equation of State is:

$$P = \frac{RT}{V-b} - \frac{a}{T^{1/2}V(V+b)}$$

Constants for this equation are readily derivable from a knowledge of the critical properties of the component, and are given by the following relationships:

$$A^2 = \frac{a}{R^2 T^{2.5}} = 0.4278 \frac{T_C^{2.5}}{P_C T^{2.5}}$$

$$B = \frac{b}{RT} = 0.0867 \frac{T_C}{P_CT}$$

where $\mathbf{P}_{\mathbf{C}}$ is given in atmospheres.

For mixtures:

$$A_{M} = \sum_{i} x_{i} A_{i}$$

and

$$B_{\mathbf{M}} = \sum_{\mathbf{i}} x_{\mathbf{i}} B_{\mathbf{i}}$$

It can be shown that at a constant temperature, the fugacity coefficient of a component in a mixture is given rigorously by the equation (52):

$$\operatorname{RTln} \frac{\overline{f}_{i}}{x_{i}^{P}} = \int_{V}^{\infty} \left[\left(\frac{\partial P}{\partial n_{i}} \right)_{P,T,n_{j}} - \frac{RT}{\underline{V}_{M}} \right] d\underline{V}_{M} - \operatorname{RTln} \frac{P\underline{V}_{M}}{RT}$$

Redlich and Kwong show that the integration of the above equation, using their relationship, gives the result:

$$\log \frac{\overline{f}}{\underline{x}_{i}P} = 0.4343(z-1) \frac{B_{i}}{B_{M}} - \log (z-B_{M}P) - \frac{A_{M}^{2}}{B_{M}} \left[\frac{2A_{i}}{A_{M}} - \frac{B_{i}}{B_{M}}\right] \log (1 + \frac{B_{M}P}{z})$$

where the compressibility factor, z, is defined by the relationship:

$$z = \frac{PVM}{RT}$$

At moderate pressures, Redlich and Kwong find that:

$$\ln \frac{\overline{f}_{i}}{x_{i}P} = [B_{i} - A_{i}^{2} + (A_{i} - A_{M})^{2}] P$$

Upon substitution of assumed compositions of one phase into the integrated equation, the value of the fugacity of the component of interest is found. This may be compared with the fugacity of that same component in the second phase, calculated in a similar manner. The assumed initial phase compositions are adjusted until the difference in these fugacities is as small as desired.

An equation of state that is theoretically capable of being used under all conditions is the Virial Equation of State. A sufficient number of virial coefficients can be used to describe the properties of a substance to any desired density. However, data on coefficients greater than the second is limited.

The Virial Equation of State can be written in the form:

$$\frac{PV_{M}}{RT} = 1 + \frac{B_{M}(T)}{\frac{V}{M}} + \frac{C_{M}(T)}{\frac{V^{2}}{M}} + \cdots$$

where the second virial coefficient of the mixture, $\mathbf{B}_{\mathbf{M}}(\mathbf{T})$, is given by the equation:

$$B_{\mathbf{M}}(\mathbf{T}) = \sum_{\mathbf{i}, \mathbf{j}} x_{\mathbf{i}} x_{\mathbf{j}} B_{\mathbf{i}\mathbf{j}}(\mathbf{T})$$

and the third virial coefficient of the mixture, $\mathbf{C}_{\mathbf{M}}(\mathbf{T})$, is given by the equation:

$$C_{M}(T) = \sum_{i,j,k} x_{i}x_{j}x_{k}C_{ijk}(T)$$

The first term in this infinite series can be considered to represent the kinetic energy contributions of the molecules to the equation of state. For an ideal gas, in which there are no forces of attraction or repulsion between molecules, the equation may be terminated after the first term.

The second virial coefficient accounts for potential force interactions between pairs of molecules. At densities less than half the critical density, the Virial Equation of State terminated after the second virial coefficient adequately represents the behavior of real gases. Third and higher virial coefficients represent simultaneous potential force interactions between three or more molecules.

The Virial Equation of State can be integrated at constant temperature to give:

$$\ln \frac{\overline{f}_{i}}{x_{i}P} = \frac{2}{\underline{V}_{M}} \sum_{j} x_{j}B_{ij}(T) + \frac{3}{2\underline{V}_{M}^{2}} \sum_{j,k} x_{j}x_{k}C_{ijk}(T) + \cdots - \ln \frac{\underline{P}\underline{V}_{M}}{\underline{R}\underline{T}}$$

Several equations of state can be derived by expressing the second virial coefficient analytically, and then substituting the resulting expression into the Virial Equation of State. For example, van der Waal's equation:

$$P = \frac{RT}{V-b} - \frac{a}{V^2}$$

is equivalent to assuming that :

$$B(T) = b - \frac{a}{RT}$$

The Redlich-Kwong Equation is equivalent to assuming that:

$$B(T) = 0.0867 \frac{RT_C}{P_C} [1.0 - 4.93 (\frac{T_C}{T})^{1.5}]$$

Thus, a study of the interaction coefficients in mixtures, using the Virial Equation of State, should yield results that are directly applicable to other equations of state.

Two Equations of State Method

Chao, Edmister and Prausnitz⁽⁴⁹⁾ have suggested that two equations of state be used in predicting vapor-liquid equilibrium.

This method has the advantage of requiring a relatively simple equation of state for predicting fugacity coefficients in the vapor phase, since this phase is generally at a relatively low density as compared to the liquid phase. The proposed correlation has the form:

$$K_{i} = \frac{y_{i}}{x_{i}} = \frac{\gamma_{i}}{\varphi_{i}} v_{i}$$

where γ_{i} is the liquid activity coefficient, and is defined:

$$\gamma_{i} = \overline{f}_{i}^{L}/x_{i}f_{i}^{o}$$

The parameter $\phi_{\dot{1}}$ is the vapor-phase fugacity coefficient, and is defined:

$$\varphi_i = \bar{f}_i^V/y_i^P$$

while ν_{i} is the pure component liquid fugacity coefficient, and is defined:

$$v_i = f_i^0/P$$

The activity and fugacity coefficients required to evaluate K-values using this correlation will be discussed in the following sections.

Vapor Phase Fugacity Coefficient

In certain areas of general interest, the density of the vapor phase is less than half the critical density of the component being considered. Consequently, in this case the two equations of state method does not place extreme limitations on the exact vapor phase equations of state to be used. In this work vapor densities were relatively low, so that the integrated form of the Redlich-Kwong Equation for moderate pressures:

$$ln \ \phi_{i} = [B_{i} - A_{i}^{2} + (A_{i} - A_{M})^{2}] P$$

as well as the integrated form of the Virial Equation of State through the second virial:

$$\ln \phi_{i} = \frac{2}{\underline{V}_{M}^{V}} \sum_{j} y_{j} B_{ij}(T) - \ln \frac{\underline{P}_{M}^{V}}{RT}$$

has been used to evaluate vapor phase fugacity coefficients.

Using the Theory of Corresponding States, Pitzer and Curl (45) have developed a generalized correlation for pure component second virial coefficients, of the form:

$$B_{ij}(T) = B_{ij}(T) + \omega B_{ii}(T)$$

where

$$B_{ii}^{(0)}(T) = \frac{RT_{C}}{P_{C}} (0.073 + 0.46/T_{r} - 0.50/T_{r}^{2} - 0.097/T_{r}^{3} - 0.0073/T_{r}^{8})$$
and
$$B_{ii}^{(1)}(T) = \frac{RT_{C}}{P_{C}} (0.1445 - 0.330/T_{r} - 0.1358/T_{r}^{2} - 0.0121/T_{r}^{3})$$

The acentric factor, ω , is defined by the relationship:

$$\omega \equiv -\log_{10} P_r(Saturated at T_r = 0.7) - 1.00$$

and is a measure of the forces that contribute to the nonideality of a gas. The acentric factor is related, through the Clausius-Clapeyron Equation, to the entropy of vaporization of a component. If nonideal forces exist between molecules of a component, these forces should tend to have an orienting effect, which will show up directly in the entropy of the component.

Prausnitz has extended this form of correlation to interaction virial coefficients. (47) He assumes that the critical volume of a mixture is the arithmetic average critical volume of the components:

$$\underline{\underline{v}}_{C_{i,j}} = 1/2 (\underline{\underline{v}}_{C_i} + \underline{\underline{v}}_{C_j})$$

and that the characteristic acentric factor is the arithmetic average of the component acentric factors:

$$\omega_{i,j} = 1/2 (\omega_i + \omega_j)$$

He also presents rules which correct for the deviation from the geometric mean critical temperature of the actual critical temperature of the mixture:

$$T_{C_{ij}} = k_{ij} (T_{C_i} T_{C_j})^{1/2}$$

where k_{ij} is a function of the properties of the interacting molecules. For the hydrocarbons studied here, k_{ij} is essentially unity, while for the hydrogen-hydrocarbon interactions, k_{ij} is approximately equal to 0.85. Prausnitz tabulates the function $\theta_{\rm R}$, where:

$$\frac{\mathbf{B}_{ij}}{\mathbf{V}_{C_{ij}}} = \mathbf{\Theta}_{\mathbf{B}} \left(\frac{\mathbf{T}}{\mathbf{T}_{C_{ij}}}, \omega_{ij} \right)$$

The generalized pure virial coefficients predicted by using the method of Pitzer and Curl have been compared to experimental data. This work is shown on Figure 4, 5 and 6. Figure 7 shows virial coefficients for hydrogen that were used in this work. Prausnitz's correlation compares favorably with experimental data for the system benzene-cyclohexane as shown on Figure 8. However, an attempt was made to calculate second virial interaction coefficients for hydrogen and hydrocarbons from data obtained in this work for further verification of Prausnitz's correlations. Unfortunately, the accuracy of the variables assumed to be known quantities in these calculations is apparently insufficient to provide a definite check on his correlation for molecules of widely differing sizes. Results of this calculation are summarized in Table V. Hydrogen-hydrocarbon interaction virial coefficients predicted by Prausnitz's correlation are shown in Figure 9.

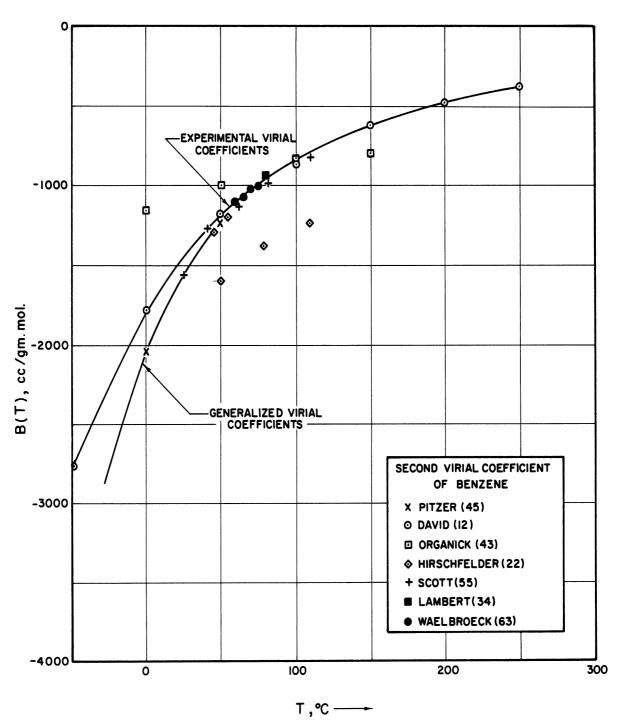


Figure 4. Second Virial Coefficient of Benzene.

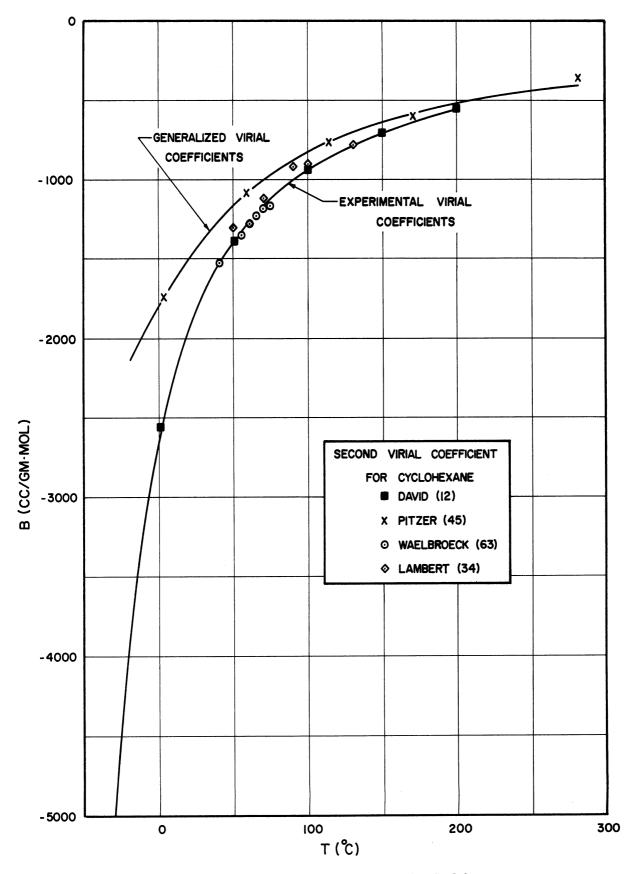


Figure 5. Second Virial Coefficient for Cyclohexane.

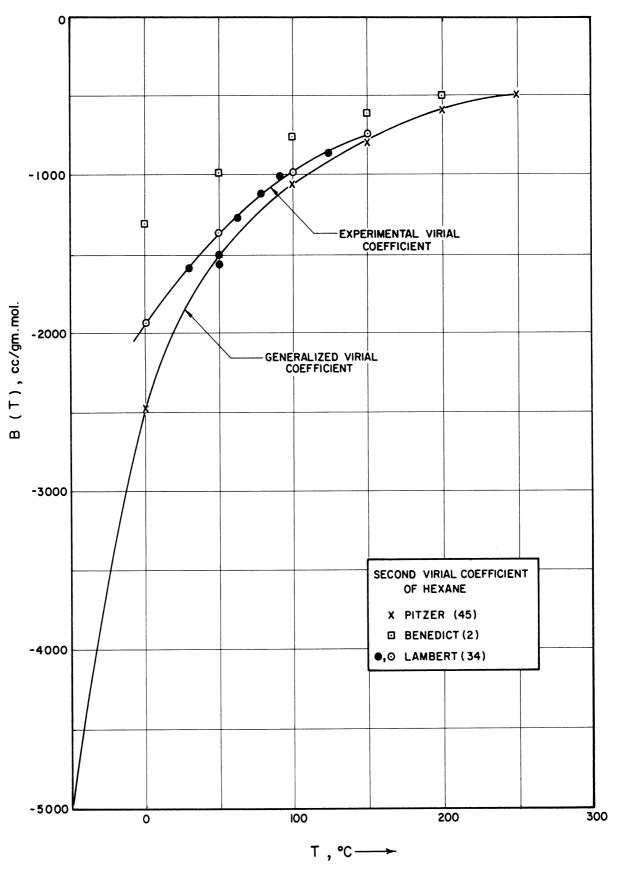


Figure 6. Second Virial Coefficient.

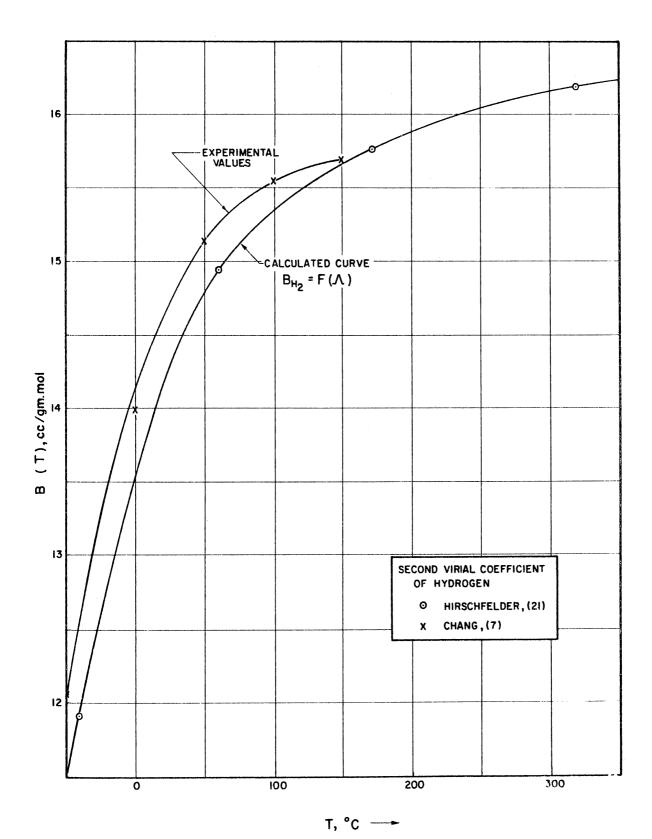


Figure 7. Second Virial Coefficient of Hydrogen.

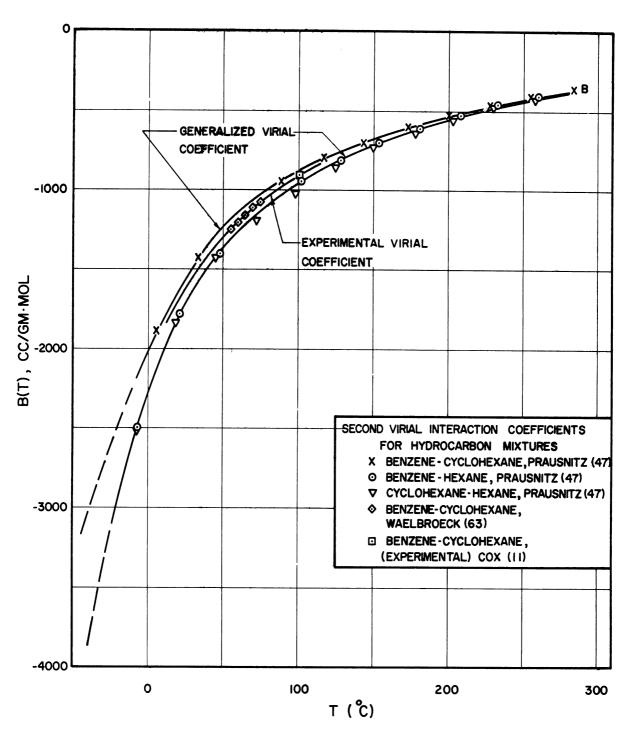


Figure 8. Second Virial Interaction Coefficients for Hydrocarbon Mixtures.

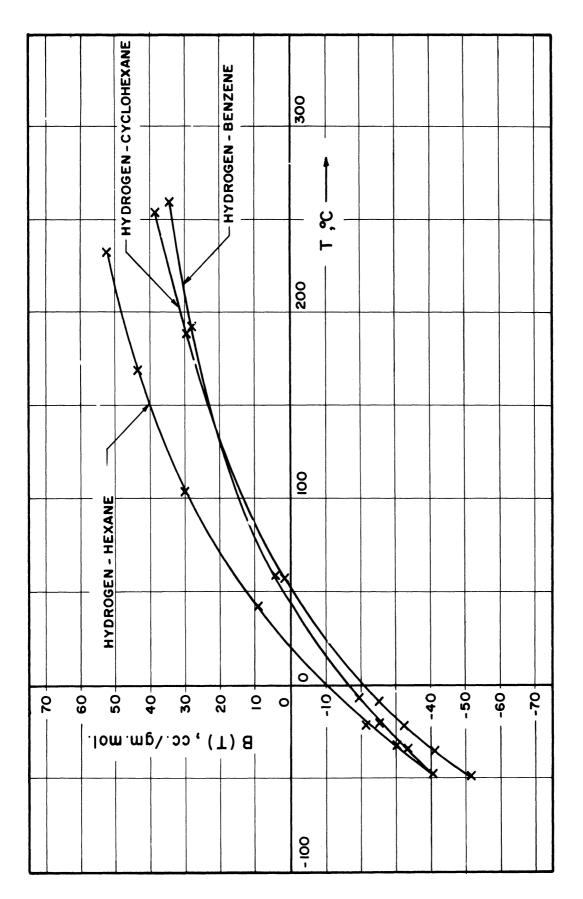


Figure 9. Generalized Second Virial Interaction Coefficients for Hydrogen Systems. Reference: Prausnitz (47)

TABLE V

INTERACTION VIRIAL COEFFICIENTS FOR HYDROGEN-HYDROCARBONS

Run Set	Temp.	B _{H2} (cm ³ /p	$^{-B}_{z}$ $^{B}_{H_2}$ $^{-C}_{x}$ $^{n-mole)}$ $^{(cm^3/gm-mole)}$		^B H ₂ - (cm ³ /gm	$^{\mathrm{B}_{\mathrm{H}_{2}}-\mathrm{H}_{\mathrm{x}}}$ (cm $^{\mathrm{3}}$ /gm-mole)	
New Section Control	-	(1)	(2)	(1) (2)	(1)	(2)	
20	100° F.	-4. O	-140.6	-7.0	7.0	- 51.1	
30				- 97.2		- 52 . 1	
40			-116. 6	- 150.8			
50			- 80.0	-171.1		- 35.4	
			•				
20	200° F.	13.0	2.5	12.0	27.0	76.0	
30				14.9		39.1	
1 ₄₀			5 9. 2	- 6.7			
50			46.1	- 8.1		66.3	

NOTE: 1. Predicted by method of Prausnitz. (47)

2. Calculated by method of least squares from experimental data.

Liquid Activity Coefficient

Attention has recently been directed to solubility theory as a means of predicting the liquid activity coefficients. Chao, Edmister, and Prausnitz have recommended that the Hildebrand-Scott regular solution theory correlation for multi-component mixtures:

RT ln
$$\gamma_i = \underline{v}_i^L (\delta_i - \delta_M)^2$$

be used. (49) Here:
$$\gamma_{i} = \frac{\overline{f}_{i}^{L}}{x_{i}f_{i}^{o}}$$

 $\underline{\underline{V}}_{i}^{L} \equiv Molar liquid volume of component i$

 $\delta_{i}^{\perp} \equiv \text{Solubility parameter of component } i = (\Delta E_{V_{i}} / V_{i}^{L})^{1/2}$

where $\Delta E_{i} \equiv$ Isothermal molar change in energy of component i in going from liquid to the ideal gas state

and $\delta_{M} \equiv \text{Solubility parameter of the mixture} = \sum_{i} v_{i}^{L} \delta_{i} / \sum_{i} v_{i}^{L}$

An equation of this form was first developed by Van Laar for a liquid that obeyed the van der Waal Equation of State. (59,60) Hildebrand has shown that this equation can be applied to a broader class of mixtures, called "regular solutions." (20) A regular solution, as defined by Hildebrand, is a solution in which the entropy of mixing is given by the equation:

$$\Delta S_{mix} = -R(n_1 \ln x_1 + n_2 \ln x_2 + \cdots + n_N \ln x_N)$$

All the nonideality of the mixture is attributable to its enthalpy.

Although no real solution can be expected to be a regular solution, the Hildebrand theory has been surprisingly successful.

Flory (16,17) and Huggins (25) independently considered the properties of mixtures of two kinds of molecules sufficiently similar to mix in all proportions without any heat of mixing, but differing widely in size. Such a solution is called an "athermal solution," and the entropy of mixing, based on a lattice type model, is given by:

$$\Delta S_{\text{mix}} = -R(n_1 \ln \frac{n_1 \underline{y}_1^{L}}{n_1 \underline{y}_1^{L+n_2} \underline{y}_2^{L}} + n_2 \ln \frac{n_2 \underline{y}_2^{L}}{n_1 \underline{y}_1^{L+n_2} \underline{y}_2^{L}})$$

Extending this to multi-component mixtures:

$$\Delta S_{\text{mix}} = -R(n_1 \ln \frac{n_1 \underline{y}_1^L}{\sum_{i} n_i \underline{y}_i^L} + n_2 \ln \frac{n_2 \underline{y}_2^L}{\sum_{i} n_i \underline{y}_i^L} + \cdots)$$

so that

$$\overline{\Delta S}_{1} = \frac{\partial(\Delta S_{\text{mix}})}{\partial n_{1}} = -R(\ln \frac{x_{1}\underline{V}_{1}^{L}}{\underline{V}_{M}^{L}} + 1.0 - \frac{\underline{V}_{1}^{L}}{\underline{V}_{M}^{L}})$$

where

$$\underline{\underline{V}}_{\underline{M}}^{L} = \sum_{i} x_{i} \underline{\underline{V}}_{i}^{L}$$

If this expression defines the change in the partial molal entropy of a component, and if the change in its partial molal enthalpy in the multi-component mixture is given by the relationship developed by Hildebrand for a regular solution:

$$\Delta \overline{H}_{1} = \underline{v}_{1}^{L} (\delta_{1} - \delta_{M})^{2}$$

the partial molal change in the Gibbs Free Energy is given by the equation:

$$\overline{\Delta G}_{1} = RT \ln \frac{\overline{f}_{1}}{f_{1}^{\circ}}$$

$$= \underline{V}_{1}^{L} (\delta_{1} - \delta_{M})^{2} + RT \ln \frac{\underline{x}_{1}\underline{V}_{1}^{L}}{\underline{V}_{M}^{L}} + RT(1.0 - \frac{\underline{V}_{1}^{L}}{\underline{V}_{M}^{L}})$$

or

$$\ln \gamma_{1} = \ln \frac{\underline{v}_{1}^{L}}{\underline{v}_{M}^{L}} + \frac{\underline{v}_{1}^{L} (\delta_{1} - \delta_{M})^{2}}{RT} + 1.0 - \frac{\underline{v}_{1}^{L}}{\underline{v}_{M}^{L}}$$

Ιſ

$$\underline{\mathbf{v}}_{\mathtt{l}}^{\mathtt{L}} = \underline{\mathbf{v}}_{\mathtt{2}}^{\mathtt{L}} = \underline{\mathbf{v}}_{\mathtt{3}}^{\mathtt{L}} = \cdots = \underline{\mathbf{v}}_{\mathtt{N}}^{\mathtt{L}}$$

this equation reduces to Hildebrand's equation for mixtures. This volumetric correction has not previously been applied to multi-component mixtures in the form presented here.

Prausnitz has pointed out that the assumptions used by Hildebrand in developing the theory of regular solutions do not necessarily apply to a gaseous solute in a liquid solution. (47)

The definitions of a solubility parameter and liquid molar volume, as given, cannot be readily applied to a component at a temperature above its critical temperature. Chao, Edmister and Prausnitz⁽⁴⁹⁾ do suggest the use of effective solubility parameters and effective molar volumes for gaseous solutes, however. These factors have been back-calculated from vapor-liquid equilibrium data. The results of this work have been applied directly to the correlation of data obtained in the present investigation.

Fugacity Coefficient of the Pure Liquid Component

At low pressures, the fugacity coefficient of the pure liquid component, ν_{i} , is equal to the ratio of the component vapor pressure, P_{i}^{O} , to the total pressure. At higher pressures, ν_{i} is given by:

$$\ln \nu_{i} = \ln \frac{P_{i}^{o}}{P} + \ln \left(\frac{f_{i}}{P}\right)_{P^{o}} + \frac{V_{i}^{L}(P-P_{i}^{o})}{PT}$$

where $(\frac{f_i}{P})_{P^0}$ is a function of reduced vapor pressure and temperature. At the conditions encountered in this work, $(\frac{f_i}{P})_{P^0}$ was essentially unity.

Generalized fugacity coefficients have been presented with the critical compressibility factor as a third parameter. (38)

Pitzer (46) has correlated this coefficient analytically using the acentric factor as a third parameter. For components that do not exist as liquids at the system temperature and pressure, Chao has proposed effective fugacity coefficients, which were determined from experimental data. He proposes that the relationship:

$$\log \nu = \log \nu^{(o)} + \omega' \log \nu^{(1)}$$

be used to represent both actual and effective fugacity coefficients, where ω ' is a pseudo -acentric factor calculated to give the best fit for the largest amount of experimental vapor-liquid equilibrium data. It varies from Pitzer's acentric factor. The factor $v^{(o)}$ is the pure liquid fugacity coefficient of a "simple fluid" and is given by the equation:

$$\log v^{(0)} = A_0 + A_1/T_r + A_2T_r + A_3T_r^2 + A_4T_r^3$$

$$+ (A_5 + A_6T_r + A_7T_r^2)P_r + (A_8 + A_9T_r)P_r^2 - \log P_r$$

while the factor $v^{(1)}$ is given by:

$$\log v^{(1)} = -4.23893 + 8.65808T_r - 1.22060/T_r$$

- 3.15224 T_r^3 - 0.025 (P_r - 0.6)

and may be considered to be a correction term. Tables VI and VII give values of constants recommended by Chao for use in this correlation, as well as Pitzer's acentric factor, ω .

Phase Rule Considerations

If an estimate of the vapor-liquid equilibrium phase compositions can be made, the correlations that have been presented thus far can be used to provide improved estimates of vapor-liquid equilibrium composition ratios. However, for multi-component systems, the Gibbs Phase Rule indicates that additional information must be provided before these ratios can in turn be used to provide improved estimates of equilibrium compositions.

The Gibbs Phase Rule may be deduced from elementary algebraic considerations. Any set of N independent variables is said to be

TABLE VI

COEFFICIENTS IN PURE LIQUID FUGACITY COEFFICIENT EQUATIONS

	Simple Fluid	Hydrogen
$^{\mathrm{A}}$ O	5.75748	1.96718
Al	-3.01761	1.02972
A ₂	- ¹ 4. 98500	- 0.054009
A3	2.02299	0.0005288
Αų	0	0
A ₅	0.08427	0.008585
A 6	0.26667	0
^A 7	-0.31138	0
AB	-0. 02655	0
A ₉	0.02883	0

TABLE VII
PHYSICAL CONSTANTS

Component	TC(°R)	P _C (psia)	V(cc/gm-mole)	$\delta(\frac{\text{cal}}{\text{cc}})^{1/2}$	ω¹	<u>ω</u>
Benzene	1012.7	714.0	89.4	9.158	.2130	0.215
Cyclohexane	997.7	561.0	108.7	8.196	.2032	0.158
Hexane	914.2	440.0	131.6	7.266	.2972	0.300
Hydrogen	6 0. 2	190.8	31.0	3.250	.0000	0.000

completely defined by N independent relationships between these variables. If the number of independent relationships between the variables is greater than the number of independent variables, statistical methods can be used to determine the best values of the independent variables that will satisfy all the relationships. If, however, the number of relationships is less than the number of variables, the number of independent variables can only be reduced by the number of relationships.

This fundamental idea underlies the Gibbs Phase Rule. For a two phase, N-component, noninteracting system consisting of vapor and liquid at equilibrium, the variables in the liquid phase are:

$$x_1, x_2, x_3, \dots x_N, P,T$$

while the variables in the vapor phase are:

$$y_1, y_2, y_3, \dots y_N, P, T$$

In this case, there are 2N + 2 independent variables, as the pressure and temperature in both phases are equal.

The relationships between these variables include:

$$\sum_{i} x_{i} = 1.0$$

$$\sum_{i} y_{i} = 1.0$$

and

$$\overline{G}_{i}^{L} = \overline{G}_{i}^{V}$$

so that there is a total of N + 2 relationships.

The number of independent variables can be reduced by the number of relationships, so that there remain:

$$(2N + 2) - (N + 2) = N$$

independent variables that must be specified before the system is defined. For binary mixtures, the specification of pressure and temperature completely defines the system. Multi-component systems require that N-2 additional variables be specified.

If this problem is considered in relation to a physical application, material balance equations may be added. Along with a specified operating pressure and temperature, this will provide sufficient additional information so that the system will be completely defined.

The variables in the feed stream to an equilibrium stage are compositions:

$$x_{F_1}, x_{F_2}, x_{F_3}, \dots x_{F_N}$$

the flow rate, pressure and temperature of the stream. The variables in the product streams are also compositions, pressure and temperature, so that the total number of independent variables is 3N + 7. In this case, the relationships between these variables include:

$$\sum x_{i} = 1.0$$

$$\sum y_{i} = 1.0$$

$$\sum x_{F_{i}} = 1.0$$

$$\overline{G}_{i}^{L} = \overline{G}_{i}^{V}$$

$$F = L + D$$

$$Fx_{F_{i}} = Ix_{i} + Dy_{i}$$

so that there are 2N + 3 relationships between the variables.

Generally, the composition, flow rate, pressure and temperature of the feed stream are specified. In this case, there would be 2N + 4 independent variables and 2N + 2 relationships between the variables. The number of independent variables remaining to be specified is 2: the pressure and temperature of the equilibrium stage.

The energy balance can be used to determine the operating temperature of the equilibrium stage. Alternatively, if the operating temperature is specified, the energy balance determines the amount of heat that must be supplied or removed from the equilibrium stage in order to maintain this temperature.

This type of analysis can be applied to the many types of equilibrium stage separation equipment found in a chemical or petroleum process plant.

Outline of Correlation Procedure

The concepts presented in this section have been combined to predict the experimental vapor-liquid equilibrium compositions measured in this work. The experimental compositions were used to calculate a complete material balance around the equilibrium cell. The hydrogen-free composition of the liquid phase and the calculated feed were assumed to be equal. This information was then used as a basis for predicting vapor-liquid equilibrium ratios by means of the two equations of state method.

For a specific example, consider the prediction of equilibrium compositions in a four component system. The feed composition to the cell has been estimated and the pressure and temperature of the run are specified. By a material balance, we have:

$$F = L + D$$

 $Fx_{F_i} = Lx_i + Dy_i$

Per mole of feed, we find:

$$\frac{x_{F_2} - x_2}{y_2 - x_2} = \frac{x_{F_3} - x_3}{y_3 - x_3} = \frac{x_{F_4} - x_4}{y_4 - x_4}$$

Solving for x_2 and x_3 in terms of x_4 :

$$x_2 = \frac{x_4 x_{F_2}(K_4-1)}{x_{F_4}(K_2-1) + x_4(K_4-K_2)}$$

$$x_3 = \frac{x_4 x_{F_3}(K_4-1)}{x_{F_4}(K_3-1) + x_4(K_4-K_3)}$$

where

$$K_i \equiv y_i/x_i$$

The quantity x_1 can be found from the relationship:

$$x_1 = 1.0 - x_2 - x_3 - x_4$$

and the final equation relating these variables is found from the relationship:

$$y_1 + y_2 + y_3 + y_4 = 1.0$$

so that

$$x_{\mu}(K_{\mu}-1) \left(\frac{x_{F_{1}}(K_{1}-K_{3})}{x_{F_{\mu}}(K_{1}-1) + x_{\mu}(K_{\mu}-K_{1})} + \frac{x_{F_{2}}(K_{2}-K_{3})}{x_{F_{\mu}}(K_{2}-1) + x_{\mu}(K_{\mu}-K_{2})} + K_{3}(1-x_{\mu}) + K_{4}x_{\mu} = 1.0 \right)$$

This last equation has been solved for x_4 on a 704 IBM computer using Newton's method of approximation. The vapor-liquid equilibrium ratios, K_i , were found from the two equations of state method:

$$K_i = \gamma_i \nu_i / \phi_i$$

where the liquid activity coefficient, γ_i , was given either by:

$$\gamma_{i} = \exp(\frac{\underline{V}_{i}^{L}(\delta_{i} - \delta_{\underline{M}})^{2}}{RT})$$

from Hildebrand's regular solution theory, or by:

$$\gamma_{i} = \frac{\underline{v}_{i}^{L}}{\underline{v}_{M}^{L}} \exp(\frac{\underline{v}_{i}^{L}(\delta_{i} - \delta_{M})^{2}}{\underline{RT}} + 1.0 - \frac{\underline{v}_{i}^{L}}{\underline{v}_{M}^{L}})$$

from the present modification of this theory. Further, the vapor phase fugacity coefficient, $\boldsymbol{\phi}_{\mathbf{i}},$ was given either by:

$$\varphi_{i} = \exp\{[B_{i} - A_{i}^{2} + (A_{i} - A_{M})^{2}]P\}$$

from the Redlich-Kwong Equation for moderate pressures, or by:

$$\phi_{i} = \frac{RT}{PV_{M}^{V}} \exp\left[\frac{2}{V_{M}^{V}} \sum_{j} y_{j}B_{i,j}\right]$$

from the Virial Equation of State. The pure component liquid fugacity coefficients were found either from Chao's correlation, or from vapor pressure and liquid volume data on the pure hydrocarbons.

A first estimate was made of all unknown compositions and these estimates were used to calculate activity and fugacity coefficients, from which K-values were calculated. The improved K-values were then used to re-estimate \mathbf{x}_h .

When the integrated form of the Virial Equation of State was used, the equation of state was first solved for the largest root of V at constant pressure and temperature. In general, the number of positive

real roots of an equation of degree N is either equal to the number of its variations of sign or is less than that number by a positive even integer. The largest positive real root of the Virial Equation of State has been assumed to be the dew point volume, while the smallest root has been assumed to be the bubble point volume.

The Virial Equation of State, terminated at the second virial, is a quadratic equation in volume, and so may be solved directly for the dew point volume.

Having solved for x_4 , the values of x_1 , x_2 and x_3 were found. The vapor compositions were estimated from the relationship:

$$y_i = K_i x_i$$

The new values of compositions were then used to make new estimates of the activity and fugacity coefficients. This process was repeated until two successively calculated compositions agreed as closely as was desired. This method of calculation can be used for an N-component mixture. While it is tedious if computed by hand, it is easily programmed for a digital computer.

Two different sets of parameters for these equations have been used to predict the measured vapor-liquid equilibrium composition ratios. In one set, the empirical solubility parameters, liquid volumes and pure liquid component fugacity coefficients recommended by Chao were used (8). Virial coefficients were predicted by the methods of Pitzer and Curl (45) and of Prausnitz. (47) These results are reported as being calculated from generalized data in Tables VIII, IX, X and XI.

TABLE VIII

VAPOR-LIQUID EQUILIBRIUM COMPOSITION RATIOS FOR BENZENE USING VIRIAL EQUATION OF STATE

			Volumetric Entropy	c Entropy			Idea1	Ideal Entropy	
Run	Observed K-Value	Calculated K-Value(1)	% Dev(2)	Calculated K-Value (4)	% Dev(2)	Calculațed K-Value (1)	\$ Dev(2)	Calculated K-Value	% Dev(2)
	5	1100	- 01	0.00	0 92		ι οη –	× 10 0	۶. الا <u></u>
100 F.	0.019 MIO.0	700.0	1.4.	300			1,00	900	200
א כ	0.01.0 7.00	0.00	1 7 7 7	800.	20.01	200.0	1 × × ×	600.0	1 70.0
1 K	0000	0.005	37.5	900	- 25.0	0.005	- 57.5	900.0	- 25.0
/ 1 4	0.014	0.007	- 50.0	600.	- 55.7	0.007	- 50.0	0.00	- 35.7
7. t	600.0	0.007	- 22.2	900.	- 11.1	0.007	- 22.2	0.008	- 11.1
T†1	0.007	0.005	- 28.6	900.	- 14.3	0.005	- 28.6	900.0	- 14.3
45	0.005	0.004	- 20.0	.005	0.0	0.00	- 20.0	0.005	0.0
50	0.010	0.008	- 20.0	.010	0.0	0.008	. 20.0 1	0.010	0.0
51	0.008	ر00.0 د	- 5(.5	900.	0.62 -	ر00.0 د	- 5(.5	0.00	- 22.0
Abs.sum of			1		t		t t t		
Deviations			357.5		225.5		5.7.65		250.2
Abs.avg.%			(4)		(4)		(3)		(5) (3)
Deviation			35.877		22.6		55.67		55.0.23
200 F. 19	290.0	0.072	4.7. +	.070	+ 4.5	0.07 ⁴	+ 10.5	0.072	4.7.4
	0.050	0.045	- 10.0	940.	- 8.0	0.046	- 8.0	0.047	- 6.0
23	0.056	0.051	- 8.9	.052	- 7.1	0.051	- 8.9	0.052	- 7.1
†∂	0.030	0.031	+ 3.3	.033	+ 10.0	0.031	+ 3.3	0.033	+ 10.0
43	0.042	0.050	+ 19.0	.051	+ 21.4	0.050	+ 19.0	0.051	+ 21.4
L+t	0.041	940.0	+ 12.2	740.	+ 14.6	0.046	+ 12.2	0.047	+ 14.6
24	0.029	0.030	+ 3.5	.055	+ 13.8	0.031	+ 6.9	0.033	+ 13.8
94	0.023	0.027	+ 17.4	.050	+ 50.5	0.028	+ 21.7	0.030	+ 30.5
52	0.026	0.034	+ 50.8	920.	+ 58.5	0.034	+ 30.8	0.036	+ 38.5
53	0.056	0.058	+ 3.6	.058	+ 3.6	0.059	+ 5.4	0.058	+ 3.6
Abs.sum of			•				,		
Deviations			116.1		152.0		126.7		152.9
Abs.avg. %			(x)		(x)		(ع)		(x)
Deviation			11.6		15.2		12.7		15.3

NOTES:

Calculation based on specific data Percent deviation = $((K_{\rm Calc} - K_{\rm Obs})/K_{\rm Obs}) \times 100$ Absolute average percent deviation = $(\Sigma | \% \ {\rm dev.} |)/{\rm number}$ of samples Calculation based on generalized data £300£

TABLE IX

VAPOR-LIQUID EQUILIBRIUM COMPOSITION RATIOS FOR CYCLOHEXANE USING VIRIAL EQUATION OF STATE

			Volumetri	Volumetric Entropy			Ideal	Ideal Entropy	
Run	Observed K-Value	Calculated K-Value(1)	\$ Dev(2)	Calculated K-Value (4)	\$ Dev(2)	Calculated K-Value (1)	% Dev(2)	Calculated K-Value	% Dev(2)
100°F. 30	910.	800.	- 50.0	010.	- 37.5	800.	- 50.0	010	7 7 x -
	.011	900.	45.4	700.	- 36.4	900.	- 45.4	200.	74.92
\$	600.	800.	- 11.1	600.	0.0	800.	- 11.1	600.	0.0
35	2005	.005	0.0	900.	+ 10.0	.005	0.0	900.	+ 10.0
0 प्र प	.015 7.10	.00. 200.	1.53.4	600.	0.04	700.	- 53.4	600.	0.04 -
t-1	200.	700.	- 6.04	600) +C -1	000.	1 40. 0 0 0.	900.	0.04 - M. 44
45	700.	.005	- 28.6	900.	14.3	.005	28.6	200.	\ C \ C \
50	.012	900.	- 55.3	600.	- 25.0	800.	- 55.3	600.	- 25.0
51	.012	.005	- 58.4	900.	- 50.0	.005	- 58.4	900.	- 50.0
Abs.sum of			,						
Deviations			569.7		267.5		355.5		253.2
Abs.avg. %			•						.
Deviation			37.0(3)		26.8(3)		35.6(3)		25.3(3)
200°F. 31	.063	.058	- 7.9	.055	- 12.7	.059	±.9 -	.055	- 12.7
33	.038	920.	- 5.2	750.	- 2.6	920.	- 5.2	750.	9.0
9 1	080·	.030	+ ~ ~.5	.032	+ 10.0	050.	+ 3.5	.032	+ 10.0
). 	2.40.	040.	+ 16.7	840.	+ 14.3	640.	+ 16.7	840.	+ 14.3
4 - U i	240.	2.40	+ 11.9	740.	+ 11.9	740.	+ 11.9	740.	+ 11.9
- (v. v. to.	7.40.	+ 4.5	640.	6.8 +	.048	+ 6.7	.050	+ 11.1
4 - M /	.05.	.028	+ 3.7	.051	+ 14.8	.028	+ 3.7	.031	+ 14.8
0 1	₹0.	.028	- 37.8	.032	- 28.8	.029	- 35.6	.033	- 26.6
22		6 z 0.	+ 16.0	.032	+ 28.0	.030	+ 20.0	.032	+ 28.0
55	090.	.051	- 15.0	.051	- 15.0	.052	- 10.0	.051	- 15.0
Abs.sum of									
Deviations			132.2		147.0		119.7		147.0
Abs.avg. %									-
Deviation			13.2(3)		14.7(3)		12.0(3)		14.7(5)

NOTES:

£300E

Calculation based on specific data Percent deviation = $((K_{\rm Calc} - K_{\rm Obs})/K_{\rm Obs}) \times 100$ Absolute average percent deviation = $(\Sigma|\% \ {\rm dev}|)/{\rm number}$ of samples Calculation based on generalized data

TABLE X

VAPOR-LIQUID EQUILIBRIUM COMPOSITION RATIOS FOR HEXANE USING VIRIAL EQUATION OF STATE

			Volumet	Volumetric Entropy			Ideal	Ideal Entropy	
Rum	Observed K-Value	Calculated K-Value (1)	% Dev(2)	Calculated K-Value (4)	% Dev(2)	Calculated (1)	% Dev(2)	Calculated (4)	% Dev(2)
100 t	7 5 6		9 96 -	۶10	א. צר -	L [0]	- 26.6	\$10.	7.51 -
	410.	410.	0.0	710.	+ 21.4	.015	+ 7.1	.018	+ 28.6
77	.01	200.	- 36.4	600.	- 18.2	.007	- 36.4	600.	- 18.2
25	010	800.	20.0	.011	+ 10.0	600.	10.0	210.	+ 20.0
%	710.	110.	- 55.3	.013	- 23.6	.011	5.55	.015	25.0
Z = 2	800.	200.	- 12.5 5.85	, 000.	+ 12.5 + 27.5	60:	- + - 4 - 6 - 6 - 6	, 2000	+ 12.5 + 27.3
35	900	700.	+ 16.7	600.	+ 50.0	700.	+ 16.7	600.	+ 50.0
50	.013	510.	0.0	.015	+ 15.4	.015	0.0	.016	+ 23.1
.13	.013	700.	- 46.1	.010	- 25.1	.008	- 38.4	.010	- 23.1
Abs.sum of			8,119		8.418		201.2		239.7
A 6							!		
Abs.avg. 7 Deviation			21.2(3)		21.5(3)		20.1(5)		24.0(3)
200°F. 19	.062	.071	+ 14.5	.072	+ 16.1	. o73	+ 17.8	720.	+ 19.4
	0.40°	0.40 0.10	0.0	7±0.	+ 11.9	.043 .043	+ 0	840.	+ 14.3
23	790.	.085 85	+ 26.9	880°	+ 00'+	190.	+ 35.8	ま.	+ 40.5
†ี้ผู้	40.	840.	+ 41.3	ردً0.	+ 61.8 +	.0. 	+ 25.0	100.	+ (\subseteq
죠:	200.	01.0	+ 12.9	1,0.	+ I.4.5	1).0.	+ I.4.	. O. (V.	0.T.
55	0.00 0.10	140.	+	v.	+ TO	7 2 7	C 8 8	٠ خ خ	+
001	0 6	. O. 46		5 6	V	t = 100°) i	0.60	1 C
ر د و	0,0.) () ()	+ + N K	7.0.	+ + 1,0,1	#\D.	+ +	٠. ١٠٠٠ ١٠٠٠	+ 57.6
53			· +	.081	+ 1.0 +	.085	+ 13.7	.085	+ 16.4
Abs.sum of									
Deviations			158.8		218.2		201.1		268.5
Abs.avg. %			(5)0 31		27 8(3)		30 1(3)		06 0(3)
Deviation			17.3.77		× 0.13		EO. T. O.		7.7.7.03
								The state of the s	

NOTES:

HQ 64

Calculation based on specific data Percent deviation = $((K_{\rm Calc} - K_{\rm Obs})/K_{\rm Obs}) \times 100$ Absolute average percent deviation = $(\Sigma|\% \,\, {\rm dev}|)/{\rm number}$ of samples Calculation based on generalized data

VAPOR-LIQUID EQUILIBRIUM COMPOSITION RATIOS FOR HYDROGEN USING VIRIAL EQUATION OF STATE TABLE XI

Calculated Calculated Sev(2) Calculated Calculated Sev(2) Calculated Sev(2) Calculated Sev(2) Calculated Calcu	ł	Observed								
18		K-Value	Calculated K-Value (1)	% Dev(2)	Calculated K-Value	\$ Dev(2)	Calculated K-Value (1)	% Dev(2)	Calculated K-Value	% Dev(2)
18		,	•							
22 77.362 46.981 + 29.0 77.314 - 1.7 77.77 + 91.6 25 18.77	ç	25.256	24.612	- 2.5	20.005	- 20.8	41.977	+ 66.3	36.805	+ 45.8
21 13.756 13.078 - 4.8 10.709 - 22.1 22.103 + 60.9 25 27.333 22.072 - 19.5 18.062 - 34.0 39.055 + 108.3 27.337 22.072 - 19.5 18.062 - 34.0 39.055 + 108.3 27.337 22.072 - 19.5 18.062 - 34.0 39.055 + 108.3 27.337 22.072 - 19.5 18.062 - 34.0 39.055 + 108.3 27.337 22.072 - 19.5 18.062 - 34.0 39.055 + 108.3 27.337 22.072 - 20.6 33.584 - 37.1 27.648 + 28.0 27.35 64.667 + 24.1 27.6 33.160 - 20.4 66.188 + 41.0 27.0 10.607 25.012 + 4.0 26.31 - 21.8 37.057 + 55.4 27.0 17.069 20.547 + 20.8 16.101 - 5.7 31.967 + 87.4 27.0 17.069 20.547 + 20.8 16.101 - 5.7 31.967 + 87.4 27.0 11.706 20.547 - 4.6 14.402 - 29.5 31.874 + 57.0 28.0 11.707 10.628 + 37.4 24.818 - 80.5 31.874 + 57.0 28.0 11.707 10.628 + 37.4 24.818 - 80.5 31.874 + 57.0 29.0 11.708 10.497 - 4.6 14.402 - 29.5 31.874 + 57.0 29.0 11.708 10.497 - 4.6 14.402 - 29.5 31.874 + 57.0 20.437 20.056 + 37.4 24.818 - 80.5 31.874 + 57.0 20.437 20.056 + 37.4 24.818 - 80.5 31.874 + 57.0 20.437 20.056 + 37.4 24.818 - 80.5 31.874 + 57.0 20.437 20.056 + 37.4 24.818 - 80.5 31.874 + 57.0 20.438 11.708 11.709 + 13.4 17.4 1 - 25.0 11.709 - 20.45 + 45.5 51.0 20.457 20.056 + 20.059 - 20.059 - 20.05 + 95.0 51.0 20.457 20.056 + 20.05 - 20	77	57.962	48.981	+ 29.0	57.314	- 1.7	72.737	+ 91.6	59.573	+ 57.0
25 18.77 26.312 + 40.5 20.110 + 7.4 39.055 + 4108.3 29.05	21	13.736	13.078	4.8	10.709	- 22.1	22.103	6·09 +	19.418	+ 41.3
22.733 22.072 - 19.3 18.062 - 34.0 38.568 + 41.12 35 16.000 12.379 - 22.6 10.205 - 36.2 21.412 + 33.8 45.045 22.105 64.667 + 24.1 27.184 - 37.1 27.184 + 181.1 45.052 17.169 - 20.6 13.584 - 37.1 27.184 + 181.1 45.105 17.1069 - 20.6 13.584 - 37.1 27.184 + 181.1 45.105 25.105 64.667 + 24.1 17.825 - 82.8 20.70 + 76.8 41.1 22.256 23.012 + 4.0 17.657 - 21.8 36.077 + 4.55.4 45.107 39.659 + 8.6 30.931 - 15.6 61.860 + 69.0 50.455 19.497 - 4.6 14.402 - 29.5 37.874 + 4.57.0 20.107 10.602 - 30.45 19.497 - 4.6 14.402 - 29.5 37.874 + 4.57.0 20.107 10.602 - 37.10 - 32.2 17.165 + 4.57.0 20.107 10.602 - 37.10 - 32.2 17.165 + 4.57.0 21.107 10.602 - 37.10 - 32.2 17.165 + 4.57.0 22.107 10.602 - 38.8 10.897 + 95.3 23.11.768 9.611 - 18.4 7.206 - 38.8 10.897 + 95.3 24. 14.778 14.597 20.169 + 37.2 13.142 - 37.6 28.697 + 95.3 25.295 26.415 + 13.4 17.471 - 25.0 5.33 + 65.7 27. 27. 28. 28. 49. 5.10 + 20.2 12.9 13.142 - 45.6 13.44 - 45.1 14.40 - 20.2 12.9 13.142 - 45.1 14.40 - 20.2 12.9 14.40 - 20.2 12.9 14.40 - 20.2 12.9 14.40 - 20.2 14.2 14.40 - 20.2 14.2 14.40 - 20.2 14.2 14.40 - 20.2 14.2 14.40 - 20.2 14.2 14.40 - 20.2 14.2 14.40 - 20.2 14.2 14.40 - 20.2 14.2 14.40 - 20.2 14.40 - 20.2 14.40 - 20.2 14.40 - 20.2 14.40 - 20.2 14.40 - 20	25	18.717	26.312	+ 40.5	20.110	4.7.4	39.055	+ 108.3	32.022	+ 71.2
22. 16,000 12.779 - 22.6 10.205 - 36.2 21.412 + 35.8 4 16.000 12.779 - 22.6 10.205 - 36.2 21.412 + 35.8 4 18.1 22.609 17.1699 - 20.6 13.594 - 37.1 27.648 + 18.1 22.506 64.667 + 24.1 17.687 - 21.8 29.4 66.188 + 41.0 44. 52.105 64.667 + 24.1 17.687 - 21.8 29.070 + 42.0 51. 17.069 25.012 + 2.0 17.657 - 21.8 25.057 + 55.4 52.506 25.43 + 20.8 16.101 - 5.7 31.967 + 48.0 52. 17. 17.069 20.543 + 20.8 16.101 - 5.7 31.967 + 87.4 14. 10.000 20.443 + 20.8 16.101 - 5.7 31.967 + 87.4 22. 22. 22. 22. 7 30.577 + 20.6 16.402 - 29.5 17.165 + 46.1 22. 22. 22. 22. 22. 22. 22. 22. 22. 2	8	27.333	22.072	- 19.3	18.062	0. 太・	38.568	+ 41.2	34.060	+ 24.7
34 45.045 32.878 - 27.1 25.857 - 42.7 55.184 + 18.1 46.952 45.045 35.878 - 27.1 25.857 - 42.7 4 18.1 44 52.105 64.667 + 24.1 47.687 - 29.4 66.108 + 4.1 44 52.105 64.667 + 24.1 47.687 - 29.4 66.108 + 4.1 45 36.02 + 24.1 47.687 - 29.0 37.07 + 76.8 + 41.0 50 36.50 + 4.1 26.30 - 27.7 30.77 + 80.0 51 17.069 20.545 + 20.0 16.101 - 15.6 16.00 + 87.0 + 87.0 51 17.069 20.545 + 20.0 16.101 - 15.6 17.0 17.68 + 48.0 17.0 17.68 + 48.0 17.0 17.0 17.0 17.0 17.0 17.0 17.1 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	32	16. 000	12.379	- 22.6	10.205	- 36.2	21,412	+ 33.8	18.92	+ 18.4
25. 21.609 17.169 - 20.6 13.584 - 37.1 27.648 + 28.0 44.0 46.952 47.592 - 20.4 66.0188 + 4.1.0 41.0 41.0 41.0 41.0 41.0 41.0 41.	34	45.045	32.878	- 27.1	25.857	- 42.7	53.184	+ 18.1	45.115	+ 0.2
ψ0 Ψ6.992 Ψ6.992 Ψ7.69 Ψ7.69 Ψ7.69 Ψ7.69 Ψ7.69 Ψ7.69 Ψ7.69 Ψ8.20 Φ6.188 Ψ1.0 ψ1 22.568 29.015 Ψ7.67 21.8 92.070 Ψ6.8 ψ1 22.568 29.059 Ψ7.67 21.8 95.07 Ψ8.0 51 17.669 20.545 Ψ0.6 26.391 - 23.0 50.075 Ψ8.0 51 17.669 20.545 Ψ0.6 Ψ0.6 95.0 97.0 Ψ0.6 51 17.669 20.547 40.0 16.63 16.101 - 5.7 30.7 40.0 40.0 11 10 <td>35</td> <td>21.609</td> <td>17.169</td> <td>- 20.6</td> <td>13.58</td> <td>- 57.1</td> <td>27.648</td> <td>+ 28.0</td> <td>25.493</td> <td>+ 8.7</td>	35	21.609	17.169	- 20.6	13.58	- 57.1	27.648	+ 28.0	25.493	+ 8.7
## 22.105 64.667 + 24.1 47.823 - 8.2 92.070 + 76.8 41 22.568 52.012 + 2.0 17.627 - 21.8 55.027 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.027 - 23.0 50.7757 + 48.0 55.0 50.7757 + 48.0 55.0 50.7757 + 48.0 55.0 50.7757 + 48.0 55.0 50.7757 + 48.0 55.0 50.7757 - 23.0 50.7757 + 24.0 5.0 50.7757 - 23.0 50.7757 + 48.0 55.0 50.7757 - 23.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5	04	46.952	43.392	9.7 -	33.160	- 29.4	66.188	+ 41.0	54.472	+ 16.0
4.1 22.568 25.012 + 2.0 17.657 - 21.8 55.057 + 55.4 49.0 50.5 56.500 56.500 56.500 17.657 - 21.8 55.057 + 49.0 50.5 56.500 56.500 56.500 17.657 - 23.0 50.755 + 49.0 50.5 56.500 56.500 56.500 17.069 20.545 + 20.8 16.101 - 5.7 51.967 + 87.4 18.0 56.500 56	774	52.105	299:49	+ 24.1	47.823	- 8.2	92.070	+ 76.8	73.097	4.04 +
\$\frac{4}{5}\frac{5}{5}\frac{1}{6}\frac{1}{6}\frac{1}{4}\frac{1}{2}\frac{5}{5}\frac{1}{2}\frac{1}{4}\frac{1}{2}\frac{5}{2}\frac{1}\frac{1}{2}\f	4.1	22.568	25.012	+ 2.0	17.657	- 21.8	35.057	+ 55.4	28.886	+ 28.0
50 56.50 59.659 + 8.6 50.931 - 15.6 61.860 + 69.0 14.000	45	34.276	35.610	+ 4.1	26.391	- 23.0	50.735	+ 48.0	40.304	+ 17.7
51 17.069 20.543 + 20.8 16.101 - 5.7 31.967 + 87.4 strum of strum of structures **structures** 16.6(3) 20.457	50	36.630	39.659	+ 8.6	30.931	- 15.6	61.860	+ 69.0	51.963	+ 41.9
sum of stations 16.6(3) 16.6(3) 20.435 19.497 20.435 19.497 20.435 10.612 20.436 20.437 20.447 20	51	17.069	20.543	+ 20.8	16.101	- 5.7	31.967	+ 87.4	26.891	+ 57.6
19.6(3) 21.8(3) 59.0(3) 10.6(3) 10.402 - 29.5 31.874 + 51.0 20 11.707 10.612 - 9.5 7.946 - 32.2 17.165 + 46.7 20 11.707 10.612 - 9.5 7.946 - 32.2 17.165 + 46.7 20 26.971 37.086 + 37.4 24.818 - 8.0 52.807 + 95.9 24 14.697 20.169 + 37.2 13.592 - 7.5 28.697 + 95.9 25 11.768 9.611 - 18.4 7.206 - 38.8 15.845 + 34.7 25 25.295 26.415 + 18.4 7.206 - 27.8 22.142 + 65.4 27 25.295 26.415 + 13.4 17.471 - 25.0 40.456 + 17.6 47 27.000 48.104 + 20.2 30.189 - 24.3 55.2 22.142 + 65.4 46 21.667 26.009 + 20.0 16.405 - 24.3 35.458 + 63.6 28.100 1.5652 + 30.5 10.821 - 17.1 27.826 + 93.5 28.100 20.6(3) 20.6(3) 20.6(3)	Abs.sum of								•	
16.6(3) 21.8(3) 21.8(3) 59.0(3) 19 20.455 19.497 - 4.6 14.402 - 29.5 31.874 + 51.0 20 11.707 10.612 - 9.5 7.946 - 52.2 17.165 + 46.7 23 26.971 37.086 + 37.4 24.818 - 8.0 52.807 + 95.3 24 14.697 20.169 + 37.2 13.592 - 7.5 28.697 + 95.3 25 26.971 17.806 - 12.9 13.143 - 35.6 29.45 + 45.3 25 11.768 9.611 - 18.4 7.20 - 27.8 22.142 + 45.3 27 25.295 26.415 + 13.4 17.471 - 25.0 40.456 + 73.6 27 25.295 26.415 + 13.4 17.471 - 25.0 40.456 + 73.6 27 27.429 35.161 + 28.2 22.137 - 19.3 50.846 + 85.4 27 27.429 35.161 + 28.2 22.137 - 19.3 50.846 + 85.4 28 22.147 10.000 48.104 + 20.2 50.189 - 24.3 55.458 + 63.6 29 20.000 48.104 + 20.2 50.189 - 24.3 55.458 + 63.6 20 12.025 15.652 + 30.5 10.821 - 19.4 45.747 + 75.2 20 12.025 15.652 + 30.5 10.821 - 19.4 45.747 + 75.2 20 28.77 319.3 50.6(3)	Deviations			232.7		305.7		825.8		468.9
19	Abs.avg.%			(٤)		(8)		(x)		K) /
19 20,435 19,497 - 4.6 14,402 - 29.5 31.874 + 51.0 2.0 20,435 19,497 - 4.6 14,402 - 29.5 31.874 + 51.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	Deviation			16.6		21.87		29.07		33.67
11.707 10.612 - 9.3 7.946 - 32.2 17.165 + 46.7 26.97 26.971 27.086 + 37.4 24.818 - 8.0 52.897 + 95.9 14.657 20.169 + 37.4 13.592 - 7.5 28.697 + 95.9 11.768 9.41		20.435	19.497	9.4.	14.402	- 29.5	31.874	+ 51.0	26.284	+ 28.6
26.971 37.086 + 37.4 24.818 - 8.0 52.807 + 95.9 14.697 20.169 + 37.2 13.192 - 7.5 28.697 + 95.9 20.457 17.806 - 12.9 13.143 - 25.6 29.457 + 45.3 11.768 9.611 - 18.4 7.206 - 28.8 15.842 + 45.3 11.768 9.611 - 18.4 7.206 - 28.8 15.842 + 34.7 15.842 15.442 17.471 - 25.0 40.456 + 34.7 15.6 27.48 22.142 + 65.4 17.471 - 25.0 40.456 + 173.6 27.482 19.264 + 20.2 22.137 - 19.3 50.864 + 85.5 14.7 19.3 50.864 + 85.5 12.667 26.009 + 20.0 16.405 - 24.3 55.486 + 65.6 12.284 - 17.1 27.866 + 88.5 12.667 26.009 + 20.0 10.821 - 9.8 23.265 + 93.5 26.111 30.672 + 17.9 20.987 - 19.4 45.747 + 75.2 20.987 - 19.4 45.747 + 75.2 20.6(3)	80	11.707	10.612	- 9.3	2.54e	- 32.2	17.165	+ 46.7	14.198	+ 21.3
14,697 20.169 + 37.2 13.592 - 7.5 28.697 + 95.3 20.457 11.786 - 12.9 13.445 - 35.6 29.745 + 45.3 11.788	23	26.971	37.086	+ 57.4	24.818	- 8.0	52.807	+ 95.9	39.480	+ 4.9.4
20.457 17.806 - 12.9 13.143 - 35.6 29.745 + 45.3 11.768 9.611 - 18.4 7.206 - 28.8 15.845 + 34.7 13.472 14.519 + 13.4 17.806 - 28.8 15.845 + 34.7 13.472 14.519 + 13.4 17.471 - 25.0 40.456 + 73.6 27.429 26.415 + 13.4 17.471 - 25.0 40.456 + 73.6 27.429 26.415 + 13.4 17.471 - 25.0 40.456 + 73.6 12.247 14.758 19.264 + 30.6 12.234 - 17.1 27.826 + 83.5 114.758 19.264 + 30.6 12.234 - 17.1 27.826 + 83.5 12.667 26.009 + 20.0 16.405 - 24.5 35.458 + 63.7 12.025 15.652 + 30.5 10.821 - 9.8 23.265 + 93.5 26.11 30.673 + 17.9 20.987 - 19.4 45.747 + 75.2	42	14.697	20.169	+ 37.2	13.592	- 7.5	28.697	+ 95.3	21.501	+ 46.3
11.768 9.611 - 18.4 7.206 - 38.8 15.843 + 34.7 13.472 14.519 + 7.8 9.720 - 27.8 22.142 + 65.4 25.293 26.415 + 13.4 17.471 - 25.0 40.456 + 173.6 22.142 + 65.4 17.41	31	20.457	17.806	- 12.9	13.143	- 35.6	29.745	+ 45.3	24.564	+ 20.0
13.472 14.519 + 7.8 9.720 - 27.8 22.142 + 65.4 22.295 26.415 + 13.4 17.471 - 25.0 40.456 + 73.6 27.420 55.161 + 28.2 22.137 - 19.3 50.86 + 85.5 40.000 48.104 + 20.2 50.189 - 24.5 65.533 + 65.7 14.758 19.264 + 30.6 12.234 - 17.1 27.86 + 88.5 21.667 26.009 + 20.0 16.405 - 24.3 55.458 + 65.6 12.025 15.652 + 30.5 10.821 - 9.8 25.265 + 93.5 26.111 30.673 + 17.9 20.987 - 19.4 45.747 + 75.2 26.131 30.673 + 20.6(3) 22.8(3) 60.6(3)	33	11.768	9.611	- 18.4	7.206	- 38.8	15.843	+ 34.7	13.128	+ 11.6
25.295 26.415 + 13.4 17.471 - 25.0 40.456 + 73.6 27.429 55.161 + 28.2 22.137 - 19.3 50.846 + 85.5 40.000 48.104 + 20.2 50.349 - 24.5 50.846 + 85.5 40.000 48.104 + 20.2 50.189 - 24.5 65.533 + 65.7 14.758 19.264 + 30.6 12.234 - 17.1 27.826 + 88.5 21.667 26.009 + 20.0 16.405 - 24.3 55.458 + 65.6 12.025 15.652 + 30.5 10.821 - 9.8 23.265 + 93.5 26.111 30.673 + 17.9 20.987 - 19.4 45.747 + 75.2 86.111 30.673 + 17.9 20.987 - 19.4 45.747 + 75.2	36	13.472	14.519	+ 7.8	9.720	- 27.8	22.142	+ 65.4	16.625	+ 25.4
27.429 55.161 + 28.2 22.137 - 19.3 50.846 + 85.5 40.000 48.104 + 20.2 30.189 - 24.5 65.533 + 63.7 14.758 19.264 + 30.6 12.234 - 17.1 27.826 + 88.5 21.667 26.009 + 20.0 16.405 - 24.3 35.458 + 63.6 12.025 15.652 + 30.5 10.821 - 9.8 23.265 + 93.5 26.11 30.673 + 17.9 20.987 - 19.4 45.747 + 75.2 287.7 20.6(3) 20.6(3) 20.6(3)	37	23.293	26.415	+ 15.4	17.471	- 25.0	40.456	+ 73.6	30.285	+ 30.0
#0.000 #8.104 + 20.2 30.189 - 24.5 65.553 + 63.7 14.758 19.264 + 30.6 12.234 - 17.1 27.826 + 88.5 21.667 26.009 + 20.0 16.405 - 24.3 35.458 + 63.6 12.025 15.652 + 30.5 10.821 - 9.8 23.265 + 93.5 26.11 30.673 + 17.9 20.987 - 19.4 45.747 + 75.2 287.7 319.3 20.6(3)	£4.	27.429	35.161	+ 28.2	22.137	- 19.3	50.846	+ 85.5	36.206	+ 32.0
14.758 19.264 + 30.6 12.234 - 17.1 27.86 + 88.5 21.667 26.009 + 20.0 16.405 - 24.3 35.458 + 63.6 12.025 15.652 + 30.5 10.821 - 9.8 25.265 + 95.5 26.111 30.673 + 17.9 20.987 - 19.4 45.747 + 75.2 \$	24	000.04	48.104	+ 20.2	30,189	- 24.5	65.533	+ 63.7	46.033	+ 15.0
21.667 26.009 + 20.0 16.405 - 24.3 35.458 + 65.6 12.025 15.652 + 30.5 10.821 - 9.8 23.265 + 93.5 26.111 30.673 + 17.9 20.987 - 19.4 45.747 + 75.2 s 287.7 319.5 60.6(3)	27	14.758	19.564	+ 30.6	12.234	- 17.1	27.826	+ 88.5	19.859	+ 34.6
12.025 15.652 + 30.5 10.821 - 9.8 23.265 + 93.5 26.111 30.673 + 17.9 20.987 - 19.4 45.747 + 75.2 s 287.7 319.5 977.9	91	21.667	56 .009	+ 20.0	16.405	- 24.3	35.458	+ 63.6	24.946	+ 15.1
f 26.111 30.673 + 17.9 20.987 - 19.4 45.747 + 75.2 5 287.7 319.3 977.9 5 60.6(3)	52	12.025	15.652	+ 30.5	10.821	9.8	23.265	+ 93.5	17.894	+ 48.9
287.7 319.3 977.9	53	26.111	30.673	+ 17.9	20.987	- 19.4	45.747	+ 75.2	35.088	+ 34.4
s 287.7 319.3 · · · · · · · · · · · · · · · · · · ·	Abs.sum of									
8 8 (3) 89.6(3)	Deviations			287.7		319.3		9.77.9		407.6
20.6(3)	Abs.avg. %									
	Deviation			20.6(3)		22.8(3)		(5)6.69		29.1(3)

NOTES:

Calculation based on specific data Percent deviation = $((K_{\text{Calc}} - K_{\text{Obs}})/K_{\text{Obs}}) \times 100$ Absolute average percent deviation = $(\Sigma/\% \text{ dev}/)/\text{number}$ of samples Calculation based on generalized data £305

In the second set, the solubility parameters of the hydrocarbons were calculated from the heat of vaporization data and density data. Chao's solubility parameter for hydrogen, reported at 25°C, was corrected for use at 100° and 200°F. Experimental density data was used for hydrocarbon liquid volumes, (15) and the Gamson-Watson Expansion Factor method was used to predict the liquid molal volume of hydrogen. (49)

The pure hydrocarbon liquid fugacity coefficients were predicted from vapor pressure data. Experimental virial coefficients were used wherever available. These results are reported as being calculated from specific data in Tables VIII, IX, X and XI.

For both sets of parameters, liquid activity coefficients were predicted using both the ideal liquid entropy relationship and the entropy predicted by the volumetric correlation.

The results of using the second set of parameters with the volumetric entropy function are presented in Table XVII, taken directly from the IBM computer and placed in the Appendix. These tables include the calculated interaction virial coefficients for hydrogen-hydrocarbon mixtures, and the vapor-liquid equilibrium composition calculations using these experimental interaction coefficients.

Coefficients for the Redlich-Kwong Equation were estimated from the physical properties of the pure components.

CONCLUSIONS

Examination of the data obtained in this work reveals that specification of the temperature and pressure of a hydrogen-hydrocarbon mixture does not completely define the vapor-liquid equilibrium composition ratios of the components studied. These ratios also depend upon the relative amounts and the physical properties of the other components in the mixture.

The interaction of all variables is difficult to present in a concise graphical correlation. However, the experimental vapor-liquid equilibrium composition ratios have been correlated analytically by means of the two equations of state method:

$$K_i = \gamma_i \nu_i / \varphi_i$$

The fugacity and activity coefficients in this correlation have been predicted independently of the experimental data obtained in this research. This correlation predicts the benzene-cyclohexane azeotrope at the elevated pressures. The over-all consistency of the experimental and predicted results indicates that this method of predicting K-values has general applicability.

The fugacity coefficients of components in the vapor phase have been estimated by means of integrated equations of state. The Virial Equation of State, terminated after the second virial, as well as the Redlich-Kwong Equation of State, integrated for moderate pressures, (50) has been used. Results from the two equations of state were consistent.

Interaction virial coefficients for hydrogen-hydrocarbons were back-calculated from the data for comparison with values predicted by a method proposed by Prausnitz. (47) The accuracy of the calculated hydrogen-hydrocarbon interaction virial coefficients depended upon the accuracy to which all the other parameters used in predicting K-values were known. As experimental data did not exist for all the parameters required, the accuracy of the calculated hydrogen-hydrocarbon interaction virial coefficients may be insufficient to provide a definite check on Prausnitz's correlation for molecules of widely differing size.

Chao and Seader (8) have used the Hildebrand Solubility Theory to predict activity coefficients in the liquid phase. Using the empirical solubility parameters and pure liquid component fugacity coefficients calculated by Chao from existing vapor-liquid equilibrium data, and generalized P-V-T data of Pitzer and Curl, (45) the average absolute deviation of predicted hydrogen equilibrium values from the measured values was 31.4%. This deviation increased to 64.5% when hydrocarbon solubility parameters based on physical properties of the pure liquid hydrocarbons were used. Available experimental P-V-T data was used in this latter case to evaluate vapor phase fugacity coefficients.

The Hildebrand Solubility Theory used by Chao is based on the assumption that, despite differences in molecular size, thermal agitation is sufficient to provide complete randomization of the molecules in the liquid phase. (20) This implies ideal entropy of mixing. As the difference in the molecular size of hydrogen and the hydrocarbons studied in this work was appreciable, the Flory-Huggins type volumetric correction to the entropy of mixing was applied. (16,17,25)

Hildebrand has used this correction for binary mixtures, but it has not previously been applied to multi-component mixtures in the form presented here.

This change in the liquid activity coefficient correlation reduced the absolute average deviation of the hydrogen equilibrium values based on Chao's empirical solubility parameters and pure liquid component fugacity coefficients from 31.4 to 22.3%. When the proposed correlation was used with the solubility parameters calculated from pure liquid hydrocarbon physical properties, it reduced the deviation from 64.5 to 18.6%.

As the molecular size of the hydrocarbons was approximately equal, this new correlation did not improve the predictions of the hydrocarbon vapor-liquid equilibrium ratios. These ratios had an average absolute deviation of 15.4% at 200°F. and an average absolute deviation of 27.3% at 100°F.

At the relatively low hydrogen liquid and hydrocarbon vapor concentrations encountered in this work, these results indicate that compositions have been predicted to within approximately 0.005 mole fraction of the measured composition.

Prediction of vapor-liquid equilibrium compositions may
be improved further in the future. Work is needed to clarify and
improve the prediction of mixture coefficients in equations of state,
as well as the prediction of equilibrium compositions of mixtures
containing polar components. The concept of ideal mixing of volumes
in the liquid phase should also be re-examined. Finally, as physical
chemists improve statistical methods of treating liquids, their results
should be incorporated into generalized correlations for engineering use.

APPENDICES

SOLUBILITY PARAMETER ESTIMATION

The solubility parameter, δ , used in this work, can be estimated in at least four different ways. For components that exist as liquids under the conditions being studied, the solubility parameter can be estimated from the properties of the component.

For example, an interpolation of data on heats of vaporization of benzene, reported by Rossini, (53), indicates that at 100°F.:

$$\Delta H_V = 7.918 \text{ kcal/mole}$$

and from density data reported in the N.G.A.A. Data Book (1957): (15)

$$\rho_{\rm Bz}$$
 (100 °F.) = 0.859 gms/c.c.

By definition, it follows that:

$$\delta_{\text{Bz}}(100\,^{\circ}\text{F.}) = \left(\frac{\Delta \underline{E}_{\text{V}}}{\underline{V}^{\text{L}}}\right)^{1/2}$$

$$= \left(\frac{\Delta \underline{H}_{\text{V}} - RT}{\underline{V}^{\text{L}}}\right)^{1/2}$$

$$= \left(\frac{7918 - 1.9872 \times 310.9}{78/0.859}\right)^{1/2}$$

$$= 8.97$$

Table XII includes solubility parameters of the hydrocarbon mixtures which were calculated in this manner.

A second method of calculating solubility parameters consists of considering the solubility parameter to be a correlating function

for liquid activity coefficients, similar to Van Laar's or Margules' constants. By comparing Van Laar's equations, as used by White for isobaric equilibria: (66)

$$\ln \gamma_1 = \frac{A/T}{[1 + Ax_1/Bx_2]^2}$$

and

$$\ln \gamma_2 = \frac{B/T}{[1 + Bx_2/Ax_1]^2}$$

with Hildebrand's equation for liquid activity coefficients of binary mixtures: (20)

RT in
$$\gamma_1 = \underline{V}_1^L (\delta_1 - \delta_2)^{\frac{2}{3}} (\frac{\underline{x_2 \underline{V}_2^L}}{\underline{x_1 \underline{V}_1^L} + \underline{x_2 \underline{V}_2^L}})^2$$

RT ln
$$\gamma_2 = \underline{\mathbf{V}}_2^{\mathbf{L}} (\delta_2 - \delta_1)^2 (\frac{\mathbf{x}_1 \underline{\mathbf{V}}_1^{\mathbf{L}}}{\mathbf{x}_1 \underline{\mathbf{V}}_1^{\mathbf{L}} + \mathbf{x}_2 \underline{\mathbf{V}}_2^{\mathbf{L}}})^2$$

Edmister (14) has shown that:

$$A = \underline{V}_1^{L}/R (\delta_1 - \delta_2)^2$$

$$B = \underline{V}_2^{L}/R (\delta_1 - \delta_2)^2$$

Solubility parameters of substances that do not exist as liquids at the temperature of interest can be estimated from their Van Laar coefficients or calculated directly from vapor-liquid equilibrium data. Chao has calculated a number of solubility parameters from data on vapor-liquid equilibrium. The values he reports for the components of interest are also in Table XII.

Hildebrand and Scott report that the variation of solubility parameter with temperature is given approximately by the relationship:

$$\frac{\mathrm{dln}\delta}{\mathrm{dT}} = -1.25\alpha$$

where α denotes the coefficient of thermal expansion. Over a moderate range of temperature, α may be taken as constant. For hydrogen at one atmosphere, α is 0.00366 from 0 to 100°C. (44) Using this value of α to evaluate the variation of solubility parameter with temperature gives the result:

$$\ln \delta_{\rm H_2}[({\rm cal/ml})^{1/2}] = 1.17865 - 0.004575(T(^{\circ}C) - 25)$$

for hydrogen. The value of the hydrogen solubility parameter, reported by Chao at 25°C., was extrapolated by means of this equation to 100° and 200°F. and is tabulated as a calculated solubility parameter in Table XII.

Still another method of obtaining solubility parameters is used by Hildebrand. From the thermal equation of state:

$$\left(\frac{\partial \Lambda}{\partial E}\right)^{\Delta} = \Delta \left(\frac{\partial \Delta}{\partial E}\right)^{\Lambda} - \Delta$$

Hildebrand measures the slopes of a component's vapor-pressure curve at a series of pressures and temperatures in order to evaluate the right side of this equation. Then:

$$\varrho = \left(\frac{9\Lambda}{9E}\right)^{L} \sqrt{5}$$

Values reported by Hildebrand are tabulated in Table XII.

Finally, Van Laar (59,60) has shown that for a van der Waal fluid:

$$\delta = \frac{\sqrt{a}}{VL}$$

where "a" is the van der Waal "a". Values of $\frac{\sqrt{a}}{\underline{v}^L}$ are also in Table XII.

TABLE XII
SOLUBILITY PARAMETERS

	Calcı	ılated		rted by	 √a. *
Compound	100°F.	200°F.	Chao(8) at 25°C.	Hildebrand (20) at 25°C.	√a * √L
Benzene	8.97	8.13	9.158	9.0	7.87
Cyclohexane	8.03	7.35	8.196	7.8	7.37
Hexane	7.09	6.31	7.266	7.2	6.22
Hydrogen	3.06	2.38	3.25	-	2.18

*NOTE: $a = \frac{27}{64} \frac{R^2 T_C^2}{P_C}$

THERMOCOUPLE CALIBRATION

The thermocouples used in this work were calibrated against standardized thermometers in a temperature control bath. The thermometers had been calibrated by the U.S. Bureau of Standards.

Readings were taken at two elevated temperatures and at the ice point. This permitted evaluation of the constants in the equation:

$$E = a + bT + cT^2$$

By alternately reading the thermometer and the standardized portable potentiometer, a good estimate could be made of the actual temperature of the thermocouple at the instant the potentiometer was read.

For the thermocouple used to indicate the equilibrium temperature, the constants in the temperature-EMF relationship were:

$$a = -6.9005 \times 10^{-1}$$

 $b = 2.13531 \times 10^{-2}$

 $c = 6.59597 \times 10^{-6}$

for T in degrees Fahrenheit.

At 100°F., this thermocouple gave the reading:

E = 1.511 millivolts

while at 200°F., it gave the reading:

E = 3.844 millivolts

Experimental calibration data obtained for the thermocouples used in this work is presented in Table XIII.

TABLE XIII

THERMOCOUPLE CALIBRATION DATA

	T.C. No. 0	Vo. 0	T.C. No.2	No.2	T.C. No.3 (4)	(4)	T.C.	T.C. No. 4	T.C. No.5	No.5	T.C. No.6	No.6	T.C. No.10	0.10
Reading	Temp.	Milli Volts	Temp.	Milli Volts	Temp. (c)	Milli Volts	Temp.	Milli Volts	Temp.	Milli Volts	Temp.	Milli Volts	Temp.	Milli Volts
0(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1(2)	84.49		62.80		65.33		64.17		63.82		64.80		65.10	
		2.614		2.539		2.651		2.591		2.577		2.615		2.638
ณ	64.42		62.76		65.29		64.10		63.75		94.76		65.02	
3(3)	103.7	П	103.6	П	103.6	ıП	103.6	Т	105.7	П	103.7	,,	7.501	
		4.283		4.281		4.290		4.278		4.278		4.277		4.276
. †	103.7	п	103.6	r- 1	103.6	• 1	103.6	Г	103.7	-	103.7	• •	103.7	
											-			

NOTES:

Both junctions immersed in ice water Calibrated with Princo thermometer 253197 Calibrated with Princo thermometer 503944 Thermocouple used to indicate temperature of bath

HQD=

CHANDLER GAUGE TESTER CALIBRATION

The absolute accuracy of the Chandler Gauge Tester, No. D3-13, has been determined in the pressure range of interest by comparing the calibration of a 1500 psi pressure gauge, No. C2-473, obtained by using the Chandler tester, with a calibration obtained using American Gauge Tester, No. 1315.

These results, shown in Table XIV, indicate that the gauge tester used in this work is accurate to within \pm 3 psi in the pressure range studied.

TABLE XIV

GAUGE TESTER EVALUATION

American Gauge Tester No. 1315	Pressure Gauge	Difference	Chandler Gauge Tester No. D3-13	Pressure Gauge	Difference
525	535	-10	600	613	-13
775	783	- 8	700	709	- 9
,			800 1000	809 1009	- 9 - 9
1025	1033	- 8	1100	1110	-10
1275	1285	-10	1200	1211	-11
1475	1484	- 9	1300 1400	1311 1411	-11 -11
±+ ()	T+O+	- ソ	1500	1510	-10

EQUILIBRIUM DATA SOURCES FOR BINARY SYSTEMS

Experimental vapor-liquid equilibrium data sources for the binary systems of components studied in this work are listed in Tables XV and XVI.

TABLE XV

EQUILIBRIUM DATA SOURCES FOR HYDROGEN-HYDROCARBON SYSTEMS

Hydrocarbon	Ref.	Author	Press.Range psi	Temp.Range °F.	Phases Studied
Benzene	9	Connolly	116-3050	320-500	Vapor,Liquid
	26	Ipatieff	380-4420	77-212	Liquid
	31	Krichevskii	15-3500	77	Liquid
Cyclohexane	18	Frolich	0-1550	77	Liquid
	3 2	Krichevskii	720-10,000	68 - 140	Vapor,Liquid
Hexane	18	Frolich	0-1620	77	Liquid
	41	Nichols	0-10,000	40-460	Vapor,Liquid

TABLE XVI

EQUILIBRIUM DATA SOURCES FOR
HYDROCARBON-HYDROCARBON SYSTEMS
(Data at one atmosphere)

System	Ref.	Author
Benzene- Cyclohexane	19 33 51 54 57 65	Harrison Kumarkrishna Richards Scatchard Thornton Weck
Benzene- Hexane	33 40 58	Kumarkrishna Myers Tongberg

CALCULATION RESULTS

The calculations shown in Table XVII were based on the two equations of state method of calculating K-values. This method is discussed in detail in the sub-section entitled "Outline of Correlation Procedure". Generalized data was used only where experimental data did not exist. Further, the entropy of the liquid solution has been assumed to be a function of component volumes.

The "Initial Value" column contains the values of composition that were obtained experimentally, and the results of the first calculation of activity and fugacity coefficients. The K-values reported in this column are not the ratio of y_i to x_i , but rather are ratios of activity and fugacity coefficients.

The "Virial Equation Values" columns are the summary of the results of this calculation using the Virial Equation of State to calculate the vapor phase fugacity coefficients. All data was supplied to the computer in the program for the results reported in the column, "Unadjusted". The data in the "Adjusted" virial column are the results of using hydrogen-hydrocarbon interaction virial coefficients that were calculated from the data.

In this calculation, the vapor phase activity coefficient was calculated from the relationship:

$$\varphi_i = \gamma_i \nu_i / K_i$$

where K_i is the experimentally determined equilibrium composition ratio. This step required the assumption that γ_i and ν_i were known exactly.

Then values of all variables, except those that were to be solved for, were substituted into the integrated virial equation:

$$\ln \phi_{\mathbf{i}} = \frac{2}{\underline{y_{\mathbf{M}}^{\mathbf{V}}}} \sum_{\mathbf{j}} y_{\mathbf{j}} B_{\mathbf{i},\mathbf{j}}(\mathbf{T}) - \ln \frac{\underline{P_{\mathbf{M}}^{\mathbf{V}}}}{RT}$$

These calculations were run in groups of four, and the desired interaction virials were solved for by a method of least squares.

The data presented in the "Redlich-Kwong Values" column is based on the use of the Redlich-Kwong equation, integrated for moderate pressures, to estimate vapor-phase fugacity coefficients.

TABLE XVII

TABULATED CALCULATION RESULTS

RESSURE	567. PSIA	RENHEIT			
		INITIAL VALUE	VIRIAL EQUA ADJUSTED	TION VALUES UNADJUSTED	REDLICH-KWON(VALUES
	ID (CC PER GM MOLE)	121.042	120.975	120.899	120.890
OLUME OF VAPO ENZENE	R (CC PER GM MOLE)	675,430	661.582	675.695	
Y		0.004	0.002	0.002	0.002
X		0.210	0.210	0.210	0.210
K VALUE Octivity coee	FICIENT, LIQUID PHASE	0.017 1.423	0.010 1.424	0.011 1.425	0.010 1.425
FUGACITY,PURE		0.007	0.007	0.007	0.007
FUGACITY COEF YCLOHEXANE	FICIENT, VAPOR PHASE	0.904	0.988	0.922	0.928
γ 		0.	0.	0.	0.
X K VALUE		<u>0.</u>	0. 0.008	0. 0.008	<u>0.</u> 0.008
	FICIENT, LIQUID PHASE	1.084	1.084	1.085	1.085
FUGACITY, PURE		0.007	0.007	0.007	0.007
FUGHCITY COEF EXANE	FICIENT, VAPOR PHASE	0.895	0.979	0.913	0.937
Y		0.011	0.008	0.008	0.008
X		0.751	0.750	0.750	0.750
K VALUE	FICIENT, LIQUID PHASE	0.015	0.010	0.011	0.011
HCTIVITY COEF FUGACITY,PURE		1.009 0.010	1.008 0.010	1.008 0.010	1.008 0.010
FUGACITY COEF	FICIENT, VAPOR PHASE	0.932	1.021	0.951	0.960
YDROGEN	TO MAKE THE THE THE THE THE THE THE THE THE TH				
Χ Υ		0.985 0.039	0.990 0.039	0.989 0.040	0.990 0.040
K VALUE		25.518	25.179	<u>24.612</u> -	24.591
	FICIENT, LIQUID PHASE	1.686	1.686	1.686	1.686
FUGACITY, PURE		14.929	14.929	14.929	14.929
	FICIENT, VAPOR PHASE RIAL COEFFICIENTS	1.023	1.000	1.023	1.024
BCHYDROGEN-BE			-140.588	-4.000	
BCHYDROGEN-CY BCHYDROGEN-HE			0. -51.052	-7.000 7.000	
V NIMBED					
MPERATURE	22 100.00 DEGREES FAHI	RENHEIT			
MPERATURE	22 100.00 DEGREES FAHR 580. PSIA			TION VALUES	
IPERATURE SSURE	580. PSIA	INITIAL VALUE	ADJUSTED	UNADJUSTED	VALUES
IPERATURE SSURE DLUME OF LIQU					
MPERATURE ESSURE DLUME OF LIQU DLUME OF VAPO ENZENE	580. PSIA ID (CC PER GM MOLE)	INITIAL VALUE 98.540 660.599	ADJUSTED 98.950 646.661	UNADJUSTED 98.920 660.880	VALUES 98.919
MPERATURE ESSURE DLUME OF LIQU DLUME OF VAPO ENZENE Y	580. PSIA ID (CC PER GM MOLE)	INITIAL VALUE 98.540 660.599 0.010	ADJUSTED 98.950 646.661 0.005	UNADJUSTED 98.920 660.880	VALUES 98.919 0.006
MPERATURE ESSURE DLUME OF LIQU DLUME OF VAPO ENZENE Y	580. PSIA ID (CC PER GM MOLE)	INITIAL VALUE 98.540 660.599	ADJUSTED 98.950 646.661	UNADJUSTED 98.920 660.880	VALUES 98.919
MPERATURE ESSURE DLUME OF LIQU DLUME OF VAPO ENZENE Y < VALUE ACTIVITY COEF	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048	VALUES 98.919 0.006 0.767 0.007 1.048
MPERATURE SSURE DLUME OF LIQU DLUME OF VAPO VALUE CONTROLOMY	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006	VALUES 98.919 0.006 0.767 0.007 1.048 0.006
MPERATURE SSURE DLUME OF LIQU DLUME OF VAPO ENZENE Y C VALUE GCTIVITY COEF UGACITY COEF VCLOHEXANE	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048	VALUES 98.919 0.006 0.767 0.007 1.048
MPERATURE SSURE DLUME OF LIQU DLUME OF VAPO ENZENE Y < VALUE ACTIVITY COEF FUGACITY PURE FUGACITY COEF YCLOHEXANE	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE	INITIAL VALUE 58.540 660.599 0.010 0.763 0.013 1.050 0.066 0.915	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933
MPERATURE SSURE DLUME OF LIQU DLUME OF VAPO ENZENE V C VALUE ACTIVITY COEF UGACITY COEF UGACITY COEF VCLOHEXANE V C VALUE	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 58.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933
MPERATURE SSURE DLUME OF LIQU DLUME OF VAPO NZENE V V V VALUE ACTIVITY COEF UGACITY COEF VCLOHEXANE V V V VALUE ACTIVITY COEF V V V V V V V V V V V V V	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915 0. 0. 1.015	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 1.007	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0.007 1.017	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0.
PERATURE SSURE DLUME OF LIQU DLUME OF VAPO PACTIVITY COEF FUGACITY COEF VCLOHEXANE C VALUE ACTIVITY COEF COEF COEF COEF COEF COEF COEF COEF	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915 0. 0. 1.015 0.007	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 1.017 0.007	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0.007 1.017	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0. 0.007 1.017
MPERATURE SSURE DLUME OF LIQU DLUME OF VAPO NZENE V V VALUE HOTIVITY COEF UGACITY COEF VCLOHEXANE V V VALUE HOTIVITY COEF UGACITY COEF UGACITY COEF UGACITY COEF UGACITY COEF	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915 0. 0. 1.015	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 1.007	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0.007 1.017	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0.
MPERATURE SSURE DLUME OF LIQU DLUME OF VAPO ENZENE Y	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915 0. 1.015 0.007 0.903	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 1.017 0.007	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0. 0. 0.007 1.017 0.007 0.920	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0. 0.007 1.017 0.007 0.943
MPERATURE SSURE DLUME OF LIQU DLUME OF VAPO ENZENE C VALUE ACTIVITY COEF FUGACITY COEF CCLOHEXANE C VALUE ACTIVITY COEF FUGACITY COEF FUGACITY COEF FUGACITY COEF FUGACITY COEF EXANE C VALUE C V	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.066 0.915 0. 0. 1.015 0.007 0.903 0.003 0.211	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.098 0. 0. 0.07 1.017 0.007 0.979 0.003 0.213	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0. 0. 0.007 1.017 0.007 0.920 0.003 0.213	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0. 0.007 1.017 0.007 0.943 0.003 0.213
PERATURE SSURE OLUME OF LIQU OLUME OF VAPO ENZENE VALUE ACTIVITY COEF VIGACITY COEF VICTORITY COEF VICTORITY COEF FUGACITY COEF FUGACITY COEF FUGACITY COEF FUGACITY COEF FUGACITY COEF VICTORITY COEF	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE FICIENT, LIQUID PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915 0. 0. 1.015 0.007 0.903 0.015	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 0. 0.007 1.017 0.007 0.979 0.003 0.213 0.013	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.066 0.931 0. 0. 0. 0. 0.07 1.017 0.007 0.920 0.003 0.213 0.014	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0. 0. 0.007 1.017 0.007 0.943 0.003 0.213 0.014
MPERATURE SSURE DLUME OF LIQU DLUME OF VAPO ENZENE Y < VALUE ACTIVITY COEF FUGACITY COEF FUGACITY, PURE FUGACITY, PURE FUGACITY COEF FUGACITY COEF FUGACITY COEF FUGACITY COEF FUGACITY COEF EXANE Y < VALUE ACTIVITY COEF FUGACITY, PURE FUGACITY, PURE FUGACITY, PURE FUGACITY, PURE	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.066 0.915 0. 0. 1.015 0.007 0.903 0.003 0.211	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.098 0. 0. 0.07 1.017 0.007 0.979 0.003 0.213	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0. 0.007 1.017 0.007 0.920 0.003 0.213 0.014 1.368 0.010	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0. 0.007 1.017 0.007 0.943 0.003 0.213
MPERATURE SSURE OLUME OF LIQU DLUME OF VAPO ENZENE Y Y Y Y Y Y Y Y Y Y Y Y Y	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE FICIENT, VAPOR PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915 0. 1.015 0.007 0.903 0.211 0.015 1.358 0.010 0.939	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 0. 0.007 1.017 0.007 0.979 0.003 0.213 0.013 1.369 0.010 1.022	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0. 0. 0.007 1.017 0.007 0.920 0.03 0.213 0.014 1.368 0.010 0.959	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0. 0.007 1.017 0.007 0.943 0.014 1.368 0.010 0.967
OLUME OF VAPO ENZENE Y X X X X X CTIVITY COEF FUGACITY COEF YCLOHEXANE Y X X X X X X X X X X X X X X X X X X	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915 0. 0. 1.015 0.007 0.903 0.211 0.015 1.358 0.010 0.939	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 0. 0.007 1.017 0.007 0.979 0.003 0.213 0.013 1.369 0.010 1.022	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0. 0. 0.007 1.017 0.007 0.920 0.003 0.213 0.014 1.368 0.010 0.959	98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0. 0.007 1.017 0.007 0.943 0.003 0.213 0.014 1.368 0.010 0.967
MFERATURE ESSURE OLUME OF LIQU OLUME OF VAPO ENZENE Y X K VALUE ACTIVITY COEF FUGACITY COEF EXANE Y X K VALUE ACTIVITY COEF FUGACITY COEF	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.066 0.915 0. 1.015 0.007 0.903 0.211 0.015 1.358 0.010 0.939 0.987 0.987	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 0.007 1.017 0.007 0.979 0.003 0.213 0.013 1.369 0.010 1.022 0.992 0.020	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0. 0. 0.007 1.017 0.007 0.007 0.920 0.003 0.213 0.014 1.368 0.010 0.959 0.991 0.020	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0. 0.007 1.017 0.007 0.943 0.014 1.368 0.010 0.967
MPERATURE ESSURE OLUME OF LIQU OLUME OF VAPO ENZENE Y X K VALUE ACTIVITY COEF FUGACITY COEF FUGACITY COEF FUGACITY COEF EXANE Y X K VALUE ACTIVITY COEF EXANE Y X K VALUE ACTIVITY COEF FUGACITY COEF	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE FICIENT, VAPOR PHASE FICIENT, LIQUID PHASE FICIENT, LIQUID PHASE FICIENT, LIQUID PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915 0. 0. 1.015 0.007 0.903 0.211 0.015 1.358 0.010 0.939	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 0. 0.007 1.017 0.007 0.979 0.003 0.213 0.013 1.369 0.010 1.022	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0. 0. 0.007 1.017 0.007 0.920 0.003 0.213 0.014 1.368 0.010 0.959	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0. 0.007 1.017 0.007 0.943 0.014 1.368 0.010 0.967
MPERATURE ESSURE OLUME OF LIQU OLUME OF VAPO ENZENE Y K VALUE ACTIVITY COEF FUGACITY, PURE FUGACITY COEF FUGACITY, PURE	580. PSIA ID (CC PER GM MOLE) R (CC PER GM MOLE) FICIENT, LIQUID PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915 0. 1.015 0.007 0.903 0.211 0.015 1.358 0.010 0.939 0.987 0.026 37.962 3.415 14.614	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 0.007 1.017 0.007 0.979 0.003 0.213 0.013 1.369 0.010 1.022 0.992 0.020 50.135 3.431 14.614	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0.007 1.017 0.007 0.920 0.003 0.213 0.014 1.368 0.010 0.959 0.959 0.991 0.020 48.981 3.429 14.614	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0.007 1.017 0.007 0.943 0.003 0.014 1.368 0.010 0.967 0.991 0.020 48.935 3.429 14.614
MPERATURE ESSURE OLUME OF LIQU OLUME OF VAPO ENZENE Y X K VALUE ACTIVITY COEF FUGACITY, PURE FUGACITY, PURE FUGACITY COEF EXANE Y X K VALUE ACTIVITY COEF FUGACITY COEF EXANE Y X K VALUE ACTIVITY COEF FUGACITY COEF	580. PSIA ID CCC PER GM MOLE) R CCC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE FICIENT, VAPOR PHASE	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.066 0.915 0. 1.015 0.007 0.903 0.015 1.358 0.010 0.939 0.987 0.926 37.962 3.415	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 0.007 1.017 0.007 0.007 0.013 1.369 0.013 1.369 0.010 1.022 0.992 0.020 50.135 3.431	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0. 0.007 1.017 0.007 0.920 0.003 0.213 0.014 1.368 0.010 0.959 0.959 0.991 0.020 48.981 3.429	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0. 0.007 1.017 0.007 0.943 0.003 0.213 0.014 1.368 0.010 0.967 0.991 0.020 48.935 3.429
MPERATURE SSURE DLUME OF LIQU DLUME OF VAPO ENZENE Y < VALUE ACTIVITY COEF FUGACITY, PURE FUGACITY, PURE FUGACITY COEF	580. PSIA ID CCC PER GM MOLE) R CCC PER GM MOLE) FICIENT, LIQUID PHASE FICIENT, VAPOR PHASE FICIENT, VAPOR PHASE FICIENT, VAPOR PHASE FICIENT, VAPOR PHASE RIAL COEFFICIENTS	INITIAL VALUE 98.540 660.599 0.010 0.763 0.013 1.050 0.006 0.915 0. 1.015 0.007 0.903 0.211 0.015 1.358 0.010 0.939 0.987 0.026 37.962 3.415 14.614	ADJUSTED 98.950 646.661 0.005 0.768 0.007 1.048 0.006 0.988 0. 0. 0.007 1.017 0.007 0.979 0.003 0.213 0.013 1.369 0.010 1.022 0.992 0.020 50.135 3.431 14.614	UNADJUSTED 98.920 660.880 0.006 0.767 0.007 1.048 0.006 0.931 0. 0. 0.007 1.017 0.007 0.920 0.003 0.213 0.014 1.368 0.010 0.959 0.959 0.991 0.020 48.981 3.429 14.614	VALUES 98.919 0.006 0.767 0.007 1.048 0.006 0.933 0. 0. 0.007 1.017 0.007 0.943 0.003 0.014 1.368 0.010 0.967 0.991 0.020 48.935 3.429 14.614

RUN NÚMBER	21					
TEMPERATURE	100.00		FAHRENHEIT	 	 	
PRESSURE	1100.	PSIA			 	

		VIRIAL EQUA		REDLICH-KWONG
VOLUME OF LIQUID (CC PER GM MOLE)	TWILLUT AUTHE	ADJUSTED	UNADJUSTED	VALUES
VOLUME OF LIGHTH (CC PER GM MOLE)	- 118.027	117.990	117.702	117.687
BENZENE	<u>354.881</u>	341.020	355.093	
Y				
X	0.003	0.001	0.001	0.001
K VALUE	0.203	0.203	0.202	0.202
	0.013	0.006	0.007	0.007
ACTIVITY COEFFICIENT, LIQUID PHASE	1.463	1.464	1.468	1.468
FUGACITY, PURE	0.004	0.004	0.004	0.004
FUGACITY COEFFICIENT, VAPOR PHASE	0.855	0.977	0.889	0.887
CYCLOHEXANE				
Y	0.	0.	0.	0.
X	0.	O.	0.	0.
K VALUE	0.	0.005	0.005	0.005
ACTIVITY COEFFICIENT, LIQUID PHASE	1.098	1.099	1.100	1.100
FUGACITY, PURE	0.004	0.004	0.004	0.004
FUGACITY COEFFICIENT, VAPOR PHASE	0.839	0.960	0.874	0.906
HEXANE				
Y	0.008	0.004	0.005	0.005
X	0.724	0.724	0.722	0.722
K VALUE	0.012	0.006	0.007	0.007
ACTIVITY COEFFICIENT, LIQUID PHASE	1.001	1.001	1.000	1.000
FUGACITY, PURE	0.066	0.006	0.006	0.006
FUGACITY COEFFICIENT, VAPOR PHASE	0.906	1.042	0.944	0.950
HYDROGEN				
	0.989	0.994	0.994	O.994
X	0.072	0.073	0.076	0.076
K VALUE	13.660	13.660	13.078	13.048
ACTIVITY COEFFICIENT, LIQUID PHASE	1.680	1.679	1.679	1.679
FUGACITY, PURE	8.132	8.132	8.132	8.132
FUGACITY COEFFICIENT, VAPOR PHASE	1.044	1.000 '	1.044	1.046
INTERACTION VIRIAL COEFFICIENTS				
BCHYDROGEN-BENZENED		-140.588	-4.000	
BCHYDROGEN-CYCLOHEXANE)		 0.	-7.000	
B(HYDROGEN-HEXANE)		-51.052	7.000	

RUN NUMBER 25
TEMPERATURE 100.00 DEGREES FAHRENHEIT
PRESSURE 1102. PSIA

		VIRIAL EQUA	TION VALUES	REDLICH-KWONG
	INITIAL VALUE	ADJUSTED	UNADJUSTED	VALUES
OLUME OF LIQUID (CC PER GM MOLE)	56 . 789	97.889	97.783	97.777
OLUME OF VAPOR (CC PER GM MOLE)	354.336	340.347	354.466	
BENZENE				
Y	0.006	0.603	0.003	0.003
X	0.741	0.755	0.753	0.753
K VALUE	0.008	0.004	0.005	0.005
ACTIVITY COEFFICIENT, LIQUID PHASE	1.062	1.054	1.055	1.055
FUGACITY, PURE	0.664	0.004	0.004	0.004
FUGACITY COEFFICIENT, VAPOR PHASE	0.881	0.977	0.900	0.893
CYCLOHEXANE				
Y	O.	0.	O.	0.
X	0.	0.	0.	0.
K VALUE	0.	0.004	0.005	0.004
ACTIVITY COEFFICIENT, LIQUID PHASE	1.006	1.011	1.011	1.011
FUGACITY, PURE	0.004	0.004	0.004	0.004
FUGACITY COEFFICIENT, VAPOR PHASE	0.862	0.960	0.883	0.913
EXANÉ				
Y	0.002	0.002	0.002	0.002
X	0.205	0.209	0.209	0.209
K VALUE	0.010	0.008	0.008	0.008
ACTIVITY COEFFICIENT, LIQUID PHASE	1.31Q	1.339	1.336	1.336
FUGACITY, PURE	0.006	0.006	0.006	0.006
FUGACITY COEFFICIENT, VAPOR PHASE	0.930	1.042	0.954	0.958
IYDROGEN				
Υ	0.992	0.995	0.995	0.995
X	0.053	0.036	0.038	0.038
K VALUE	78.725	27.501	26.312	26.251
ACTIVITY COEFFICIENT, LIQUID PHASE	3.343	3.387	3.383	3.383
FUGACITY, PURE	8.119	8.119	8.119	8.119
FUGACITY COEFFICIENT, VAPOR PHASE	1.044	1.000	1.044	1.046
NTERACTION VIRIAL COEFFICIENTS				
B(HYDROGEN-BENZENE)	•	-140.588	-4.000	
BCHYDROGEN-CYCLOHEXANE)		Ű.	-7.000	
B(HYDROGEN-HEXANE)		-51.052	7.000	

	. INITIAL VALUE	VIRIAL EQUAT ADJUSTED	ION VALUES UNADJUSTED	REDLICH-KWONG VALUES
LUME OF LIQUID CCC PER GM MOLE)	125.782	125.081	124.988	124.984
LUME OF VAPOR (CC PER GM MOLE)	663.886	650.113	664.255	
YZENE			0	0
	<u> </u>	0.	0. 0.	<u>0.</u> 0.
VALUE	0.	0.010	0.011	0.011
TIVITY COEFFICIENT, LIQUID PHASE	1.506	1.515	1.517	1.517
GACITY, PURE	0.007	0.007	0.007	0.007
GACITY COEFFICIENT, VAPOR PHASE LOHEXANE	0.897	0.988	0.922	0.928
	0.003	0.002	0.002	0.002
VALUE	0.193 0.017	0.191 0.008	0.191 0.008	0.191 0.008
TIVITY COEFFICIENT, LIQUID PHASE	1.119	1.123	1.123	1.124
GACITY, PURE	0.007	0.007	0.007	0.007
GACITY COEFFICIENT, VAPOR PHASE	0.888	0.979	0.914	0.937
ANE				
	0.013	0.008	0.008 0.764	0.008
VALUE	0.771 0.017	0.765 0.010	0.764 0.011	0.764 0.011
TIVITY COEFFICIENT, LIQUID PHASE	<u>0.017</u>	1.000	1.000	1.000
GACITY, PURE	0.010	0.010	0.010	0.010
GACITY COEFFICIENT, VAPOR PHASE ROGEN	0.927	1.021	0.953	0.961
	0.984	0.991	0.990	0.990
	0.036	0.044	0.045	0.045
VALUE	27.033	22.588	22.072	22.052
TIVITY COEFFICIENT,LIQUID PHASE GACITY,PURE	1.538	1.538 14.685	1.538 14.685	1.538 14.685
GACITY, FORE GACITY COEFFICIENT, VAPOR PHASE ERACTION VIRIAL COEFFICIENTS	14.685 1.024	1.000	1.023	1.024
HYDROGEN-BENZENED		0.	-4.000	
HYDROGEN-CYCLOHEXANE)		-97.207	-7.000	
HYDROGEN-HEXANE)		EC. 4.4.7	7.000	
		-52.143		
NUMBER 32 ERATURE 100.00 DEGREES FAH	RENHEIT	-32.143		
NUMBER 32 ERATÜRE 100.00 DEGREES FAH		VIRIAL EQUAT	ION VALUES	REDLICH-KWONG
NUMBER 32 ERATÜRE 100.00 DEGREES FAH SURE 1060. PSIA	INITIAL VALUE	VIRIAL EQUAT ADJUSTED	ION VALUES UNADJUSTED	VALUES
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE)	IN1TIAL VALUE 123.377	VIRIAL EQUAT ADJUSTED 121.969	ION VALUES UNADJUSTED 121.666	
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE)	INITIAL VALUE	VIRIAL EQUAT ADJUSTED	ION VALUES UNADJUSTED	VALUES
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE)	INITIAL VALUE 123.377 367.904 0.	VIRIAL EQUAT ADJUSTED 121.969 353.886 0.	ION VALUES UNADJUSTED 121.666 367.984	VALUES 121.649
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE	INITIAL VALUE 123.377 367.904 0. 0.	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0.	ION VALUES UNADJUSTED 121.666 367.984 0. 0.	VALUES 121.649 0. 0.
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE	INITIAL VALUE 123.377 367.904 0. 0.	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0.	ION VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007	VALUES 121.649 0. 0. 0.
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. -0.007 1.559	ION VALUES UNADJUSTED 121.666 367.984 0. 0. 0. 0.007 1.564	VALUES 121.649 0. 0. 0.008 1.564
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0.	ION VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007	VALUES 121.649 0. 0. 0.
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 123.377 367.904 0. 0. 1.539 0.004 0.879	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0. 0.007 1.559 0.004	ON VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893	VALUES 121.649 0. 0. 0.008 1.564 0.891
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 123.377 367.904 0. 0. 1.539 0.004 0.879	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978	ON VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978	ON VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, COEFFICIENT, VAPOR PHASE LOHEXANE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978	ON VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.001 0.185 0.005 1.140	ON VALUES UNADJUSTED 121.666 367.984 O. 0. 0.007 1.564 0.004 0.893 O.001 0.184 0.006 1.142	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, URUID PHASE GACITY, PURE GACITY, PURE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.168 0.009 1.132 0.004	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.001 0.185 0.005 1.140 0.004	ON VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PORE GACITY, PORE GACITY, PORE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.001 0.185 0.005 1.140	O. 0.004 0.0001 0.0001 0.0001 0.0001 0.0004	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142 0.004
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PORE GACITY, PORE GACITY, PORE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.001 0.185 0.005 1.140 0.004 0.961 0.005	ON VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, PURE GACITY, COEFFICIENT, VAPOR PHASE ANE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.006 0.750	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.001 0.185 0.005 1.140 0.961 0.005 0.738	ON VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878 0.005 0.736	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142 0.004 0.909 0.005
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE ANE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.864	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.001 0.185 0.005 1.140 0.004 0.961 0.005 0.738 0.006	ON VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878 0.005 0.736 0.007	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142 0.004 0.909 0.005 0.736 0.007
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1000.00 DEGREES FAH SURE 1000. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE ANE VALUE TIVITY COEFFICIENT, VAPOR PHASE ANE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.006 0.750 0.009 0.998	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.001 0.185 0.005 1.140 0.004 0.961 0.005 0.738 0.006 0.996	ON VALUES UNADJUSTED 121.666 367.984 O. 0. 0. 0.007 1.564 0.004 0.893 O.001 0.184 0.006 1.142 0.004 0.878 O.005 0.736 0.007 0.996	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142 0.004 0.909 0.005 0.736 0.007 0.996
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE ANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY, COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.864	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.001 0.185 0.005 1.140 0.004 0.961 0.005 0.738 0.006	ON VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878 0.005 0.736 0.007	VALUES 121.649 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142 0.004 0.909 0.005 0.736 0.007
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE ANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY, COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.006 0.750 0.009 0.958 0.007	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.005 1.140 0.005 1.140 0.005 0.738 0.006 0.996	ION VALUES UNADJUSTED 121.666 367.984 0. 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878 0.005 0.736 0.007 0.996 0.007	VALUES 121.649 0. 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142 0.004 0.909 0.005 0.736 0.007 0.996 0.007
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE ANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE ROGEN	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.006 0.750 0.009 0.998 0.007 0.933	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.005 1.140 0.005 0.005 0.738 0.005 0.738 0.006 0.996	ION VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878 0.005 0.736 0.007 0.996 0.007 0.948 0.0994 0.080	VALUES 121.649 0. 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142 0.004 0.909 0.005 0.736 0.007 0.996 0.007 0.952
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE ANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE ROGEN VALUE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.006 0.750 0.009 0.998 0.007 0.933 0.992 0.062 16.000	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.005 1.140 0.961 0.005 0.738 0.006 0.996 0.007 1.040 0.994 0.077 12.907	ION VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878 0.005 0.736 0.007 0.996 0.007 0.948 0.994 0.080 12.379	VALUES 121.649 0. 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142 0.004 0.909 0.005 0.736 0.007 0.996 0.007 0.995 0.995 0.994 0.080 12.353
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE ANE VALUE TIVITY COEFFICIENT, VAPOR PHASE ANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE ROGEN VALUE TIVITY COEFFICIENT, VAPOR PHASE ROGEN	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.006 0.750 0.009 0.958 0.007 0.933 0.992 0.662 16.000 1.537	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TON VALUES UNADJUSTED 121.666 367.984 0. 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878 0.005 0.736 0.007 0.996 0.007 0.998 0.007 0.994 0.080 12.379 1.535	VALUES 121.649 0. 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142 0.004 0.909 0.005 0.736 0.007 0.952 0.952 0.994 0.080 12.353 1.535
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE ANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE ROGEN VALUE TIVITY COEFFICIENT, VAPOR PHASE ROGEN VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.006 0.750 0.009 0.998 0.007 0.933 0.992 0.062 16.000	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0.007 1.559 0.004 0.978 0.005 1.140 0.961 0.005 0.738 0.006 0.996 0.007 1.040 0.994 0.077 12.907	ION VALUES UNADJUSTED 121.666 367.984 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878 0.005 0.736 0.007 0.996 0.007 0.948 0.994 0.080 12.379	VALUES 121.649 0. 0. 0. 0.008 1.564 0.004 0.891 0.001 0.184 0.005 1.142 0.004 0.909 0.005 0.736 0.007 0.996 0.007 0.995 0.995 0.994 0.080 12.353
NUMBER 32 ERATURE 100.00 DEGREES FAH SURE 1060. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE LOHEXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE MANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE WALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE ROGEN VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.006 0.750 0.009 0.998 0.007 0.933 0.992 0.062 16.000 1.537 8.404	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ION VALUES UNADJUSTED 121.666 367.984 0. 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878 0.005 0.736 0.007 0.996 0.007 0.998 0.080 12.379 1.535 8.404 1.042	VALUES 121.649 0. 0. 0. 0.008 1.564 0.004 0.891 0.005 1.142 0.004 0.909 0.005 0.736 0.007 0.996 0.007 0.995 0.0952 0.994 0.080 12.353 1.535
NUMBER 32 ERATURE 100.00 DEGREES FAH	INITIAL VALUE 123.377 367.904 0. 0. 0. 1.539 0.004 0.879 0.002 0.188 0.009 1.132 0.004 0.864 0.006 0.750 0.009 0.998 0.007 0.933 0.992 0.062 16.000 1.537 8.404	VIRIAL EQUAT ADJUSTED 121.969 353.886 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ION VALUES UNADJUSTED 121.666 367.984 0. 0. 0. 0.007 1.564 0.004 0.893 0.001 0.184 0.006 1.142 0.004 0.878 0.005 0.736 0.007 0.996 0.007 0.998 0.007 0.994 0.800 12.379 1.535 8.404	VALUES 121.649 0. 0. 0. 0.008 1.564 0.004 0.891 0.005 1.142 0.004 0.909 0.005 0.736 0.007 0.996 0.007 0.995 0.0952 0.994 0.080 12.353 1.535

		VIRIAL EQUA	TION VALUES	REDLICH-KWONG
	INITIAL VALUE	ADJUSTED	UNADJUSTED	VALUES
VOLUME OF LIQUID (CC PER GM MOLE)	112.852	112.263	112.211	112.208
VOLUME OF VAPOR CCC PER GM MOLED	680 .3 31.	666.138	680.389	
BENZENE				
Y	0.	0.	0.	0.
X	0.	0.	0.	0.
K VALUE	O.	0.008	0.009	0.009
ACTIVITY COEFFICIENT, LIQUID PHASE	1.197	1.202	1.203	1.203
FUGACITY, PURE	0.007	0.007	0.007	0.007
FUGACITY COEFFICIENT, VAPOR PHASE	0.930	0.988	0.934	0.936
CYCLOHEXANE				
Υ	0.007	0.006	0.006	0.006
X	0.803	0.797	0.796	0.796
K VALUE	0.008	0.007	0.008	0.007
ACTIVITY COEFFICIENT, LIQUID PHASE	1.609	1.010	1.010	1.010
FUGACITY, PURE	0.007	0.007	0.007	0.007
FUGACITY COEFFICIENT, VAPOR PHASE	0.919	0.979	0.923	0.945
HEXAME				
Υ	0.062	0.002	0.002	0.002
X	0.175	0.174	0.174	0.174
K VALUE	0.013	0.011	0.012	0.012
ACTIVITY COEFFICIENT, LIQUID PHASE	1.098	1.094	1.093	1.093
FUGACITY, PURE	0.010	0.010	0.010	0.010
FUGACITY COEFFICIENT, VAPOR PHASE	0.959	1.021	0.963	0.968
HYDROGEN				
Υ	0.991	0.992	0.992	0.992
X	0.622	0.030	0.030	0.030
K VALUE	44.842	33.624	32.878	32.848
ACTIVITY COEFFICIENT, LIQUID PHASE	2.243	2.237	2.237	2.237
FUGACITY, PURE	15.029	15.029	15.029	15.029
FUGACITY COEFFICIENT, VAPOR PHASE	1.023	1.000	1.023	1.023
INTERACTION VIRIAL COEFFICIENTS				
BICHYL ROGEN-BENZENED		O.	-4.000	
BCHYCROGEN-CYCLOHEXANED		-97.207	-7.000	
B(HYDROGEN-HEXANE)		-52.143	7.000	

RUN NUMBER 35				
TEMPERATURE 100.00 DEGREES FAH	IRENHETT	<u>ے ہے ہے ہے ہے اس سا سا سا سا بہ </u>		
PRESSURE 1106. PSIA				***
		VIRIAL EQUA		REDLICH-KWONG
	INITIAL VALUE	ADJUSTED	UNADJUSTED	VALUES
VOLUME OF LIQUID (CC PER GM MOLE)	1:0.918	110.202	110.005	109.994
VOLUME OF VAPOR (CC PER GM MOLE)	253.159	339.087	353.220	
BENZENE				
Y	0	0.	0.	0.
X	0.	0.	Ū.	0.
K VALUE	O.	0.005	0.005	0.006
ACTIVITY COEFFICIENT, LIQUID. PHASE	1.216	1.224	1.226	4.226
FUGACITY, PURE	0.004	0.004	0.004	0.004
FUGACITY COEFFICIENT, VAPOR PHASE	0.892	0.977	0.901	0.894
CYCLOHEXANE				
γ	0.064	0.003	0.004	0.004
X	0.783	0.775	0.773	0.773
K VALUE	0.006	0.004	0.005	0.005
ACTIVITY COEFFICIENT, LIQUID PHASE	1.013	1.014	1.015	1.015
FUGACITY, PURE	0.064	0.004	0.004	0.004
FUGACITY COEFFICIENT, VAPOR PHASE	0.873	0.960	0.883	0.914
HEXANE				
Υ	0.001	0.001	0.001	0.001
X	0.171	0.169	0.169	0.169
K VALUE	0.009	0.006	0.007	0.007
ACTIVITY COEFFICIENT, LIQUID PHASE	1.082	1.077	1.075	1.075
FUGACITY, PURE	0.006	0.006	0.006	0.006
FUGACITY COEFFICIENT, VAPOR PHASE	0.947	1.042	0.957	0.959
HYDROGEN		,		0
	0.994	0.996	0.995	0.995
X	0.046	0.055	0.058	0.058
K VALUE	<u>21.3</u> 76	17.940	17. 169-	
ACTIVITY COEFFICIENT, LIQUID PHASE	2.224	2.217	2.215	2.215
FUGACITY, PURE	8.093	8.093	8.093	8.093
FUGACITY COEFFICIENT, VAPOR PHASE	1.044	1.000	1.044	1.046
INTERACTION VIRIAL COEFFICIENTS	11017			
BCHYDROGEN-BENZENED		0.	-4.000	
BCHYDROGEN-CYCLOHEXANE)			-7.000	
B (HYDROGEN-HEXANE)		-52.143	7.000	

	INTER MOUNT	VIRIAL EQUAT		REDLICH-KWONO
OLUME OF LIQUID CCC PER GM MOLE)	INITIAL VALUE 103.087	ADJUSTED 103.019	UNADJUSTED 102.984	<u>VALUES</u> 102.981
<u>'OLUME OF VAPOR CCC PER GM MOLE)</u> BENZENE	<u>658.161</u>	644.361	658.653	
Υ	0.004	0.002	0.002	0.002
Х	0.293	0.292	0.292	0.292
K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE	0.014	0.007	0.007	0.007
FUGACITY, PURE	1.074 0.006	1.075 0.006	1.075 0.006	1.075 0.006
FUGACITY COEFFICIENT,VAPOR PHASE VCLOHEXANE	0.909	0.988	0.937	0.937
Y	0.010	0.005	0.005	0.005
X K VALUE	0.686 0.614	0.685 0.007	0.685 0.007	<u>0.685</u> 0.007
ACTIVITY COEFFICIENT, LIQUID PHASE	1.005	1.005	1,005	1.005
FUGACITY, PURE	0.007	0.007	0.007	0.007
FUGACITY COEFFICIENT, VAPOR PHASE	0.896	0.979	0.925	0.947
γ	O	0.	0	0.
X K VALUE	0.	0.	0.	0.
K VHLUE ACTIVITY COEFFICIENT,LIQUID PHASE	0. 1.281	0.012 1.279	0.013 1.278	0.013 1.278
FUGACITY, PURE	0.010	0.010	0.010	0.010
FUGACITY COEFFICIENT, VAPOR PHASE YDROGEN	0.935	1.022	0.966	0.971
Y	0.986	0.993	0.993	0.993
X K VALUE	0.621 46.075	0.022	0.023 43.392	0.023 43.351
ACTIVITY COEFFICIENT, LIQUID PHASE	46.075 3.051	44.410 3.049	43.392 3.048	43.331 3.048
FUGACITY, PURE	14.567	14.567	1.4.567	14.567
FUGACITY COEFFICIENT, VAPOR PHASE NTERACTION VIRIAL COEFFICIENTS	1.024	1.000	1.023	1.024
BCHYDROGEN-BENZENE)		-116.621	-4.000	
B (HYDROGEN-CYCLOHÉXANÉ) B (HYDROGEN-HEXANE)		-150.809 0.	-7.000 7.000	
MPERATURE 100.00 DEGREES FAHR	RENHEIT			
MPERATURE 100.00 DEGREES FAHR		VIRIAL EQUAT		
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE)	RENHEIT INITIAL VALUE 92.495	VIRIAL EQUAT ADJUSTED 92.731	ION VALUES UNADJUSTED 92.710	REDLICH-KWONG VALUES 92.710
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE)	INITIAL VALUE	ADJUSTED	UNADJUSTED	VALUES
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE	INITIAL VALUE 92.495 651.923	ADJUSTED 92.731 637.809	UNADJUSTED 92.710 652.119	VALUES 92.710
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID CCC PER GM MOLED OLUME OF VAPOR CCC PER GM MOLED ENZENE Y X	INITIAL VALUE 92.495 651.923 0.608 0.845	<u>ADJUSTED</u> 92.731	UNADJUSTED 92.710	VALUES
MPERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) Y X K VALUE	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009	ADJUSTED 92.731 637.809 0:005 0.848 0.006	0.006 0.007	VALUES 92.710 0.006 0.848 0.007
MPERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID CCC PER GM MOLE) OLUME OF VAPOR CCC PER GM MOLE) ENZENE V X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005	ADJUSTED 92.731 637.809 0:005 0.848 0.006 1.005	0.006 0.006 0.007 0.005	VALUES 92.710 0.006 0.848 0.007
MPERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE V X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009	ADJUSTED 92.731 637.809 0:005 0.848 0.006	0.006 0.007	VALUES 92.710 0.006 0.848 0.007
MFERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE V X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.006 0.988	0.006 0.006 0.007 0.006 0.848 0.007 1.005 0.006 0.938	VALUES 92.710 0.006 0.848 0.007 1.005 0.006
MPERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE YCLOHEXANE Y	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.006 0.988	0.006 0.006 0.006 0.848 0.007 1.005 0.938	VALUES 92.710 0.006 0.848 0.007 1.005 0.006 0.938
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y CLOHEXANE Y	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.006 0.988	0.006 0.006 0.007 0.006 0.848 0.007 1.005 0.006 0.938	VALUES 92.710 0.006 0.848 0.007 1.005 0.006
MPERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID CCC PER GM MOLE) OLUME OF VAPOR CCC PER GM MOLE) Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE YCLOHEXANE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE YCLOHEXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.002 0.136 0.015 1.086	ADJUSTED 92.731 637.809 0:005 0.848 0.006 1.005 0.988 0.001 0.137 0.007 1.089	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089	VALUES 92.710 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.007
MFERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID CCC PER GM MOLE) OLUME OF VAPOR CCC PER GM MOLE) ENZEME V X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE VCLOHEXANE V X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE	0.008 0.008 0.845 0.009 1.005 0.006 0.926 0.002 0.136 0.015 1.086 0.006	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.006 0.988 0.001 0.137 0.007 1.089 0.006	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 0.006	VALUES 92.710 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.007 1.089 0.006
MFERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID CCC PER GM MOLE) OLUME OF VAPOR CCC PER GM MOLE) ENZEME V X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE VCLOHEXANE V X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.002 0.136 0.015 1.086	ADJUSTED 92.731 637.809 0:005 0.848 0.006 1.005 0.988 0.001 0.137 0.007 1.089	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089	VALUES 92.710 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.007
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE Y Y X K VALUE GUGHEXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE EXANE Y	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.602 0.136 0.015 1.086 0.914 0.	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.006 0.988 0.001 0.137 0.007 1.089 0.006 0.979	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 0.006 0.927	VALUES 92.710 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.007 1.089 0.006
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID CCC PER GM MOLE) OLUME OF VAPOR CCC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE EXANE Y X	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.015 1.086 0.006 0.914 0.01	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.006 0.988 0.001 0.137 0.007 1.089 0.006 0.979	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 0.006 0.927	VALUES 92.710 0.006 0.848 0.007 1.005 0.938 0.001 0.137 0.007 1.089 0.006 0.948
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID CCC PER GM MOLED OLUME OF VAPOR CCC PER GM MOLED ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE EVANE Y X K VALUE X K VALUE	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.602 0.136 0.015 1.086 0.914 0.	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.006 0.988 0.001 0.137 0.007 1.089 0.006 0.979	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 0.006 0.927	VALUES 92.710 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.007 1.089 0.006 0.948
MPERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID CCC PER GM MOLE) OLUME OF VAPOR CCC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE	0.008 0.845 0.009 1.005 0.006 0.926 0.015 1.086 0.006 0.914 0.006 0.914	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.006 0.988 0.001 0.137 0.007 1.089 0.006 0.979 0.006 1.725 0.016	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 0.006 0.927 0.006 0.017 1.723 0.010	VALUES 92.710 0.006 0.848 0.007 1.005 0.006 0.938 0.007 1.089 0.006 0.948 0. 0. 0. 0.017 1.723 0.010
MFERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.002 0.136 0.015 1.086 0.066 0.914 0. 0. 0. 0. 1.711	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.006 0.988 0.001 0.137 0.007 1.089 0.006 0.979 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.938 0.001 0.137 0.008 1.089 0.006 0.927 0. 0. 0. 0.17 1.723	VALUES 92.710 0.006 0.848 0.007 1.005 0.038 0.001 0.137 0.007 1.089 0.006 0.948 0. 0. 0. 0.017
MFERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE EXANE Y X K VALUE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.988 0.001 0.137 0.007 1.089 0.006 0.979 0. 0. 0. 1.725 0.010 1.022	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 1.089 0.006 0.927 0.006 0.927 0.007 0.007 1.723 0.010 0.967	VALUES 92.710 0.006 0.848 0.007 1.005 0.938 0.001 0.137 0.007 1.089 0.006 0.948 0. 0. 0. 0. 0.017 1.723 0.010 0.973
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY, PURE FUGACITY, COEFFICIENT, VAPOR PHASE Y Y X X X X X X X X X X X X X X X X X	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.015 1.686 0.006 0.914 0. 0. 1.711 0.010 0.952	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.988 0.001 0.137 0.007 1.089 0.006 0.979 0. 0. 1.725 0.010 1.022	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 0.006 0.927 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	VALUES 92.710 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.007 1.089 0.006 0.948 0. 0. 0. 0.017 1.723 0.010 0.973 0.993 0.015
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID CCC PER GM MOLE) OLUME OF VAPOR CCC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY, COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y Y Y X K VALUE VALUE VALUE VALUE	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.015 1.086 0.006 0.914 0. 0. 1.711 0.010 0.952 0.990 0.019 52.100	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.988 0.001 0.137 0.007 1.089 0.006 0.979 0. 0. 0. 1.725 0.010 1.022 0.994 0.015 66.203	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 0.006 0.927 0.006 0.927 0.007 1.723 0.010 0.967 0.993 0.015 64.667	VALUES 92.710 0.006 0.848 0.007 1.005 0.938 0.001 0.137 0.007 1.089 0.006 0.948 0. 0. 0.017 1.723 0.010 0.973 0.993 0.015 64.604
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA OLUME OF LIQUID CCC PER GM MOLED OLUME OF VAPOR CCC PER GM MOLED ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE EXAME Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE	INITIAL VALUE 92.455 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.002 c.136 0.015 1.086 0.006 0.914 c. 0. 0. 0. 1.711 0.010 0.952 0.990 0.019 52.100 4.570 14.427	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.988 0.001 0.137 0.007 1.089 0.006 0.979 0. 0. 1.725 0.010 1.022	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 0.006 0.927 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	VALUES 92.710 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.007 1.089 0.006 0.948 0. 0. 0. 0.017 1.723 0.010 0.973 0.993 0.015
MPERATURE 100.00 DEGREES FAHR ESSURE 588. PSIA OLUME OF LIQUID CCC FER GM MOLE) OLUME OF VAPOR CCC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 92.495 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.015 1.086 0.006 0.914 0.00 0.914 0.00 0.952 0.990 0.019 52.100 4.570	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.988 0.001 0.137 0.007 1.089 0.006 0.979 0.016 1.725 0.010 1.022 0.994 0.015 66.203 4.589	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.938 0.001 0.137 0.008 1.089 0.006 0.927 0.006 0.927 0.017 1.723 0.010 0.967 0.993 0.015 64.667 4.588	VALUES 92.710 0.006 0.848 0.007 1.005 0.938 0.001 0.137 0.007 1.089 0.006 0.948 0. 0. 0.017 1.723 0.010 0.973 0.015 64.604 4.587
MPERATURE 100.00 DEGREES FAHE ESSURE 588. PSIA OLUME OF LIQUID (CC FER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE NTERACTION VIRIAL COEFFICIENTS	INITIAL VALUE 92.455 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.002 c.136 0.015 1.086 0.006 0.914 c. 0. 0. 0. 1.711 0.010 0.952 0.990 0.019 52.100 4.570 14.427	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.988 0.001 0.137 0.007 1.089 0.006 0.979 0. 0. 0. 0. 1.725 0.010 1.022 0.994 0.015 66.203 4.589 14.427 1.000	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 0.006 0.927 0.006 0.927 0.007 1.723 0.017 1.723 0.010 0.967 0.993 0.015 64.667 4.588 14.427 1.023	VALUES 92.710 0.006 0.848 0.007 1.005 0.938 0.001 0.137 0.007 1.089 0.006 0.948 0. 0. 0. 0.017 1.723 0.010 0.973 0.015 64.604 4.587
MPERATURE 100.00 DEGREES FAHF ESSURE 588. PSIA POLUME OF LIQUID (CC PER GM MOLE) POLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE YCLOHEXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE EXAME Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE	INITIAL VALUE 92.455 651.923 0.608 0.845 0.009 1.005 0.006 0.926 0.002 c.136 0.015 1.086 0.006 0.914 c. 0. 0. 0. 1.711 0.010 0.952 0.990 0.019 52.100 4.570 14.427	ADJUSTED 92.731 637.809 0.005 0.848 0.006 1.005 0.006 0.988 0.001 0.137 0.007 1.089 0.006 0.979 0. 0. 0. 1.725 0.010 1.022	UNADJUSTED 92.710 652.119 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.008 1.089 0.006 0.927 0.006 0.927 0.007 1.723 0.010 0.967 0.993 0.015 64.667 4.588	92.710 0.006 0.848 0.007 1.005 0.006 0.938 0.001 0.137 0.007 1.089 0.006 0.948 0. 0. 0. 0. 0.017 1.723 0.010 0.973 0.993 0.015 64.604 4.587

SURE 1122. PSIA	THE TECH MOUNT	VIRIAL EQUA		REDLICH-KWONG
UME OF LIQUID CCC PER GM MOLE)	INITIAL VALUE 101.522	<u>ADJUSTED</u> 101.709	<u>UNADJUSTED</u> 101.574	<u>VALUES</u> 101.567
UME OF VAPOR CCC PER GM MOLE) Zene	348.228	334.234	348.376	
ZENE	0.002	0.001	0.001	0.001
	0.286	0.287	0.286	0.286
VALUE TIVITY COEFFICIENT,LIQUID PHASE	0.007	0.004	0.005	0.005
GACITY, PURE	1.086 0.004	1.085 0.004	1.086 0.004	1.086 0.004
GACITY COEFFICIENT,VAPOR PHASE LOKEXANE	0.885	0.977	0.904	0.895
	0.005	0.003	0.003	0.003
VALUE	<u>0.670</u> 0.007	0.672 0.004	0.671 0.004	0.671 0.004
TIVITY COEFFICIENT, LIQUID PHASE	1.001	1,002	1.001	1.001
GACITY,PURE GACITY COEFFICIENT,VAPOR PHASE	0.004 0.865	0.004 0.959	0.004 0.885	0.004 0.916
ANE	0.000	0.707	0.000	0.210
7 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	<u>0.</u>	<u></u>	<u>0.</u>	<u> </u>
VALUE	0. 0.	0. 0.007	0. 0.008	0. 0.008
TIVITY COEFFICIENT, LIQUID PHASE	1.249	1.253	1.250	1.250
GACITY,PURE GACITY COEFFICIENT,VAPOR PHASE	0.006	0.006	0.006	0.006
ROGEN	0.938	1.043	0.960	0.961
	0.993	0.996	0.996	0.996
VALUE	0.044 22.566	0.041 24.066	0.043 23.012	0.043 22.958
TIVITY COEFFICIENT, LIQUID PHASE	22.566 3.007	3.012	3.008	3.008
GACITY, PURE	7.991	7.9%	7.991	7.991
GACITY COEFFICIENT, VAPOR PHASE ERACTION VIRIAL COEFFICIENTS	1.045	1.000	1. 45	1.047
HYDROGEN-BENZENED		-116.621	-4.000	
HYDROGEN-CYCLOHEXANED		-150.809	-7.000	
NUMBER 45		0.	7.000	
NUMBER 45 ERATURE 100.00 DEGREES AH	F NH IT.	0.	7.000	
NUMBER 45 ERATURE 100.00 DEGREES AH	***************************************	VIRIAL EQ A'	r . N . VSUE:	
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA	F NH 17 INITIAL VALUE 91.916			REDLICH-KWONG VA. ES 91.982
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE)	INITIAL VALUE	VIRIAL EQ A'	T .M V?.UE: UNADJUSTE:	VA. ES
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE)	INITIAL VALUE 91.916 358.774 0.005	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003	F.N. VELUE: UNADJUSTE: 91.986 358.860 0.004	VA. ES 91.982 0.004
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE	INITIAL VALUE 91.916 358.774 0.005 0.836	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838	F.N. VS.UE: UNADJUSTE: 91.986 358.860 0.004 0.837	VA_ ES 91.982 0.004 0.837
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID CCC PER GM MOLE) UME OF VAPOR CCC PER GM MOLE) ZENE VALUE	INITIAL VALUE 91.916 358.774 0.005	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003	F.N. VELUE: UNADJUSTE: 91.986 358.860 0.004	VA. ES 91.982 0.004
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004	VIRIAL EQ A: ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004	T.N. VE.UE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004	VALES 91.982 0.004 0.004 0.004 1.007 0.004
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007	VIRIAL EQ A ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007	0.004 0.004 0.004 0.004	VA. ES 91.982 0.004 0.837 0.004 1.007
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977	F.N. V°.UE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909	VA ES 91.982 0.004 0.837 0.004 1.007 0.004 0.900
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOAFXANE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977	7 N V UE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909	VA ES 91.982 0.004 0.837 0.004 1.007 0.004 0.900
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID CCC PER GM MOLE) UME OF VAPOR CCC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOAFXANE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977	F.N. V°.UE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909	VALES 91.982 0.004 0.837 0.004 1.007 0.004 0.900
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHFXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, PURE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.004	0.004 0.004 0.004 0.004 0.007 0.004 0.909 0.001 0.135 0.005 1.07° 0.004	VA ES 91.982 0.004 0.837 0.004 1.007 0.004 0.900 0.001 0.135 0.005 1.079
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOAFXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080	0.004 0.004 0.004 0.004 0.007 0.004 0.909 0.001 0.135 0.005 1.07°	VALES 91.982 0.004 0.837 0.004 1.007 0.004 0.900 0.135 0.005 1.079
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOAFXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.004	T.N. V. UE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.077 0.004 0.891	VALES 91.982 0.004 0.837 0.004 1.007 0.004 0.900 0.001 0.135 0.005 1.079 0.004 0.920 0.
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID (CC PER GM MOLE) UME OF VAPOR (CC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOAFXANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE \$1.916 \$58.774 0.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.0960 0.960	F.N. VI.UE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.077 0.004 0.891	VALES 91.982 0.004 0.837 0.004 1.007 0.004 0.900 0.135 0.005 1.079 0.004 0.920 0.000
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID CCC PER GM MOLE) UME OF VAPOR CCC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOAFXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.004	T.N. V. UE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.077 0.004 0.891	VALES 91.982 0.004 0.837 0.004 1.007 0.004 0.900 0.135 0.005 1.079 0.004 0.920
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID CCC PER GM MOLE) UME OF VAPOR CCC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY, PURE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878 0.004 0.878	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.004 0.960 0.000 0.000	0.004 0.837 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.07° 0.005 1.07° 0.004 0.891	VA. ES 91.982 0.004 0.837 0.004 1.007 0.004 0.900 0.005 1.079 0.004 0.920 0.000 0.010 1.682 0.006
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID CCC PER GM MOLE) UME OF VAPOR CCC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHEXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 91.916 358.774 6.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878 0.004 0.878	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.004 0.960 0.000 0.000 0.000	F.N. VILUE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.077 0.004 0.891 0. 0.000 0.010 1.682	VA_ES
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID CCC PER GM MOLE) UME OF VAPOR CCC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHFXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE ANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878 0.004 0.878	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.004 0.960 0.000 0.000	0.004 0.837 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.07° 0.005 1.07° 0.004 0.891	VALES 91.982 0.004 0.837 0.004 1.007 0.004 0.900 0.135 0.005 1.079 0.004 0.920 0. 0.000 0.010 1.682 0.006
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID CCC PER GM MOLE) UME OF VAPOR CCC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHFXANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY, COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY, COEFFICIENT, VAPOR PHASE GACITY, COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878 0. 0. 0. 1.679 0.006 0.947	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.004 0.135 0.004 1.080 0.006 0.000 0.010 1.686 0.006 1.041	T.N. VI.UE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.077 0.004 0.891 0. 0.000 0.1682 0.006 0.962 0.996 0.028	VALES 91.982 0.004 0.837 0.004 1.007 0.004 0.900 0.015 1.079 0.004 0.920 0. 0.000 0.010 1.682 0.006 0.964 0.996
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID CCC PER GM MOLE) UME OF VAPOR CCC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE HOLE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY, PURE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE ROGEN	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878 0. 0. 1.679 0.006 0.947 0.994 0.029 34.394	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.006 0.000 0.010 1.686 0.006 1.041 0.996 0.027 37.196	F.N. V. UE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.077 0.004 0.891 0. 0.000 0.010 1.682 0.006 0.962 0.996 0.028 35.610	VALES 91.982 0.004 0.837 0.004 1.007 0.004 0.900 0.001 0.135 0.005 1.079 0.004 0.920 0. 0.000 0.010 1.682 0.006 0.964 0.996 0.028 35.529
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID CCC PER GM MOLE) UME OF VAPOR CCC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHFXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE ROGEN VALUE TIVITY COEFFICIENT, VAPOR PHASE ROGEN VALUE TIVITY COEFFICIENT, VAPOR PHASE ROGEN	INITIAL VALUE 91.916 358.774 6.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878 0.006 0.947 0.994 0.029 34.394 4.521 8.212	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.004 0.960 0. 0.000 1.686 0.006 1.041 0.996 0.027 37.196 4.530 8.212	F.N. VILUE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.077 0.004 0.891 0. 0.000 0.010 1.682 0.006 0.962 0.962 0.962 0.996 0.028 35.610 4.524 8.212	0.004 0.837 0.004 1.007 0.004 0.900 0.001 0.135 0.005 1.079 0.004 0.920 0. 0.000 0.010 1.682 0.006 0.964 0.996 0.998 35.529 4.524 8.212
NUMBER 45 ERATURE 100.00 DEGREES AH SURE 1088. PSIA UME OF LIQUID CCC PER GM MOLE) UME OF VAPOR CCC PER GM MOLE) ZENE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PURE GACITY COEFFICIENT, VAPOR PHASE LOHFXANE VALUE TIVITY COEFFICIENT, LIQUID PHASE GACITY, PÜRE GACITY COEFFICIENT, VAPOR PHASE ANE VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PÜRE GACITY COEFFICIENT, LIQUID PHASE GACITY COEFFICIENT, VAPOR PHASE ROGEN VALUE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PÜRE GACITY, PÜRE GACITY, PÜRE GACITY COEFFICIENT, VAPOR PHASE TIVITY COEFFICIENT, VAPOR PHASE GACITY, PÜRE GACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 91.916 358.774 0.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878 0.004 0.947 0.994 0.029 34.394 4.521	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.004 0.960 0. 0.000 0.010 1.686 0.006 1.041 0.996 0.027 37.196 4.530	0.004 0.837 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.077 0.004 0.891 0.000 0.010 1.682 0.006 0.962 0.962	0.004 0.004 0.837 0.004 1.007 0.004 0.900 0.135 0.005 1.079 0.004 0.920 0.000 0.010 1.682 0.006 0.964 0.996 0.028 35.529 4.524
ERATURE 100.00 DEGREES AH	INITIAL VALUE 91.916 358.774 6.005 0.836 0.006 1.007 0.004 0.897 0.001 0.135 0.007 1.078 0.004 0.878 0.006 0.947 0.994 0.029 34.394 4.521 8.212	VIRIAL EQ A' ADJUSTED 92.057 344.694 0.003 0.838 0.004 1.007 0.004 0.977 0.001 0.135 0.004 1.080 0.004 0.960 0. 0.000 1.686 0.006 1.041 0.996 0.027 37.196 4.530 8.212	F.N. VILUE: UNADJUSTE' 91.986 358.860 0.004 0.837 0.004 1.007 0.004 0.909 0.001 0.135 0.005 1.077 0.004 0.891 0. 0.000 0.010 1.682 0.006 0.962 0.962 0.962 0.996 0.028 35.610 4.524 8.212	91.982 0.004 0.837 0.004 1.007 0.004 0.900 0.001 0.135 0.005 1.079 0.004 0.920 0. 0.000 0.010 1.682 0.006 0.964 0.964 0.964 0.928 35.529 4.524 8.212

	INITIAL VALUE	VIRIAL EQUA ADJUSTED	TION VALUES UNADJUSTED	REDLICH-KWON VALUES
OLUME OF LIQUID (CC FER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE)	106.348 106.348 703.547	106.538 689.464	106.499 703.651	106.498
ENZENE Y	0.005	0.004	0.004	0.004
X	0.487	0.488	0.488	0.488
K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE	0.010 1.135	0.008 1.133	0.008 1.134	0.008 1.134
FUGACITY, PURE	0.007	0.007	0.007	0.007
FUGACITY COEFFICIENT,VAPOR PHASE YCLOHEXANE	0.925	0.989	0.931	0.935
Y K	0.602 0.168	0.001 0.168	0.001 0.168	0.001 0.168
< VALUE	0.012	0.007	0.008	0.007
ACTIVITY COEFFICIENT,LIQUID PHASE FUGACITY,PURE	0.999	0.999	0.999	0.999
FUGACITY COEFFICIENT, VAPOR PHASE EXAME	0.067 0.915	0.007 0.980	0.007 0.921	0.007 0.944
Y	0.004	0.004	0.004	0.004
<pre></pre> <pre><</pre>	0.318	0.319	0.319	0.319
CTIVITY COEFFICIENT, LIQUID FHASE	0.013 1.163	0.012 1.165	0.013 1.165	0.013 1.165
TUGHCITY, PURE	0.011	0.011	0.611	0.011
UGACITY COEFFICIENT,VAPOR PHASE DROGEN	0.951	1.020	0.958	0.966
, (0.989 G.027	0.991 0.024	0.990 0.025	0.991 0.025
VALUE	9.927 36.630	40.535	<u>0.025</u> 39.659	39.625
CTIVITY COEFFICIENT, LIQUID PHASE	2.448	2.611	2.611	2.611
UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE UTERACTION VIRIAL COEFFICIENTS	15.523 <u>1.072</u>	15.523 1.000	15.523 1.022	15.523 1.023
CHYEROGEN-BENZENE)		-80.047	-4.000	
CHYEROGEN-CYCLOHEXANEX CHYEROGEN-HEXANEX		-171.164	-7.000	and hard half have been been along their large traps on a trap other traps on
	EEE ALE T	-35.368	7.000	
MPERATURE 100.00 DEGREES FAF	REMHET;			BED! ICH-KMUV
IPERATURE 100.00 DEGREES FAI SSURE 1074. PSIA	RENHEIT	VTRIAL EQUA AUJUSTED		REDLICH-KWON VALUES
PERATURE 100.00 DEGREES FAR SSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE)		VIRIAL EQUA	TIOH VALUES	VALUES
PERATURE 100.00 DEGREES FAF SSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) INZENE	INTTIAL VALUE 164.097 363.119 0.004	VTRIAL EQUA ADJUSTED 104.964 349.224	TION VALUES UNADJUSTED 164.814	VALUES 104.806 0.002
PERFTURE 100.00 DEGREES FAF SSURE 1074. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE	INITIAL VALUE 104.097 363,119 0.004 0.471	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476	VALUES 104.806
PERATURE 100.00 DEGREES FAF SSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) NZENE VALUE	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008	VTRIAL EQUA A0JUSTED 104.964 349.224 0.002 0.477 0.005	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005	VALUES 104.806 0.002 0.476 6.005
PERFTURE 100.00 DEGREES FAF SSURE 1074. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE	INITIAL VALUE 104.097 363,119 0.004 0.471	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476	VALUES 104.806 0.002 0.476 6.005 1.150
PERATURE 100.00 DEGREES FAR SSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOREXANE	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867	VIRIAL EQUA AUJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977	TION VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898	VALUES 104.806 0.002 0.476 0.005 1.150 0.004
PERATURE 100.00 DEGREES FAN SSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867	VIRIAL EQUA AUJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.001	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898	VALUES 104.806 0.002 0.476 0.005 1.150 0.004 0.894
PERATURE 100.00 DEGREES FAMISSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) DIVENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012	VIRIAL EQUA AUJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977	TION VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898	VALUES 104.806 0.002 0.476 6.005 1.150 0.894 0.801 0.165
PERATURE 100.00 DEGREES FAMISSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) DIAZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE UCLOHEXANE VALUE CTIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999	VALUES 104.806 0.002 0.476 0.005 1.150 0.004 0.894 0.001 0.165 0.004 0.995
PERFTURE 100.00 DEGREES FAI- SSURE 1074. PSIA LUME OF LIQUID (CC FER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.004	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.999 0.004	VALUES 104.806 0.002 0.476 0.009 1.150 0.004 0.894 0.001 0.165 0.004 0.995
TPERATURE 100.00 DEGREES FANCES SSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UCACITY COEFFICIENT, VAPOR PHASE CLORESANE VALUE CTIVITY COEFFICIENT, VAPOR PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE UGACITY COEFFICIENT, VAPOR PHASE UGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999	VALUES 104.806 0.002 0.476 6.005 1.150 0.004 0.894 0.001 6.165 0.004 0.999 0.004
TPERATURE 100.00 DEGREES FAMILISSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE ((VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE / ((VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, COEFFICIENT, VAPOR PHASE ENGACITY COEFFICIENT, VAPOR PHASE EXAME ((() () () () () () () () (INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.004 0.849 0.004	VIRIAL EQUA AUJUSTED 104.964 349.224 0.002 0.407 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999 0.004 0.961	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999 0.004 0.882	VALUES 104.806 0.002 0.476 0.005 1.150 0.004 0.894 0.001 0.165 0.004 0.999 0.004 0.912 0.002
TPERATURE 100.00 DEGREES FAMISSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE UCLOHEXANE VALUE UCLOHEXANE UGACITY, COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE USANE VALUE VALUE	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.004 0.849 0.004 0.368 0.013	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999 0.004 0.961	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999 0.004 0.882 0.002 0.311 0.007	VALUES 104.806 0.602 0.476 0.005 1.150 0.004 0.894 0.001 0.165 0.004 0.999 0.004 0.912 0.002
TPERATURE 100.00 DEGREES FAMISSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE UGACITY, PURE UGACITY, PURE UGACITY COEFFICIENT, LIQUID PHASE XANE VALUE COUNTY COEFFICIENT, VAPOR PHASE UGACITY COEFFICIENT, VAPOR PHASE UGACITY COEFFICIENT, VAPOR PHASE UGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.004 0.849 0.004 0.368 0.013 1.133	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999 0.004 0.961 0.002 0.312 0.007	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999 0.004 0.882 0.002 0.311 0.007 1.142	VALUES 104.806 0.002 0.476 0.005 1.150 0.894 0.001 0.165 0.004 0.999 0.004 0.912 0.002
TPERATURE 100.00 DEGREES FANCESSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) TOTAL PROPERTY ((VALUE TOTAL COEFFICIENT, LIQUID PHASE TOTAL COEFFICIENT, VAPOR PHASE	INITIBL VBLUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.064 0.849 0.004 0.308 0.013 1.133 0.006 0.916	VIRIAL EQUA AUJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999 0.004 0.961 0.002 0.312 0.007 1.144 0.006	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999 0.004 0.882 0.002 0.311 0.007 1.142 0.006 0.951	VALUES 104.806 0.002 0.476 0.005 1.150 0.004 0.894 0.601 0.165 0.004 0.999 0.004 0.912 0.002 0.311 0.007 1.142 0.006 0.956
TPERFOURE 100.00 DEGREES FAFESSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE (VALUE GETIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE EXAME (VALUE GETIVITY COEFFICIENT, VAPOR PHASE EXAME (VALUE GETIVITY COEFFICIENT, VAPOR PHASE EXAME (VALUE GETIVITY COEFFICIENT, VAPOR PHASE FUGACITY, PURE FUGACITY, COEFFICIENT, VAPOR PHASE FUGACITY, COEFFICIENT, VAPOR PHASE FUGACITY, COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, VAPOR PHASE	INITIBL VBLUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.004 0.849 0.004 0.308 0.013 1.133 0.006 0.916	VIRIAL EQUA AUJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.061 0.165 0.004 0.961 0.961 0.002 0.312 0.007 1.144 0.006 1.004	TION VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999 0.004 0.882 0.002 0.311 0.007 1.142 0.006 0.991	VALUES 104.806 0.002 0.476 0.005 1.150 0.004 0.894 0.601 0.165 0.004 0.999 0.004 0.912 0.002 0.311 0.007 1.142 0.006 0.956
MPERATURE 100.00 DEGREES FAMILES SSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE ((VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE // (VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE EXAME / (VALUE ACTIVITY COEFFICIENT, VAPOR PHASE EXAME / (VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE // // // // // // // // // // // // //	INITIBL VBLUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.064 0.849 0.004 0.308 0.013 1.133 0.006 0.916	VIRIAL EQUA AUJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999 0.004 0.961 0.002 0.312 0.007 1.144 0.006	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999 0.004 0.882 0.002 0.311 0.007 1.142 0.006 0.951	VALUES 104.806 0.002 0.476 0.005 1.150 0.004 0.894 0.001 0.165 0.004 0.999 0.002 0.311 0.007 1.142 0.006 0.956
MPERATURE 100.00 DEGREES FAMILES SSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE ((VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE (VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE EXAME (VALUE ACTIVITY COEFFICIENT, VAPOR PHASE EXAME (VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.004 0.849 0.004 0.308 0.013 1.133 0.006 0.916 0.990 0.058 17.071 2.567	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999 0.004 0.961 0.002 0.312 0.007 1.144 0.006 1.091	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999 0.004 0.882 0.002 0.311 0.007 1.142 0.006 0.951 0.994 0.048 20.543 2.579	VALUES 104.806 0.002 0.476 0.005 1.150 0.004 0.894 0.001 0.165 0.004 0.999 0.004 0.912 0.002 0.311 0.007 1.142 0.006 0.956
MPERATURE 100.00 DEGREES FAMILES ESSURE 1074. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K K K K K K K K K K K K	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.004 0.849 0.004 0.368 0.013 1.133 0.006 0.916 0.990 0.058 17.071 2.567 8.307	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999 0.004 0.961 0.002 0.312 0.007 1.144 0.006 1.091	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999 0.004 0.882 0.002 0.311 0.007 1.142 0.006 0.951 0.994 0.048 20.543 2.579 8.307	VALUES 104.806 0.002 0.476 0.005 1.150 0.004 0.894 0.001 0.165 0.004 0.999 0.004 0.912 0.002 0.311 0.007 1.142 0.006 0.956 0.995 0.0498 20.498 2.579
MPERATURE 100.00 DEGREES FAME ESSURE 1074. PSIA OLUME OF LIQUID (CC PER GM MOLE) OLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X X VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X X VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE EXANE Y X X VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE Y X X X X X X X X X X X X X X X X X X	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.004 0.849 0.004 0.308 0.013 1.133 0.006 0.916 0.990 0.058 17.071 2.567	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999 0.004 0.961 0.002 0.312 0.007 1.144 0.006 1.091	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999 0.004 0.882 0.002 0.311 0.007 1.142 0.006 0.951 0.994 0.048 20.543 2.579	0.002 0.476 0.005 1.150 0.004 0.894
MPERATURE 100.00 DEGREES FAF	INITIAL VALUE 104.097 363.119 0.004 0.471 0.008 1.156 0.004 0.867 0.002 0.163 0.012 0.999 0.004 0.849 0.004 0.368 0.013 1.133 0.006 0.916 0.990 0.058 17.071 2.567 8.307	VTRIAL EQUA ADJUSTED 104.964 349.224 0.002 0.477 0.005 1.148 0.004 0.977 0.001 0.165 0.004 0.999 0.004 0.961 0.002 0.312 0.007 1.144 0.006 1.091	TIOH VALUES UNADJUSTED 104.814 363.341 0.002 0.476 0.005 1.150 0.004 0.898 0.001 0.165 0.005 0.999 0.004 0.882 0.002 0.311 0.007 1.142 0.006 0.951 0.994 0.048 20.543 2.579 8.307	0.002 0.476 0.005 1.150 0.004 0.894 0.001 0.165 0.004 0.999 0.004 0.912 0.002 0.311 0.007 1.142 0.006 0.956 0.995 0.0498 20.498 2.579

ESSURE 558. PSIA		VIRIAL EQUA	· · · · · · · · · · · · · · · · · · ·	REDLICH-KWONG
OLUME OF LIQUID (CC PER GM MOLE)	INITIAL VALUE	ADJUSTED 130.942	UNADJUSTED 130.868	<u>VALUES</u> 130.866
QLUME OF VAPOR (CC PER GM MOLE)	131.058 80 5 .230	794.805	804.345	130.000
ENZENE				
<u> </u>	0.014 0.209	0.013 0.209	0.015 0.209	0.015 0.209
< VALUE	0.068	0.060	0.072	0.200
ACTIVITY COEFFICIENT, LIQUID PHASE	1.350	1.352	1.352	1.353
FUGACITY,PURE FUGACITY COEFFICIENT,VAPOR PHASE	<u>0.046</u> 0.877	0.046 1.028	0.046 0.851	0.046 0.882
YCLOHEXANE	0.011	1.020	0.001	0.002
,	0.	0.	0.	0.
K K. VALUE	<u>0.</u>	<u>0.</u> 0.048	<u>0.</u> 0.057	0. 0.056
ROTIVITY COEFFICIENT, LIQUID PHASE	1.104	1.105	1.105	1.105
FUGACITY, PURE	0.044	0.044	0.044	0.044
FUGACITY COEFFICIENT, VAPOR PHASE	0.873	1.026	0.856	0.882
, , , , , , , , , , , , , , , , , , ,	0.046	0.044	0.053	0.052
K K VALUE	0.745 0.061	0.744 0.059	0.744 0.071	0.744 0.070
ROTIVITY COEFFICIENT, LIQUID PHASE	1.004	1.004	1.004	1.004
FUGACITY, PURE	0.063	0.063	0.063	0.063
FUGACITY COEFFICIENT,VAPOR PHASE YDROGEN	ō.901	1.063	0.883	0.899
Y .	0.940	0.943	0.932	0.933
K K VALUE	0.046	0.047	0.048	0.048
VALUE ACTIVITY COEFFICIENT,LIQUID PHASE	20.524 1.620	20.077 1.620	19.497 1.620	19.514 1.620
UGACITY, PURE	12.355	12.355	12.355	12.355
FUGACITY COEFFICIENT, VAPOR PHASE	1.025	0.997	1.026	1.025
BCHYDROGEN-BENZENED		2.481	13.000	
BCHYCROGEN-CYCLOHEXAMED		Ŭ.	12.000	
B (HYDROGEN-HEXANE)				
N NUMBER 20		75.954	27.000	
N NUMBER 20 MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA	RENHEIT	13.737		
MFERATURE 200.00 DEGREES FAH		VIRIAL EQUA	TION VALUES	REDLICH-KWONG
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA	INITIAL VALUE	VIRIAL EQUA ADJUSTED	TION VALUES UNADJUSTED	VALUES
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE)		VIRIAL EQUA	TION VALUES	
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE	INITIAL VOLUE 127.582 432.683	VIRIAL EQUA ADJUSTED 127.126 419.672	TION VALUES UNADJUSTED 126.818 432.787	VALUES 126.812
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE	INITIAL VALUE 127.582	VIRIAL EQUA ADJUSTED 127.126	TION VALUES UNADJUSTED 126.818	VALUES
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y K V VALUE	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045	VALUES 126.812 0.009 0.199 0.045
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K K VALUE GCTIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399	VALUES 126.812 0.009 0.199 0.045 1.399
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y K K K K K K K K K K K K	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045	VALUES 126.812 0.009 0.199 0.045
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y < VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE YCLOHEXANE	INITIAL VALUE 127.582 432.683 0.010 0.201 0.050 1.390 0.028 0.855	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y K K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE YCLOHEXANE Y	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390 0.028	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028	TION VALUES <u>UNADJUSTED</u> 126.818 432.787 0.009 0.199 0.045 1.399 0.028	VALUES 126.812 0.009 0.199 0.045 1.399 0.028
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) ENZENE Y K K VALUE GCTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE YCLOHEXANE Y K K VALUE K K VALUE	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390 0.028 0.855 0. 0.	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0.	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0.
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) Y K K VALUE GCTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE YCLOHEXANE K K VALUE GCTIVITY COEFFICIENT, LIQUID PHASE K K VALUE GCTIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390 0.028 0.855 0. 0. 0. 1.122	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0.	TION VALUES <u>UNADJUSTED</u> 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0.036 1.126	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 0. 0.035 1.126
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) V C VALUE GCTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE VCLOHEXANE V C VALUE GCTIVITY COEFFICIENT, VAPOR PHASE VCLOHEXANE VCLOHEXANE C VALUE GCTIVITY COEFFICIENT, LIQUID PHASE GCGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390 0.028 0.855 0. 0.	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0.	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0.
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) V C VALUE GCTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE V C VALUE GCTIVITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE EXAME	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390 0.028 0.855 0. 0. 1.122 0.027 0.849	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 1.125 0.027 1.053	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0. 0. 0.036 1.126 0.027 0.854	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 1.126 0.027 0.879
THE TOTAL TO THE TOTAL THE TOTAL	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390 0.028 0.855 0. 0. 1.122 0.027 0.849 0.030	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0. 0.029 1.125 0.027 1.053	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0. 0. 0.036 1.126 0.027 0.854	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 0. 0. 0.035 1.126 0.027 0.879
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V (VALUE CUTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE VCLOHEXANE V (VALUE CUTIVITY COEFFICIENT, VAPOR PHASE PURCHASE FUGACITY, PURE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE ENGACITY COEFFICIENT, LIQUID PHASE ENAME V (VALUE	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390 0.028 0.855 6. 0. 0. 1.122 0.027 0.849 0.030 0.717 0.042	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TION VALUES <u>UNADJUSTED</u> 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0.036 1.126 0.027 0.854 0.030 0.710 0.042	VALUES 126.812 0.009 0.199 0.045 1.399 0.869 0. 0. 0. 0. 0.035 1.126 0.027 0.879 0.030 0.710 0.042
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V (VALUE COUNTY, PURE FUGACITY, PURE VCLOHEXANE V (VALUE COUNTY, PURE FUGACITY, COEFFICIENT, VAPOR PHASE FUGACITY, PURE FUGACITY, COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY, COEFFICIENT, VAPOR PHASE EXAME V (VALUE COUNTY COEFFICIENT, VAPOR PHASE EXAME V (VALUE COUNTY COEFFICIENT, LIQUID PHASE EXAME V (VALUE COUNTY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 127.582 432.683 G.010 G.201 0.050 1.390 0.028 0.855 G. 0. 0. 1.122 0.027 0.849 G.030 0.717 0.042 0.997	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0.036 1.126 0.027 0.854 0.030 0.710 0.042 0.995	VALUES 126.812 0.009 0.199 0.045 1.399 0.869 0. 0. 0. 0. 0.035 1.126 0.027 0.879 0.030 0.710 0.042 0.995
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V (VALUE GCTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE CCTIVITY COEFFICIENT, VAPOR PHASE V (VALUE GCTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, COEFFICIENT, LIQUID PHASE EXAME V (VALUE GCTIVITY COEFFICIENT, LIQUID PHASE EXAME V (VALUE GCTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390 0.028 0.855 0. 0. 1.122 0.027 0.849 0.030 0.717 0.042 0.997 0.038	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0.036 1.126 0.027 0.854 0.030 0.710 0.042 0.995 0.038	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 0. 0.035 1.126 0.027 0.879 0.030 0.710 0.042 0.995 0.038
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K K K K K K K K K K K K	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390 0.028 0.855 0. 0. 1.122 0.027 0.849 0.030 0.717 0.042 0.957 0.042 0.957 0.038 0.903	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0. 0.029 1.125 0.027 1.053 0.024 0.713 0.034 0.996 0.038 1.129	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0. 0.030 0.710 0.042 0.995 0.038 0.909	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 0. 0.035 1.126 0.027 0.879 0.030 0.710 0.045
MFERATURE 200.00 DEGREES FAH SSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) FOULD COMPOSE OF THE COMPOSE	INITIAL VALUE 127.582 432.683 0.010 6.201 0.050 1.390 0.028 0.855 0. 0. 1.122 0.027 0.849 6.030 0.717 0.042 0.997 0.038 0.903	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0. 0.029 1.125 0.027 1.053 0.024 0.713 0.034 0.996 0.038 1.129	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0. 0.036 1.126 0.027 0.854 0.030 0.710 0.042 0.995 0.038 0.909	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 0. 0.035 1.126 0.027 0.879 0.030 0.710 0.045 0.995 0.095
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y K K K K K K K K K K K K	INITIAL VALUE 127.582 432.683 0.010 0.201 0.050 1.390 0.028 0.855 0. 0. 1.122 0.027 0.849 0.030 0.717 0.042 0.997 0.038 0.903	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0.029 1.125 0.027 1.053 0.024 0.713 0.034 0.996 0.038 1.129	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0. 0. 0.030 1.126 0.027 0.854 0.030 0.710 0.042 0.995 0.038 0.909	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 0. 0.035 1.126 0.027 0.879 0.030 0.710 0.042 0.995 0.038 0.912
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID CCC PER GM MOLED DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y K K K K K K K K K K K K	INITIAL VALUE 127.582 432.683 G.010 G.201 0.050 1.390 0.028 0.855 G. 0. 0. 1.122 0.027 0.849 G.030 G.717 0.042 0.997 0.038 0.903 0.960 0.082 11.636 1.612	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0. 0.029 1.125 0.027 1.053 0.024 0.713 0.034 0.996 0.038 1.129	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0. 0.036 1.126 0.027 0.854 0.030 0.710 0.042 0.995 0.038 0.909	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 0. 0.035 1.126 0.027 0.879 0.030 0.710 0.045 0.995 0.095
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID CCC PER GM MOLED DLUME OF VAPOR CCC PER GM MOLED ENZENE Y K K K K K K K K K K K K	INITIAL VALUE 127.582 432.683 G.010 G.201 G.050 1.390 G.028 G.855 G.	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0.029 1.125 0.027 1.053 0.024 0.713 0.034 0.996 0.038 1.129 0.996 0.038 1.129	TION VALUES <u>UNADJUSTED</u> 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0.036 1.126 0.027 0.854 0.030 0.710 0.042 0.995 0.038 0.909 0.901 10.612 1.610 6.869	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 0. 0.035 1.126 0.027 0.879 0.030 0.710 0.042 0.995 0.038 0.912 0.962 0.091 10.608 1.610 6.869
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE)	INITIAL VALUE 127.582 432.683 G.010 G.201 0.050 1.390 0.028 0.855 G. 0. 0. 1.122 0.027 0.849 G.030 G.717 0.042 0.997 0.038 0.903 0.960 0.082 11.636 1.612	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0.029 1.125 0.027 1.053 0.024 0.713 0.034 0.996 0.038 1.129 0.969 0.087 11.102 1.611	TION VALUES UNADJUSTED 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0.036 1.126 0.027 0.854 0.030 0.710 0.042 0.995 0.038 0.909 0.961 0.091 10.612 1.610	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 0. 0.035 1.126 0.027 0.879 0.030 0.710 0.042 0.995 0.038 0.912 0.962 0.991 10.608 1.610
MFERATURE 200.00 DEGREES FAH ESSURE 1057. PSIA DLUME OF LIQUID CCC PER GM MOLED DLUME OF VAPOR CCC PER GM MOLED ENZENE Y K K K VALUE GCTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 127.582 432.683 G.010 G.201 G.050 1.390 G.028 G.855 G.	VIRIAL EQUA ADJUSTED 127.126 419.672 0.007 0.200 0.037 1.395 0.028 1.058 0. 0. 0. 0.029 1.125 0.027 1.053 0.024 0.713 0.034 0.996 0.038 1.129 0.996 0.038 1.129	TION VALUES <u>UNADJUSTED</u> 126.818 432.787 0.009 0.199 0.045 1.399 0.028 0.861 0. 0. 0.036 1.126 0.027 0.854 0.030 0.710 0.042 0.995 0.038 0.909 0.901 10.612 1.610 6.869	VALUES 126.812 0.009 0.199 0.045 1.399 0.028 0.869 0. 0. 0. 0.035 1.126 0.027 0.879 0.030 0.710 0.042 0.995 0.038 0.912 0.962 0.091 10.608 1.610 6.869

SSURE	570. PSIA		UZDIOL EGUO	TON HOLLIES	DEDLICH VHONG
		INITIAL VALUE	VIRIAL EQUAT ADJUSTED	UNADJUSTED UNADJUSTED	REDLICH-KWONG VALUES
	IQUID (CC PER GM MOLE)	165.752	106.416	106.381	106.381
LUME OF VI NZENE	APOR (CC FER GM MOLE)	788.400	777.189	788.391	
12ENE		0.042	0.034	0.039	0.038
		0.756	0.764	0.763	0.763
VALUE		0.056	0.044	0.051	0.050
	OEFFICIENT,LIQUID PHASE	1.047	1.043	1.043	1.043 0.043
GACITY,P	UKE OEFFICIENT,VAPOR PHASE	0.043 0.890	0.044	0.043 0.888	0.043 0.902
LOHEXANE	on the state of th	0.070		0.000	
		Û.	Ü.	0.	0.
1051 105		<u> </u>	<u>0.</u>	0.048	0. 0.047
VALUE :TIVITY C:	OEFFICIENT,LIQUID PHASE	0. 1.000	0.041 1.002	1.002	1.002
GACITY, P		0.042	0.042	0.042	0.042
	OEFFICIENT, VAPOR PHASE	0.882	1.028	0.880	0.905
KANE		0.014	0.015	0.018	0.018
		0.209	<u>0.013</u>	0.211	0.010 0.211
VALUE		0.067	0.072	0.085	0.083
CTIVITY C	OEFFICIENT, LIQUID PHASE	1.270	1.285	1.285	1.285
JGACITY, P	URE OEFFICIENT,VAPOR PHASE	0.060 0.909	0.060 1.066	0.060 0.908	0.060 0.923
JUHULIY U DROGEN	OEFFICIENTS VHFUK FNHDE	U. YUY	1.000	U.7UO	0.723
i e i recissione E E	a de la composição de l	0.944	0.951	0.943	0.944
		0.035	0.025	0.025	0.025
VALUE	OFFICIENT LIQUID BUOGE	27.121	38.093 7 170	37.086 3.138	37.107 3.138
JGACITY, P	OEFFICIENT,LIQUID PHASE URF	3.115 12.110	3,139 12.110	12.110	12.110
	OEFFICIENT, VAPOR PHASE	1.025	0.998	1.025	1.024
	VIRIAL COEFFICIENTS				
	-BENZENE) -CYCLOHÉXANE)		2.481 O.	13.000 12.000	
CHYEROGEN			75.954	27.000	
NUMBER	24				
NUMBER PERATURE	24 200.00 DEGREES FAH	FENHEIT			
		RENHEIT	VIRIAL EQUA		REDLICH-KWONG
PERATURE SSURE	200.00 DEGREES FAHI 1067. PSIA	INITIAL VALUE	ADJUSTED	UMADJUSTED	VALUEŠ
PERATURE SSURE LUME OF L	200.00 DEGREES FAH 1067. PSIA IQUID (CC PER GM MOLE)	INITIAL VALUE	ADJUSTED 104.997	UNADJUSTED 104.863	
PERATURE SSURE LUME OF L LUME OF V	200.00 DEGREES FAHI 1067. PSIA	INITIAL VALUE	ADJUSTED	UMADJUSTED	VALUEŠ
PERATURE SSURE LUME OF L LUME OF V NZENE	200.00 DEGREES FAH 1067. PSIA IQUID (CC PER GM MOLE)	INITIAL VALUE 103.666 428.970 0.022	ABJUSTED 104.997 415.238 0.019	UMADJUSTED 104.863 428.843 0.023	VALUEŠ 104.860 0.023
PERATURE SSURE LUME OF L LUME OF V	200.00 DEGREES FAH 1067. PSIA IQUID (CC PER GM MOLE)	INITIAL VALUE 103.666 428.970 0.022 0.732	ADJUSTED 104.997 415.238 0.019 0.747	UNADJUSTED 104.863 428.843 0.023 0.746	VALUEŠ 104.860 0.023 0.746
PERATURE SSURE LUME OF L LUME OF V YZENE VALUE	200.00 DEGREES FAHI 1967. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE)	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031	ADJUSTED 104.997 415.238 0.019 0.747 0.026	UNADJUSTED 104.863 428.843 0.023 0.746 0.031	VALUEŠ 104.860 0.023 0.746 0.031
PERATURE SSURE LUME OF L UME OF V VZENE VALUE STIVITY C UGACITY,P	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026	ADJUSTED 104.997 415.238 0.019 0.747	UNADJUSTED 104.863 428.843 0.023 0.031 1.052 0.026	VALUES 104.860 0.023 0.746 0.031 1.052 0.026
PERATURE SSURE LUME OF L LUME OF V VZENE VALUE STIVITY C UGACITY,P	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052	VALUES 104.860 0.023 0.746 0.031 1.052
PERATURE SSURE LUME OF L LUME OF V VZENE VALUE STIVITY C UGACITY,P	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026	UNADJUSTED 104.863 428.843 0.023 0.031 1.052 0.026	VALUES 104.860 0.023 0.746 0.031 1.052 0.026
PERATURE SSURE LUME OF L LUME OF V YZENE VALUE STIVITY C UGACITY P GLOHEXANE	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0.	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891
PERATURE SSURE UME OF L UME OF V YZENE VALUE STIVITY C UGACITY, P UGACITY C CLOHEXANE	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0.000	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0.	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0.	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0.
PERATURE SSURE UME OF L UME OF V YZENE VALUE STIVITY C UGACITY, P UGACITY C CLOHEXANE VALUE CTIVITY C	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0.995	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 0.026 0.024 0.998	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0.	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891
PERATURE SSURE UME OF L UME OF V VALUE STIVITY C UGACITY, P UGACITY C CLOHEXANE VALUE CTIVITY C UGACITY, P	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0.000	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0.	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0.	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0.
PERATURE SSURE LUME OF L LUME OF V VALUE STIVITY C UGACITY C CLOHEXANE VALUE CTIVITY C UGACITY C UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, LIQUID PHASE URE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0. 0.995 0.025 0.890	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 0.024 0.998 0.025 1.055	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0.029 0.998 0.025 0.879	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0. 0.028 0.998 0.025 0.904
PERATURE SSURE LUME OF L LUME OF V VALUE STIVITY C UGACITY C CLOHEXANE VALUE CTIVITY C UGACITY C UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, LIQUID PHASE URE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0. 0.995 0.025 0.890	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0. 0.024 0.998 0.025 1.055	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0.029 0.998 0.025 0.879	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0. 0.028 0.998 0.025 0.904
PERATURE SSURE LUME OF L LUME OF V YZENE VALUE CTIVITY C UGACITY C CLOHEXANE VALUE CTIVITY C UGACITY C UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, LIQUID PHASE URE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0. 0.995 0.995 0.890 0.007 0.203	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0. 0.598 0.025 1.055	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0.029 0.998 0.025 0.879 0.010 0.206	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0. 0.028 0.998 0.025 0.904
PERATURE SSURE LUME OF L LUME OF V YZENE VALUE STIVITY C UGACITY C CLOHEXANE VALUE CTIVITY C UGACITY C WALUE CTIVITY C UGACITY C XANE	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, LIQUID PHASE URE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0. 0.995 0.025 0.890	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0. 0.024 0.998 0.025 1.055	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0.029 0.998 0.025 0.879	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0. 0. 0.028 0.998 0.025 0.904 0.010 0.206
PERATURE SSURE UME OF L UME OF V YZENE VALUE STIVITY C UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0. 0.995 0.025 0.890 0.007 0.203 0.037 1.222 0.036	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0. 0.998 0.025 1.055 0.008 0.008 0.207 0.040 1.252 0.036	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0.029 0.998 0.025 0.879 0.010 0.206 0.048 1.249 0.036	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0.028 0.998 0.025 0.904 0.010 0.206 0.048 1.249 0.036
PERATURE SSURE UME OF L UME OF V YZENE VALUE STIVITY C UGACITY C UGACITY C UGACITY C VALUE CTIVITY C UGACITY C VALUE CTIVITY C UGACITY C UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID CCC PER GM MOLE) APOR CCC PER GM MOLE) OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE OEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0.995 0.025 0.890 0.007 0.203 0.037 1.222	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0. 0. 0.598 0.025 1.055 0.008 0.207 0.040 1.252	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0. 0.029 0.998 0.025 0.879 0.010 0.206 0.048 1.249	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0. 0.028 0.998 0.025 0.904 0.010 0.206 0.048 1.249
PERATURE SSURE LUME OF L LUME OF V NZENE VALUE CTIVITY C UGACITY C CLOHEXANE VALUE CTIVITY C UGACITY C XANE VALUE CTIVITY C UGACITY C XANE VALUE CTIVITY C UGACITY C UGACITY C UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0. 0. 0.995 0.025 0.890 0.007 0.203 0.037 1.222 0.036 0.948 0.970	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0.024 0.998 0.025 1.055 0.008 0.207 0.040 1.252 0.036 1.132	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0.029 0.998 0.025 0.879 0.010 0.206 0.048 1.249 0.036 0.935	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0.028 0.998 0.025 0.904 0.010 0.206 0.048 1.249 0.036 0.938 0.938
PERATURE SSURE LUME OF L LUME OF V NZENE VALUE CTIVITY C UGACITY C CLOHEXANE VALUE CTIVITY C UGACITY C VALUE CTIVITY C UGACITY C VALUE CTIVITY C UGACITY C CACHE CTIVITY C UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.961 0. 0. 0. 0. 0. 0. 0. 0.995 0.025 0.890 0.007 0.203 0.037 1.222 0.036 0.948 0.970 0.066	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0.024 0.998 0.025 1.055 0.008 0.207 0.040 1.252 0.036 1.132 0.972 0.046	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0.029 0.998 0.025 0.879 0.010 0.206 0.048 1.249 0.036 0.935 0.967 0.048	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0.028 0.998 0.025 0.904 0.010 0.206 0.048 1.249 0.036 0.938 0.967 0.048
PERATURE SSURE LUME OF L LUME OF V NZENE VALUE CTIVITY C UGACITY, P UGACITY, P UGACITY C UGACITY C VALUE CTIVITY C UGACITY C VALUE CTIVITY C UGACITY C VALUE CTIVITY C UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID (CC PER GM MOLE) APOR (CC PER GM MOLE) DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, VAPOR PHASE DEFFICIENT, VAPOR PHASE DEFFICIENT, VAPOR PHASE URE DEFFICIENT, LIQUID PHASE URE DEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0.995 0.025 0.890 0.007 0.203 0.037 1.222 0.036 0.948 0.970 0.066 14.764	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0.024 0.998 0.025 1.055 0.008 0.207 0.040 1.252 0.036 1.132 0.972 0.046 21.073	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0.029 0.998 0.025 0.879 0.010 0.206 0.048 1.249 0.036 0.935 0.967 0.048 20.169	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0.028 0.998 0.025 0.904 0.010 0.206 0.048 1.249 0.036 0.938 0.938 0.967 0.048 20.157
PERATURE SOURE LUME OF L LUME OF V YZENE VALUE TIVITY C UGACITY C CLOHEXANE VALUE CTIVITY C UGACITY C C	200.00 DEGREES FAHI 1067. PSIA IQUID CCC PER GM MOLE) APOR CCC PER GM MOLE) OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, LIQUID PHASE URE OEFFICIENT, LIQUID PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.961 0. 0. 0. 0. 0. 0. 0. 0.995 0.025 0.890 0.007 0.203 0.037 1.222 0.036 0.948 0.970 0.066	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0.024 0.998 0.025 1.055 0.008 0.207 0.040 1.252 0.036 1.132 0.972 0.046	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0.029 0.998 0.025 0.879 0.010 0.206 0.048 1.249 0.036 0.935 0.967 0.048	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0.028 0.998 0.025 0.904 0.010 0.206 0.048 1.249 0.036 0.938 0.967 0.048
PERATURE SSURE LUME OF L LUME OF V NZENE VALUE CTIVITY C UGACITY, P UGACITY C VALUE CTIVITY C UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID CCC PER GM MOLE) APOR CCC PER GM MOLE) OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, LIQUID PHASE URE OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0.995 0.025 0.890 0.007 0.203 0.037 1.222 0.036 0.948 0.970 0.066 14.764 3.039	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0. 2. 0.024 0.998 0.025 1.055 0.008 0.207 0.040 1.252 0.036 1.132 0.972 0.046 21.073 3.087	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0.029 0.998 0.025 0.879 0.010 0.206 0.048 1.249 0.036 0.935 0.935 0.967 0.048 20.169 3.083	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0.028 0.998 0.025 0.904 0.010 0.206 0.048 1.249 0.036 0.938 0.967 0.048 20.157 3.083
PERATURE SSURE LUME OF L LUME OF V NZENE VALUE CTIVITY C UGACITY, P UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID CCC PER GM MOLE) APOR CCC PER GM MOLE) OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, LIQUID PHASE URE OEFFICIENT, LIQUID PHASE URE OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0.995 0.025 0.890 0.007 0.203 0.037 1.222 0.036 0.948 0.970 0.066 14.764 3.039 6.811	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0.024 0.998 0.025 1.055 0.008 0.207 0.040 1.252 0.036 1.132 0.972 0.046 21.073 3.087 6.811 0.998	UNADJUSTED 104.863 428.843 0.023 0.023 1.052 0.026 0.889 0. 0. 0.029 0.998 0.025 0.879 0.010 0.206 0.048 1.249 0.036 0.935 0.967 0.048 20.169 3.083 6.811 1.041	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0.028 0.998 0.025 0.904 0.010 0.206 0.048 1.249 0.036 0.938 0.938 0.967 0.048 20.157 3.083 6.811
PERATURE SOURE UME OF L UME OF V VALUE TIVITY C UGACITY C	200.00 DEGREES FAHI 1067. PSIA IQUID CCC PER GM MOLE) APOR CCC PER GM MOLE) OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, VAPOR PHASE URE OEFFICIENT, LIQUID PHASE URE OEFFICIENT, LIQUID PHASE URE OEFFICIENT, VAPOR PHASE	INITIAL VALUE 103.666 428.970 0.022 0.732 0.031 1.060 0.026 0.901 0. 0. 0. 0. 0.995 0.025 0.890 0.007 0.203 0.037 1.222 0.036 0.948 0.970 0.066 14.764 3.039 6.811	ADJUSTED 104.997 415.238 0.019 0.747 0.026 1.051 0.026 1.060 0. 0. 0. 0. 2. 0.024 0.998 0.025 1.055 0.008 0.207 0.040 1.252 0.036 1.132 0.972 0.046 21.073 3.087 6.811	UNADJUSTED 104.863 428.843 0.023 0.746 0.031 1.052 0.026 0.889 0. 0. 0. 0. 0.998 0.025 0.879 0.010 0.206 0.048 1.249 0.036 0.935 0.935 0.967 0.048 20.169 3.083 6.811	VALUES 104.860 0.023 0.746 0.031 1.052 0.026 0.891 0. 0. 0.028 0.998 0.025 0.904 0.010 0.206 0.048 1.249 0.036 0.938 0.938 0.967 0.048 20.157 3.083 6.811

		VIRIAL EQUATI	ON VALUES	REDLICH-KWONG
	INITIAL VALUE	ADJUSTED	UNADJUSTED	VALÚES
VOLUME OF LIQUID (CC PER GM MOLE)	135.534	134.964	134.871	134.869
VOLUME OF VAPOR (CC PER GM MOLE)	791.387	780.774	790.918	
BENZENE				
Υ	0.	0	0.	0.
X	0.	0.	0.	0.
K VALUE	0.	0.062	0.074	0.072
ACTIVITY COEFFICIENT, LIQUID PHASE	1.406	1.412	1.413	1.413
FUGACITY, PURE	0.045	0:045	0.045	0.045
FUGACITY COEFFICIENT, VAPOR PHASE	0.875	1.029	0.865	0.884
CYCLOHEXANE				
Y	0.012	0.009	0.011	0.011
X	0.191	0.190	0.189	0.189
K VALUE	0.061	0.049	0.058	0.057
ACTIVITY COEFFICIENT, LIQUID PHASE	1.134	1.137	1.137	1.137
FUGACITY, PURE	0.044	0.044	0.044	0.044
FUGACITY COEFFICIENT, VAPOR PHASE	0.873	1.026	0.862	0.884
IEXANE				
Y	0.047	0.044	0.053	0.052
X	0.763	0.759	0.758	0.758
K VALUE	0.062	0.058	0.070	0.069
ACTIVITY COEFFICIENT, LIQUID PHASE	1.000	0.999	0.999	0.999
FUGACITY, PURE	0.062	0.062	0.062	0.062
FUGACITY COEFFICIENT, VAPOR PHASE	0.901	1.064	0.890	0.901
HYDROGEN				
Y	0.941	0.946	0.936	0.937
X	0.046	0.052	0.053	0.053
K VALUE	20.492	18.329	17.806	17.815
ACTIVITY COEFFICIENT, LIQUID PHASE	1.504	1.504	1.504	1.504
FUGACITY, PURE	12.151	12.151	12.151	12.151
FUGACITY COEFFICIENT, VAPOR PHASE	1.025	0.997	1.026	1.026
INTERACTION VIRIAL COEFFICIENTS				
B(HYDROGEN-BENZENE)		0.	13.000	
BCHYCROGEN-CYCLOHEXANES		14.932	12.000	
BCHYDROGEN-HEXANED		39.123	27.000	

RUN NUMBER 33				
TEMPERATURE 200.00 DEGREES FAHRE	ENHEIT			
PRESSURE 1089. PSIA				
		VIRIAL EQUAT:	ION VALUES	REDLICH-KWONG
	INITIAL VALUE	ADJUSTED	UNADJUSTED	VALUES
VOLUME OF LIQUID (CC PER GM MOLE)	131.892	130.506	130.129	130.122
VOLUME OF VAPOR (CC PER GM MOLE)	420.695	407.319	420.673	
BENZENE				
Υ	0.	0.	0.	0.
X	0.	0.	0.	0.
K VALUE	0.	0.038	0.046	0.046
ACTIVITY COEFFICIENT, LIQUID PHASE	1.448	1.465	1.469	1.470
FUGACITY, PURE .	0.027	0.027	0.027	0.027
FUGACITY COEFFICIENT, VAPOR PHASE	0.868	1.060	0.865	0.871
CYCLOHEXANE				
Y	0.007	0.005	0.006	0.006
X	0.183	0.181	0.180	0.180
K VALUE	0.038	0.029	0.036	0.035
ACTIVITY COEFFICIENT, LIQUID PHASE	1.154	1.163	1.165	1.165
FUGACITY, PURE	0.027	0.027	0.027	0.027
FUGACITY COEFFICIENT, VAPOR PHASE	. 0.864	1.055	0.861	0.882
HEXANE				
γ	0.028	0.024	0.029	0.029
X	0.734	0.723	0.720	0.720
K VALUE	0.038	0.033	0.041	0.041
ACTIVITY COEFFICIENT, LIQUID PHASE	0.996	0.994	0.994	0.994
FUGACITY, PURE	0.038	0.038	0.038	0.038
FUGACITY COEFFICIENT, VAPOR PHASE	0.922	1.134	0.919	0.916
HYDROGEN				
	0.965	0.971	0.964	0.964
X	0.082	0.097	0.100	0.100
K VALUE	71.697	10.059	9.611	9.604
ACTIVITY COEFFICIENT, LIQUID PHASE	1.501	1.499	1.498	1.498
FUGACITY, PURE	6.689	6.689	6.689	6.689
FUGACITY COEFFICIENT, VAPOR PHASE	1.043	0.997	1.043	1.043
INTERACTION VIRIAL COEFFICIENTS				
BICHYDROGEN-BENZENED		0.	13.000	
B (HYDROGEN-CYCLOHEXANE)		14.932	12.000	
B (HYDROGEN-HEXANE)		39.123	27.000	

ESSURE 1067. PSIA		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	property control	pept vari mission
	INITIAL VALUE	VIRIAL EQUA ADJUSTED	TION VALUES UNADJUSTED	REDLICH-KWON(VALUES
OLUME OF LIQUID (CC PER GM MOLE)	115.921	116.564	116.368	116.361
OLUME OF VAPOR (CC PER GM MOLE)	428.896	415.079	428.885	
ENZENE V	0.	0.	0.	0.
, X	0,	0.	<u> </u>	0.
<pre>< VALUE</pre>	.0.	0.029	0.035	0.035
ACTIVITY COEFFICIENT,LIQUID PHASE FUGACITY,PURE	1.168	1:162	1.164	1.164 0.027
UGACITY COEFFICIENT, VAPOR PHASE	0.027 0.894	0.027 1.061	0.027 0.895	0.894
/CLOHEXANE				
<i>;</i> {	0.022	0.019	0.023	0.022
VALUE	0.762 0.029	0.768 0.025	0.766 0.030	0.766 0.029
CTIVITY COEFFICIENT, LIQUID PHASE	1.019	1.018	1.018	1.018
UGACITY, PURE	0.026	0.026	0.026	0.026
UGACITY COEFFICIENT, VAPOR PHASE	0.890	1.056	0.890	0.908
,	0.008	0.006	0.007	0.007
	0.166	0.168	0.167	0.167
VALUE CTIVITY COEFFICIENT, LIQUID PHASE	0.046 1.071	0.035 1.077	0.042 1.075	0.042 1.075
UGACITY, PURE	0.037	0.037	0.037	0.037
UGACITY COEFFICIENT, VAPOR PHASE	0.948	1.133	0.949	0.942
DROGEN	0.970	0.975	0.970	
	0.970	0.975 0.064	0.970 0.067	0.971
VALUE	13.435	75.156	14.519	14.506
CTIVITY COEFFICIENT, LIQUID PHASE	2.213	2.221	2.219	2.219
UGACITY,PURE UGACITY COEFFICIENT,VAPOR PHASE	6.811 1.041	6.811 0.998	6.811 1.041	6.811 1.042
TERACTION VIRIAL COEFFICIENTS				7.042
CHYDROGEN-BENZENE)		0.	13.000	
(CHYEROGEN-CYCLOHEXANE) (CHYDROGEN-HEXANE)		14.932	12.000	
ANTEROGEN NEXABLE?		39.123	27.000	
NUMBER 37	FIFMLIFYT	39.123	27.000	
H NUMBER 37 IPERATURE 200.00 DEGREES FAH	RENHEIT	39.123	27.000	
H NUMBER 37 IPERATURE 200.00 DEGREES FAH	RENHEIT	VIRIAL EQUA		REDLICH-KWON
NUMBER 37 IPERATURE 200.00 DEGREES FAH ISSURE 574. PSIA	INITIAL VALUE	VIRIAL EQUA ADJUSTED	TION VALUES UNADJUSTED	VALUES
NUMBER 37 PERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE)	INITIAL VALUE	VIRIAL EQUA	ITION VALUES	
NUMBER 37 PERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE	INITIAL VALUE 118.443 783.889	VIRIAL EQUA ADJUSTED 118.917 771.488	TION VALUES UNADJUSTED 118.863 783.330	VALUES 118.865
NUMBER 37 PERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE	INITIAL VALUE 118.443 783.889 0.	VIRIAL EQUA ADJUSTED 118.917 771.488 0.	TION VALUES UNADJUSTED 118.863 783.330	VALUES 118.865 0.
NUMBER 37 FERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE	INITIAL VALUE 118.443 783.889 0. 0.	VIRIAL EQUA ADJUSTED 118.917 771.488	TION VALUES UNADJUSTED 118.863 783.330	VALUES 118.865
NUMBER 37 IPERATURE 200.00 DEGREES FAH SSURE 574. PSIA ILUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE ICTIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0. 0.049 1.142	TION VALUES UNADJUSTED 118.863 783.330 0. 0.	VALUES 118.865 0. 0. 0.055 1.142
I NUMBER 37 IPERATURE 200.00 DEGREES FAH SSURE 574. PSIA ILUME OF LIQUID (CC PER GM MOLE) ILUME OF VAPOR (CC PER GM MOLE) NZENE IVALUE ICTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146 0.044	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0. 0.049 1.142 0.044	TION VALUES UNADJUSTED 118.863 783.330 0. 0. 1.142	VALUES 118.865 0. 0. 0.055 1.142 0.044
NUMBER 37 FERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0. 0.049 1.142	TION VALUES UNADJUSTED 118.863 783.330 0. 0.	VALUES 118.865 0. 0. 0.055 1.142
NUMBER 37 PERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE	INITIAL VALUE 118.443 783.889 0. 0. 1.146 0.044 0.907	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031	TION VALUES UNADJUSTED 118.863 783.330 0. 0. 1.142	VALUES 118.865 0. 0. 0.055 1.142 0.905 0.905
NUMBER 37 PERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE	INITIAL VALUE 118.443 763.889 0. 0. 1.146 0.644 6.907	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792	0.056 0.038 0.038 0.056	VALUES 118.865 0. 0. 0.055 1.142 0.905 0.038
NUMBER 37 PERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146 0.044 0.907 0.033 0.787 0.042	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792 0.042	0.056 0.038 0.038 0.056 0.056	VALUES 118.865 0. 0. 0.055 1.142 0.905 0.905
NUMBER 37 PERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE VALUE CTIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 118.443 763.889 0. 0. 1.146 0.644 6.907	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792	0.056 0.038 0.038 0.056	VALUES 118.865 0. 0. 0.055 1.142 0.905 0.905
NUMBER 37 IPERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE VALUE CTIVITY COEFFICIENT, VAPOR PHASE CHOREXANE VALUE CTIVITY COEFFICIENT, VAPOR PHASE UGACITY, PURE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146 0.C44 0.907 0.033 0.787 0.042 1.013	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792 0.042 1.012	TION VALUES UNADJUSTED 118.863 783.330 0. 0. 0.056 1.142 0.044 0.895 0.038 0.792 0.049 1.013	VALUES 118.865 0. 0. 0.055 1.142 0.048 0.792 0.048 1.013
NUMBER 37 IPERATURE 200.00 DEGREES FAH ISSURE 574. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) NZENE VALUE ICTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE VALUE ICTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY, COEFFICIENT, VAPOR PHASE UGACITY, PURE UGACITY COEFFICIENT, LIQUID PHASE UGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146 0.044 0.907 0.033 0.787 0.042 1.013 0.043 0.904	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792 0.042 1.012 0.043 1.028	0.056 0.056 0.056 0.056 0.056 0.044 0.0895 0.038 0.792 0.049 1.013 0.043 0.892	VALUES 118.865 0. 0. 0.055 1.142 0.044 0.905 0.038 0.792 0.048 1.013 0.043 0.909
NUMBER 37 PERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY, COEFFICIENT, VAPOR PHASE CTIVITY COEFFICIENT, LIQUID PHASE CTIVITY COEFFICIENT, VAPOR PHASE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE XANE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146 0.044 0.907 0.033 0.787 0.042 1.013 0.043 0.043 0.904	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792 0.042 1.012 0.043	0.056 0.056 0.056 0.056 0.056 0.044 0.044 0.038 0.792 0.049 1.013 0.043	VALUES 118.865 0. 0. 0.055 1.142 0.905 0.038 0.792 0.048 1.013 0.043 0.909
NUMBER 37 IPERATURE 200.00 DEGREES FAH ISSURE 574. PSIA ILUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE XANE VALUE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146 0.044 0.907 0.033 0.787 0.042 1.013 0.043 0.043 0.904 0.012 0.172 0.068	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792 0.042 1.012 0.043 1.028 0.011 0.173 0.062	O. 0.056 0.056 0.044 0.038 0.038 0.038 0.792 0.049 1.013 0.043 0.892 0.012 0.072	VALUES 118.865 0. 0. 0. 0.055 1.142 0.905 0.038 0.792 0.048 1.013 0.043 0.909 0.012 0.173 0.072
NUMBER 37 IPERATURE 200.00 DEGREES FAH ISSURE 574. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE VALUE ICTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE INTERIOR COEFFICIENT, VAPOR PHASE IXANE VALUE CTIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146 0.044 0.907 0.033 0.787 0.042 1.013 0.043 0.043 0.904 0.012 0.172 0.068 1.093	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792 0.042 1.012 0.043 1.028 0.011 0.173 0.062 1.098	O. 0.056 1.142 0.044 0.895 0.038 0.792 0.049 1.013 0.043 0.892 0.012 0.173 0.072 1.097	VALUES 118.865 0. 0. 0.055 1.142 0.905 0.038 0.792 0.048 1.013 0.043 0.909 0.012 0.173 0.072 1.097
H NUMBER 37 IFERATURE 200.00 DEGREES FAH ISSURE 574. PSIA DLUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) INZENE COLUMN COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE COLUMN COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE WALUE COLUMN COEFFICIENT, VAPOR PHASE WANE COLUMN COEFFICIENT, VAPOR PHASE WANE COLUMN COEFFICIENT, VAPOR PHASE WALUE COLUMN COEFFICIENT, VAPOR PHASE WALUE COLUMN COEFFICIENT, VAPOR PHASE WALUE COLUMN COEFFICIENT, VAPOR PHASE UGACITY, PURE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146 0.644 6.907 0.033 0.787 0.042 1.013 0.043 0.043 0.904 0.012 0.172 0.068 1.093 0.060	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792 0.042 1.012 0.043 1.028 0.011 0.173 0.062 1.098 0.060	0.056 0.056 0.056 0.056 0.044 0.895 0.038 0.792 0.049 1.013 0.043 0.892 0.012 0.072	VALUES 118.865 0. 0. 0. 0.055 1.142 0.044 0.905 0.038 0.792 0.048 1.013 0.043 0.909 0.012 0.173 0.072 1.097 0.060
NUMBER 37 IPERATURE 200.00 DEGREES FAH SSURE 574. PSIA LUME OF LIQUID (CC PER GM MOLE) LUME OF VAPOR (CC PER GM MOLE) NZENE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE CLOHEXANE VALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE XANE VALUE CTIVITY COEFFICIENT, VAPOR PHASE WALUE UGACITY, PURE UGACITY, PURE UGACITY, PURE UGACITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 118.443 783.889 0. 0. 0. 1.146 0.044 0.907 0.033 0.787 0.042 1.013 0.043 0.043 0.904 0.012 0.172 0.068 1.093	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792 0.042 1.012 0.043 1.028 0.011 0.173 0.062 1.098	O. 0.056 1.142 0.044 0.895 0.038 0.792 0.049 1.013 0.043 0.892 0.012 0.173 0.072 1.097	VALUES 118.865 0. 0. 0. 0.055 1.142 0.044 0.905 0.038 0.792 0.048 1.013 0.043 0.909 0.012 0.173 0.072 1.097 0.068
NUMBER 37 IPERATURE 200.00 DEGREES FAH ISSURE 574. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) NZENE CYALUE CTIVITY COEFFICIENT, LIQUID PHASE UGACITY, PURE UGACITY COEFFICIENT, VAPOR PHASE UGACITY, PURE UGACITY COEFFICIENT, LIQUID PHASE UGACITY COEFFICIENT, LIQUID PHASE UGACITY COEFFICIENT, VAPOR PHASE XANE CYALUE CYALUE CYALUE UGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 118.443 783.889 0. 0. 0. 0. 1.146 0.644 6.907 0.033 0.787 0.042 1.013 0.043 0.904 0.012 0.172 0.068 1.093 0.060 0.935	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792 0.042 1.012 0.043 1.028 0.011 0.173 0.062 1.098 0.060 1.067	0.056 0.056 0.056 0.044 0.895 0.038 0.792 0.049 1.013 0.043 0.892 0.012 0.072 1.073 0.072 0.072	VALUES 118.865 0. 0. 0. 0.055 1.142 0.044 0.905 0.038 0.792 0.048 1.013 0.043 0.909 0.012 0.173 0.072 1.097 0.066 0.926
H NUMBER 37 MPERATURE 200.00 DEGREES FAH	INITIAL VALUE 118.443 783.889 0. 0. 0. 0. 1.146 0.644 6.907 0.033 0.787 0.042 1.013 0.043 0.904 0.012 0.172 0.068 1.093 0.060 0.935	VIRIAL EQUA ADJUSTED 118.917 771.488 0. 0. 0.049 1.142 0.044 1.031 0.033 0.792 0.042 1.012 0.043 1.028 0.011 0.173 0.062 1.098 0.060 1.067	0.056 0.056 0.044 0.044 0.095 0.049 0.043 0.043 0.043 0.043 0.072 0.072 0.072 0.072	VALUES 118.865 0. 0. 0. 0.055 1.142 0.044 0.905 0.038 0.792 0.048 1.013 0.043 0.909 0.012 0.173 0.072 1.097 0.068

2.244 12.031

1.023

2.249

0.998

0. 14.932

39.123

2.249 12.031

1.024

13.000 12.000

27.000

2.249 12.031

1.024

ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE INTERACTION VIRIAL COEFFICIENTS

BCHYDROGEN-BENZENE) BCHYDROGEN-CYCLOHEXANE)

B (HYDROGEN-HEXANE)

	INITIAL VALUE	VIRIAL EQUA ADJUSTED	TION VALUES UNADJUSTED	REDLICH-KWONG VALUES
VOLUME OF LIQUID (CC PER GM MOLE)	108.397	108.983	108.943	108.942
VOLUME OF VAPOR (CC PER GM MOLE)	777.423	764.477	776.888	
BENZENE				
Y	0.012	0.013	0.014	0.014
X	0.289	0.291	0.291	0.291
K VALUE	0.041	0,044	0.050	0.049
ACTIVITY COEFFICIENT, LIQUID PHASE	1.051	1.048	1.048	1.048
FUGACITY, PURE	0.043	0.043	0.043	0.043
FUGACITY COEFFICIENT, VAPOR PHASE	0.921	1.032	0.908	0.915
CYCLOHEXANE				
Υ	0.028	0.028	0.032	0.031
. X	0.676	0.682	0.682	0.682
K VALUE	0.042	0.041	0.047	0.046
ACTIVITY COEFFICIENT, LIQUID PHASE	1.000	1.002	1.001	1.001
FUGACITY, PURE	0.042	0.042	0.042	0.042
FUGACITY COEFFICIENT, VAPOR PHASE	0,916	1.029	0.902	0.920
HEXAME				
Y	<u> </u>	0.	<u> </u>	0.
X	0.	0.	0.	0.
K VALUE	<u> </u>	0.070	0.081	0.080
ACTIVITY COEFFICIENT, LIQUID PHASE	1.257	1.269	1.269	1.269
FUGACITY, PURE	0.059	0.059	0.059	0.059
FUGACITY COEFFICIENT, VAPOR PHASE	6.947	1.069	0.933	0.938
HYDROGEN				
Y	0.960	0.959	0.954	0.955
8	0.035	0.027	0.027	0.027
K VALUE	27.507	36.050	35.161	35.163
ACTIVITY COEFFICIENT, LIQUID PHASE	2.999	3.017	3.016	3.016
FUGACITY, PURE	11.933	11.933	11.933	11.933
FUGACITY COEFFICIENT, VAPOR PHASE	1.023	0.999	1.024	1.024
INTERACTION VIRIAL COEFFICIENTS		F.5. 4 77	47 000	
BCHYDROGEN-BENZENED BCHYDROGEN-CYCLOHEXANED		<u> </u>	13.000	
BCHYDROGEN-HEXANE)		-6.674 0.	12.000 27.000	

RUN NUMBER 47 TEMPERATURE 200.00 DEGREES FAH	Proposition to the state of the			
PRESSURE 589. PSIA	MENHEI!			
1 196 2 2 2 1 2 4 7		VIRIAL EQUA	TION VALUES	REDLICH-KWONG
	INITIAL VALUE	ADJUSTED	UNADJUSTED	VALUES
VOLUME OF LIQUID (CC PER GM MOLE)	98.820	99.071	99.045	99.044
VOLUME OF VAPOR (CC PER GM MOLE)	764.570	751.544	764.140	
BENZENE				
γ	0.034	0.034	0.039	0.039
X	0.841	0.844	0.844	0.844
K VALUE	0.040	0.041	0.046	0.046
ACTIVITY COEFFICIENT, LIQUID PHASE	1.004	1.004	1.004	1.004
FUGACITY, PURE	0.042	0.042	0.042	0.042
FUGACITY COEFFICIENT, VAPOR PHASE	0.923	1.032	0.912	0.919
CYCLOHEXANÉ				
γ	0.006	0.006	0.006	0.006
X	0.136	0.136	0.136	0.136
K VALUE	. 0.046	0.041	0.047	0.046
ACTIVITY COEFFICIENT, LIQUID PHASE	1.044	1.047	1.046	1.046
FUGACITY, PURE	0.041	0.041	0.041	0.041
FUGACITY COEFFICIENT, VAPOR PHASE	0.915	1.030	0.903	0.925
HEXANE				
Y	0.	0 <u>.</u>	0	0.
X	0.	0.	0.	0.
K VALUE	0	0.085	0.098	0.097
ACTIVITY COEFFICIENT, LIQUID PHASE	1.571	1.583	1.582	1.582
FUGACITY, PURE	0.058	0.058	0.058	0.058
FUGACITY COEFFICIENT, VAPOR PHASE	0.946	1.070	0.933	0.944
HYDROGEN				
	0.960	0.960	0.955	0.955
X	0.024	0.019	0.020	0.020
K VALUE	40.678	49.336	48.104	48.110
ACTIVITY COEFFICIENT, LIQUID PHASE	4.177	4.196	4.194	4.194
FUGACITY, PURE	11.743	11.743	11.743	11.743
FUGACITY COEFFICIENT, VAPOR PHASE	1.023	0.999	1.024	1.024
INTERACTION VIRIAL COEFFICIENTS				
B(HYDROGEN-BENZENE)		59.177	13.000	
B(HYDROGEN-CYCLOHEXANE)		-6.674	12.000	
B(HYDROGEN-HEXANE)		0.	27.000	

		VIRIAL EQUAT		REDLICH-KWONG
OLUME OF LIQUID CCC PER GM MOLE)	<u>INITIAL VALUE</u> 106.228	<u>ADJUSTED</u> 107.437	UNADJUSTED 107.303	VALUES 107.298
DLUME OF LIWOID (CC PER GM MOLE)	100.228 425.492	411.415	425.413	101.290
ENZENE				
Y'	0.008	0.007	0.009	0.009
<	0.279	0.284	0.284	0.284
<pre>< VALUE activity coefficient, Liquid PHASE</pre>	<u>0.028</u> 1.065	0.026 1.057	<u>0.030</u> 1.058	0.031 1.058
FUGACITY, PURE	0.026	0.026	0.026	0.026
-UGACITY COEFFICIENT,VAPOR PHASE YCLOHEXANE	0.914	1.062	0.909	0.905
y'	0.018	0.016	0.019	0.018
(<u>0.655</u>	0.667	0.666	0.666
VALUE ACTIVITY COEFFICIENT, LIQUID PHASE	0.028 0.997	0.024 0.999	0.028 0.998	0.028 0.998
FUGACITY, PURE	0.025	0.025	0.025	0.025
UGACITY COEFFICIENT, VAPOR PHASE	0.906	1.057	0.981	0.920
· · · · · · · · · · · · · · · · · · ·	0.	0.	0.	0.
Υ	0.	0.	0.	0.
<pre>C VALUE DOITH COMMENT TO THE EVENTS TO THE TOTAL TOT</pre>	<u>0.</u>	<u>0.039</u>	0.046	0.046
ACTIVITY COEFFICIENT,LIQUID PHASE FUGACITY,PURE	1.213 0.076	1.237 0.036	1.235 0.036	1.235 0.036
-UGACITY, PORE -UGACITY COEFFICIENT, VAPOR PHASE	0.036 0.967	1.135	0.036	0.036
PBROGEN	0.501	11100	Q. 201	0.000
	0.974	0.977	0.973	0.973
{	0.066	0.049	0.050	0.051
C VALUE	14.805	20.104	19.264	19.247
ACTIVITY COEFFICIENT,LIQUID PHASE FUGACITY,PURE	2.932 6.761	2.970 6.761	2.965 6.761	2.965 6.761
FUGACITY COEFFICIENT, VAPOR PHASE NTERACTION VIRIAL COEFFICIENTS	1.041	0.999	1.041	1.042
SCHYEROGEN-BENZENE)		59.177	13.000	
CHYDROGEN-CYCLOHEXANE)		-6.674	12.000	
N NUMBER 46	NUCTT			
N NUMBER 46 MPERATURE 200.00 DEGREES FAHRE ESSURE 1108. PSIA	NHEIT	VIRIGI FOLIAT	ION VALUES	REOLICH-KWONG
1FERATURE 200.00 DEGREES FAHRE	NHEIT	VIRIAL EQUAT ADJUSTED	ION VALUES UNADJUSTED	REDLICH-KWONG
MFERATURE 200.00 DEGREES FAHRE ESSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE)				
MFERETURE 200.00 DEGREES FAHRE ESSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE	INITIAL VALUE 97.543 413.700	ADJUSTED 98.089 399.559	UNADJUSTED 97.996 413.635	VALUES 97.994
MFERATURE 200.00 DEGREES FAHRE ESSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V	INITIAL VALUE 97.543 413.700 0.019	ADJUSTED 98.089 399.559	UNADJUSTED 97.996 413.635 0.023	VALUES 97.994 0.023
MFERATURE 200.00 DEGREES FAHRE ESSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V	INITIAL VALUE 97.543 413.700 0.019 0.822	ADJUSTED 98.089 399.559	UNADJUSTED 97.996 413.635 0.023 0.829	VALUES 97.994
MFERATURE 200.00 DEGREES FAHRE ESSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) ENZENE V K V VALUE	INITIAL VALUE 97.543 413.700 0.019	ADJUSTED 98.089 399.559 0.020 0.830	UNADJUSTED 97.996 413.635 0.023	VALUES 97.994 0.023 0.829
MPERATURE 200.00 DEGREES FAHRE ESSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K K K V C VALUE HOTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE	INITIAL VALUE 97.543 413.700 0.019 0.822 0.023	ADJUSTED 98.089 399.559 0.020 0.830 0.024	0.023 0.027 0.027 0.025	VALUES 97.994 0.023 0.829 0.028 1.006 0.025
MPERATURE 200.00 DEGREES FAHRE ESSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y K K K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE \$7.543 413.700 0.019 0.822 0.023 1.067 0.025 0.919	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064	0.023 0.023 0.027 0.027 1.006 0.025 0.013	VALUES 97.994 0.023 0.829 0.028 1.006 0.025
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K K K VALUE GCTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE VCLOHEXANE	INITIAL VALUE \$7.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.006	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064	0.023 0.023 0.023 0.829 0.027 1.006 0.025 0.913	VALUES 97.994 0.023 0.829 0.028 1.006 0.025 0.908
MPERATURE 200.00 DEGREES FAHRE ESSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) ENZENE V K K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE VCLOHEXANE V	INITIAL VALUE 97.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.066 0.133	ADJUSTED 98.089 399.559 0.620 0.830 0.024 1.006 0.025 1.064 0.003 0.134	0.023 0.023 0.023 0.027 1.006 0.025 0.013 0.013	VALUES 97.994 0.023 0.829 0.028 1.006 0.025 0.908
MERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K VALUE GOTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE V K V VALUE V K V VALUE V K V VALUE V K V VALUE	INITIAL VALUE \$7.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.006	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064	0.023 0.023 0.023 0.829 0.027 1.006 0.025 0.913	VALUES 97.994 0.023 0.829 0.028 1.006 0.908
MERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) Y (VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE YCLOHEXANE Y (VALUE ACTIVITY COEFFICIENT, VAPOR PHASE YCLOHEXANE Y (VALUE ACTIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 97.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.066 0.133 0.047	ADJUSTED 98.089 399.559 0.620 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024	0.023 0.023 0.023 0.027 1.006 0.025 0.013 0.013 0.004 0.134 0.028	VALUES 97.994 0.023 0.829 0.028 1.006 0.025 0.908 0.004 0.134 0.027
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) K K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE V K K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, VAPOR PHASE EXANE	INITIAL VALUE \$7.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.066 0.133 0.047 1.032 0.024 0.908	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059	0.023 0.023 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.024	VALUES 97.994 0.023 0.829 0.025 0.025 0.908 0.134 0.027 1.036 0.024 0.925
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K K VALUE HOTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE V K K VALUE HOTIVITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE EXAME V	INITIAL VALUE 97.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.066 0.133 0.047 1.032 0.024 0.908	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902	VALUES 97.994 0.023 0.829 0.025 0.025 0.908 0.004 0.134 0.027 1.036 0.024 0.925
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K K K K K K K K K K K K	INITIAL VALUE 97.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.066 0.133 0.047 1.032 0.024 0.908	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902 0.00	VALUES 97.994 0.023 0.829 0.028 1.006 0.025 0.908 0.134 0.027 1.036 0.024 0.925 0.
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) ENZENE Y K K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y K K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE FUGACITY, PURE FUGACITY, COEFFICIENT, VAPOR PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE EXAME Y K K VALUE X K VALUE	INITIAL VALUE 97.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.066 0.133 0.047 1.032 0.024 0.908 0. 0. 0.	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902 0. 0. 0. 0.	VALUES 97.994 0.023 0.829 0.028 1.006 0.908 0.004 0.134 0.027 1.036 0.024 0.925 0.
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K K VALUE GUITTY COEFFICIENT, LIQUID PHASE FUGACITY OF PHASE V K K VALUE GUITTY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, VAPOR PHASE V K K VALUE GUITTY COEFFICIENT, VAPOR PHASE V K K VALUE GUITTY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 97.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.006 0.133 0.047 1.032 0.024 0.908 0. 0. 0. 1.511	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059 0. 0. 0.046 1.536	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902 0. 0. 0. 0. 0.55 1.532	VALUES 97.994 0.023 0.829 0.028 1.006 0.908 0.004 0.134 0.027 1.036 0.024 0.925 0.055 1.532
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE EXANE Y X K VALUE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, VAPOR PHASE	INITIAL VALUE 97.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.066 0.133 0.047 1.032 0.024 0.908 0. 0. 0.	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902 0. 0. 0. 0.	VALUES 97.994 0.023 0.829 0.028 1.006 0.908 0.004 0.134 0.027 1.036 0.024 0.925 0.055
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE EXANE Y X K VALUE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE Y VOROGEN Y	INITIAL VALUE \$7.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.066 0.133 0.047 1.032 0.024 0.908 0. 0. 1.511 0.034 0.971	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059 0. 0. 0. 0.046 1.536 0.034 1.140	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902 0. 0. 0. 0.055 1.532 0.963	VALUES 97.994 0.023 0.829 0.028 1.006 0.025 0.908 0.134 0.134 0.027 1.036 0.024 0.925 0. 0. 0.055 1.532 0.034 0.962
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K K VALUE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY, COEFFICIENT, LIQUID PHASE V K K VALUE SC VALUE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY, COEFFICIENT, VAPOR PHASE EXANE V K K VALUE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY, PURE FUGACITY, COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE YOROGEN V	INITIAL VALUE 97.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.006 0.133 0.047 1.032 0.024 0.908 0. 0. 1.511 0.034 0.971 0.975 0.045	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059 0. 0. 0.046 1.536 0.034 1.140 0.977 0.036	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902 0. 0. 0. 0.055 1.532 0.034 0.963 0.973 0.037	VALUES 97.994 0.023 0.829 0.028 1.006 0.025 0.908 0.004 0.134 0.027 1.036 0.024 0.925 0. 0. 0. 0. 0.055 1.532 0.034 0.962
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, COEFFICIENT, LIQUID PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY, PURE FUGACITY, COEFFICIENT, VAPOR PHASE Y Y Y X K VALUE X K VALUE Y Y Y Y X K VALUE	INITIAL VALUE \$7.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.066 0.133 0.047 1.632 0.024 0.908 0. 0. 1.511 0.034 0.975 0.975 0.045 21.667	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059 0. 0. 0.046 1.536 0.034 1.140 0.977 0.036 27.178	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902 0. 0. 0. 0.055 1.532 0.034 0.963 0.973 0.037 26.009	97.994 0.023 0.829 0.028 1.006 0.025 0.908 0.004 0.134 0.027 1.036 0.024 0.925 0. 0. 0.055 1.532 0.034 0.962 0.973 0.037 25.986
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY, PORE FUGACITY, COEFFICIENT, VAPOR PHASE X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE ACTIVITY COEFFICIENT, LIQUID PHASE ACTIVITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE 97.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.006 0.133 0.047 1.032 0.024 0.908 0. 0. 1.511 0.034 0.971 0.975 0.045 21.667 4.079	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059 0. 0. 0.046 1.536 0.034 1.140 0.977 0.036 27.178 4.120	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902 0. 0. 0.055 1.532 0.034 0.963 0.973 0.037 26.009 4.113	VALUES 97.994 0.023 0.829 0.028 1.006 0.025 0.908 0.004 0.134 0.027 1.036 0.025 0.925 0. 0. 0.055 1.532 0.034 0.962 0.973 0.037 25.986 4.113
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY COEFFICIENT, VAPOR PHASE EXANE Y X K VALUE ACTIVITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE	INITIAL VALUE \$7.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.066 0.133 0.047 1.632 0.024 0.908 0. 0. 1.511 0.034 0.975 0.975 0.045 21.667	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059 0. 0. 0.046 1.536 0.034 1.140 0.977 0.036 27.178	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902 0. 0. 0. 0.055 1.532 0.034 0.963 0.973 0.037 26.009	VALUES 97.994 0.023 0.829 0.028 1.006 0.025 0.908 0.004 0.134 0.027 1.036 0.024 0.925 0. 0. 0. 0. 0.055 1.532 0.034 0.962 0.973 0.037 25.986
MPERATURE 200.00 DEGREES FAHRE SSURE 1108. PSIA DLUME OF LIQUID (CC PER GM MOLE) DLUME OF VAPOR (CC PER GM MOLE) ENZENE V K K VALUE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y K K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE EXAME Y K K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE EXAME Y K K VALUE FUGACITY, PURE FUGACITY COEFFICIENT, LIQUID PHASE FUGACITY, PURE FUGACITY COEFFICIENT, VAPOR PHASE Y K K VALUE ACTIVITY COEFFICIENT, VAPOR PHASE FUGACITY, PURE FUGACITY, PURE FUGACITY, PURE FUGACITY, PURE	INITIAL VALUE \$7.543 413.700 0.019 0.822 0.023 1.007 0.025 0.919 0.006 0.133 0.047 1.032 0.024 0.908 0. 1.511 0.034 0.971 0.975 0.045 21.667 4.079 6.587	ADJUSTED 98.089 399.559 0.020 0.830 0.024 1.006 0.025 1.064 0.003 0.134 0.024 1.037 0.024 1.059 0. 0. 0. 0. 0. 0. 0. 0. 0.046 1.536 0.034 1.140 0.977 0.036 27.178 4.120 6.587	UNADJUSTED 97.996 413.635 0.023 0.829 0.027 1.006 0.025 0.913 0.004 0.134 0.028 1.036 0.024 0.902 0. 0. 0. 0.55 1.532 0.034 0.963 0.973 0.037 26.009 4.113 6.587	VALUES 97.994 0.023 0.829 0.025 1.006 0.025 0.908 0.004 0.134 0.027 1.036 0.024 0.925 0. 0. 0. 0. 0.055 1.532 0.034 0.962 0.973 0.962 0.973 25.986 4.113

	RENHEIT			
RESSURE 1085, PSIA		VIRIAL EQUAT	TION VALUES	REDLICH-KWONG
	INITIAL VALUE	ADJUSTED	UNADJUSTED	VALUES
VOLUME OF LIQUID (CC PER GM MOLE)	110.509	112.152	111.972	111.968
VOLUME OF VAPOR (CC PER GM MOLE)	422.333	408.435	421.960	
BENZENE				
Y	0.012	0.013	0.016	0.016
X	0.460	0.471	0.470	0.470
K VALUE	0.026	0.028	0.034	0.033
ACTIVITY COEFFICIENT, LIQUID PHASE	1.142	1.128	1.129	1.129
FUGACITY, PURE	0.026	0.026	0.026	0.026
FUGACITY COEFFICIENT, VAPOR PHASE	0.912	1.061	0.882	0.884
CYCLOHEXANE				
Υ	0.004	0.004	0.005	0.005
X	0.159	0.163	0.162	0.162
K VALUE	0.025	0.024	0.029	0.029
ACTIVITY COEFFICIENT, LIQUID PHASE	1.008	1.006	1.006	1.006
FUGACITY, PURE	0.025	0.026	0.026	0.026
FUGACITY COEFFICIENT, VAPOR PHASE	0.904	1.056	0.873	0.897
HEXANE				
Υ	0.010	0.011	0.013	0.013
X	0.300	0.307	0.306	0.306
K VALUE	0.033	0.035	0.043	0.043
ACTIVITY COEFFICIENT, LIQUID PHASE	1.088	1.108	1.106	1.106
FUGACITY, PURE	0.036	0.036	0.036	0.036
FUGACITY COEFFICIENT, VAPOR PHASE	0.965	1.134	0.931	0.932
HYDROGEN				
Υ	0.974	0.972	0.966	0.966
×	0.081	0.059	0.062	0.062
K VALUE	12.020	16.371	15.652	15.642
ACTIVITY COEFFICIENT, LIQUID PHASE	2.405	2.434	2.430	2.430
FUGACITY, FURE	6.711	6.711	6.711	6.711
FUGACITY COEFFICIENT, VAPOR PHASE	1.041	0.998	1.042	1.043
INTERACTION VIRIAL COEFFICIENTS				
B(HYDROGEN-BENZENE)		46.124	13.000	
BCHYDROGEN-CYCLOHEXAMES		-8.115	12.000	
B (HYDROGEN-HEXANE)		66.342	27.000	

RESSURE 541. PSIA	INITIAL VALUE	VIRIAL EQUATI	ON VALUES UNADJUSTED	REDLICH-KWONG VALUES
VOLUME OF LIQUID (CC PER GM MOLE)	113.951	114.413	114.363	114.371
VOLUME OF VAPOR (CC PER GM MOLE)	829.644	819.001	829,470	
BENZENE				
Υ	0.027	0.024	0.028	0.028
X	0.482	0.485	0.485	0.485
K VALUE	0.056	0.050	0.058	0.057
ACTIVITY COEFFICIENT, LIQUID PHASE	1.113	1.110	1.110	1.110
FUGACITY, PURE	0.046	0.046	0.046	0.046
FUGACITY COEFFICIENT, VAPOR PHASE	0.885	1.028	0.881	0.898
CYCLOHEXANE				
Υ	0.010	0.007	0.009	0.008
Χ	0.167	0.168	0.168	0.168
K VALUE	0.060	0.044	0.051	0.050
ACTIVITY COEFFICIENT, LIQUID PHASE	1.004	1.003	1.004	1.004
FUGACITY, PURE	0.045	0.045	0.045	0.045
FUGACITY COEFFICIENT, VAPOR PHASE	0.879	1.026	0.875	0.899
HEXANE				
Y	0.023	0,021	0.025	0.025
X	0.315	0.317	0.317	0.317
K VALUE	0.073	0.068	0.080	0.078
ACTIVITY COEFFICIENT, LIQUID PHASE	1.129	1.134	1.134	1.134
FUGACITY, PURE	0.063	0.063	0.063	0.063
FUGACITY COEFFICIENT, VAPOR PHASE	0.905	1.062	. 0.901	0.916
HYDROGEN				
Υ	0.940	0.947	0.938	0.939
<u> X </u>	0.036	0.030	0.031	0.031
K VALUE	26.111	31.496	30.673	30.693
ACTIVITY COEFFICIENT, LIQUID PHASE	2.463	2.470	2.470	2.470
FUGACITY, PURE	12.721	12.721	12.721	12.721
FUGACITY COEFFICIENT, VAPOR PHASE	1.024	0.998	1.024	1.024
INTERACTION VIRIAL COEFFICIENTS				
B(HYDROGEN-BENZENE)		46.124	13.000	
BCHYDROGEN-CYCLOHEXANE)		-8.115	12.000	
B(HYDROGEN-HEXANE)		66.342	27.000	

EXPERIMENTAL DATA

As previously explained, the experimental data presented in Tables III and IV has been smoothed. All experimental data has been compared with data from the literature and has been analysed statistically. The results of this work have been summarized in these tables.

An unexpected amount of difficulty has been encountered in reproducing the analyses of duplicate samples by means of the mass spectrometer. Therefore, this section has been appended to the dissertation in order to provide a more complete picture of the experimental data.

It has been asserted previously that the main source of error in these analyses has been experimentally determined to be in the analysis of the hydrogen in the liquid and in the vapor. Table XVIII shows an example of the consistency of the hydrogen-free hydrocarbon analyses for both vapor and liquid. This data, as well as all the other hydrocarbon data, has been analysed by means of large sample statistical techniques. A Student "t" Test was used to reject sample analyses that deviated from an average value beyond a 99% confidence limit. Table XIX shows the analyses of the hydrogen data for Run 33. Small sample statistics, as well as comparison with literature data results, were used in this case. A sample calculation is given for Run 33 to show how the results of the data analyses have been applied to the experimental data.

As analyses of this type may have been biased by human judgment, a complete set of all the data obtained in this work has been included in Table XX for future reference.

TABLE XVIII

ANALYSES OF CYCLOHEXANE ON HYDROGEN-FREE BASIS

	$(\mathbf{x}-\overline{\mathbf{x}})^2$	007000.	. 000001	₹90000.	, 0001 ⁴⁴	₹90000.	600000	000000	₹00000 •	920000.	†00000°	t90000°	920000.	920000.	600000.	. 00000	₹00000.	000000.	600000.	000000.	600000.		. 000493			.0051	9000.	
R PHASE	<u>x-x</u>	010	100.	900.	. 012	900.	. 003	000.	. 002	900.	. 002	900.	900.	900.	. 003	. 001	. 002	000.	. 003	000.	. 003							
VAPO	X	.210	.201	.208	.212	.208	. 203	. 200	.198	.194	.198	.192	. 194	.194	.197	.199	.198	. 200	. 203	. 200	. 197		⁴ , 006	. 200				
	SAMPLE	30	30A	31	31A	31B	310	31E	31F	32	32A	32B	32C	32D	32E	33	33A	33B	33C	330	3年							
Ω E	(x-x)	400000.	₹00000.	. 000025	₹00000 *	t90000°	910000.	₩00000	₹00000.	. 000001	. 000001	100000.	000000	₩00000	600000	910000.	910000.	600000.	600000.	600000.	910000.	600000 •	.000225			, 0034	1 000 •	
UID PHA	 x- x-	. 002	. 002	. 005	. 002	900.	†00 °	. 002	. 002	.001	.001	.001	000•	. 002	. 003	1 00.	, 00	. 003	. 005	. 003	, 00	. 003						deviation error
L I	×	202	. 202	. 205	. 202	. 208	.204	198	.198	.199	.201	.20I	. 200	. 202	. 203	. 204	.196	.197	761,	.197	.196	.197	4,209	. 200	11x_x112	- T-N	0.674 oNN	l. Standard 2. Probable
	SAMPLE	30	30A	30B	30C	30D	30E	31F	31G	31H	32	32A	32B	32C	32D	32E	33	33A	33B	33C	330	326	SUM:	AVERAGE:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	σ(I) = ,	P.E.(2)	

		TABLE XIX									
			AMALYE	IS OF HYDRO	CENT COMPOSIT	IONS FOR RUN	33				
EXPERIMENT	'ΑΤ. ΤΙΔ ΙΤΙ Δ										
	July Mark										
SAMPIN	T(°F)	P(psia)	XHX	xcx	x _{n2}	YHX	YCX	Y _{H2}			
33 33A	200,0	1089	• 7358 • 7335	.1787 .1793	.0855 .0872	. 0430 . 0308	.0107	.9464			
33B		1065	7394	1808	0797	.0516	.0129	.9616 .9355			
33C		-		. 1813	•0797	.0318	.0081	.9601			
33D		1043	. 7383	.1809	.0807	.0283	.0071	.9646			
33E			.7274	.1780	.0946	.0208	.0051	.9747			
TIONID							,	•21.1			
X _{H2} = 0,0846											
	Range = $0.0946 = 0.0797 = 0.0149$										
		At a 99% Com	fidence Lev	al,							
				X _{E2} = 0.	0846 <u>+</u> (0,628	3)(.0149)					
				= 0.	0846 <u>+</u> 0.0094	+					
		Discard Sampl	e 33, Which	lies outsid	le of this un	it.					
				Ī _{H2} = 0.0	082						
	The probable error in this analysis is:										
				P.E. = (0.	.674)(Range)(.430)/√m					
				= (0.	.674)(.0075)(.430)/√5					
				= 0.0	X01						

VAPOR

$$\overline{Y}_{H_2} = 0.9571$$
Range = .9741 - .9355 = 0.0386

At a 99% Confidence Level,

$$\overline{Y}_{\overline{M}_2}$$
 = 0.9571 ± (0.628)(.0386)
= 0.9571 ± .0243

Discard Sample 33B, which lies at this limit.

Comparison of wapor-phase hydrogen analyses with other results from other experimental runs and from results in the literature indicates that sample 33 is low.

The rank difference ratio is:

$$\frac{Y_{330} - Y_{33}}{Y_{338} - Y_{33}} = 0.49$$

The probability that this point is representative of the true value is approximately 10%.

On the basis of this statistical test and on the basis of comparative data, discard sample 33.

Then
$$\overline{Y}_{\mathbf{H}_2} = 0.965$$

The probable error in this analysis is:

P.E. =
$$(0.674)(\text{Range})(.486)/\sqrt{n}$$

= $(0.674)(.0146)(.486)/2$
= 0.003

SAMPLE CALCULATION OF SMOOTHED EXPERIMENTAL RESULTS FOR HOW 33

LIQUID PHASE

$$\begin{array}{l} X_{\rm H_2} = .082 \\ \hline X_{\rm OX} & \\ \hline X_{\rm CX} + X_{\rm HX} & = 0.200 \\ \hline X_{\rm CX} + X_{\rm HX} & = 1.0 - 0.082 = 0.918 \\ \hline X_{\rm CX} & = 0.200 & (X_{\rm CX} + X_{\rm HX}) = 0.200 & (.918) = 0.183 \\ \hline X_{\rm HX} & = 0.918 - 0.183 = 0.734 \\ \hline \end{array}$$

VAPOR PHASE

$$Y_{H_2} = 0.965$$

$$\frac{Y_{CX}}{Y_{CX} + Y_{HX}} = 0.200$$

$$Y_{CX} + Y_{HX} = 1 - 0.965 = 0.035$$

$$Y_{CX} = 0.200 (Y_{CX} + Y_{HX}) = 0.200 (.035) = 0.007$$

$$Y_{HX} = 0.035 - 0.007 = 0.028$$

SUMMARY FOR RUN 33

T(°F)	P(psia)	XHX	$\mathbf{x}^{\mathbf{CX}}$	XH2	Y HX	YCX	Y _H
200.0	1089	• 734	. 183	.082	028	.007	. 965

TABLE XX
COMPLETE EXPERIMENTAL DATA RESULTS

		LIQUID PHASE	MOLE FRACTIC	ON CONT		VAPOR PHASE	MOLE FRACTION	
SAMPLE	X _{BZ}	x _{CX}	x ^{ax}	X _{H2}	Y BZ	YCX	Y _{HX}	Y _{H2}
18	.2312		• 7237	. 0450	.0036		.0125	. 9838
18A	.1923		.7691	.0387	.0015		.0069	.9915
18B	.2212		. 1371	.0417	.0032		.0116	.9852
18c	2057		- 7559	. 0384	.0017		. 0084	. 9899
18d 18e	.2148 .2004		.7790 .7522	.0062 .0470	.0058 .0022		.0198 .0107	.97 ⁴⁴ .9862
19	.2178			.0547				•
19 A	.2150		.7275 .7441	.0409	.0156 .0120		.0506	• 9339 0507
19B	.2409		.7087	.0504	.0175		.0373 .0592	.9507 .9233
19C	.2047		7490	.0463	.0115		.0359	.9526
150	. 2389		.7195	.0416	. 0511		.1414	.8075
192	.2080		- 7535	. 0385	. 0359		.1232	.8409
20	.2390		.7111	.0800	.0153		.0415	.9431
20A	.2021		.7152	.0827	. 0095		.0295	. 9609
20B 20C	.2262 .2095		.6921 .7104	.0816 .0801	.0111 .0067		.0308 .0234	. 9581
20D	.2218		.6901	.0881	.0185		.0468	.9699 .9347
2015	.2019		.7028	. 0953	.0086		.0265	. 9649
20F 20G	.2012		.6981	.1007	.0171 .0085		.0482	.9518
			-		.000)		. 0292	.9623
21 21A	.2382		.6879	.0740	.0075		.0250	. 9675
21A 21B	.2019 .2302		.7159	.0822 .0606	.0030		.0087	. 9883
210	.2102		.7092 .7170	.0728	.0050		.0172	.9778
210	.2531		.6892	.0577				
212	.2053		.7097	.0849	.0023		.0071	.9906
21F					. 0084		.0226	. 9689
22	.8023		.1772	.0204	.0241		.0029	. 9692
22A	. 7350		.2320	.0329	.0114		.0049	. 9838
22B	.8341		.1548	.0111	.0093		.0034	. 9873
220 220	• 7459 • 7570		.2171 .2145	.0370 .0285	.0069 .0105		.0029	.9902
22E	.8213		.1758	. 0029	.0086		.0037 .0037	.9858 .9877
23	.8195		.1533	.0272	.0611		01 Oh	
23A	.7424		.2096	.0480	.0361		.0184 .0130	.9205 .9509
23B	.8093		.1648	.0259	.0291		.0107	.9602
23C	. 7474		.2148	.0379	.0325		.0117	.9558
230	.8140		.1642	.0218	.0512		.0162	.9326
235	.7487		.2070	.0443	.0428		.0143	•9 ¹ 429
24	- 7974		.1466	.0560	.1055		.0165	.8780
24A	.7246		.1993	. 0761	• 0/1/1/1		.0141	.9415
24B 24C	.8064		.1740	.0196	.0593		.0185	.9222
24D	.7310 .8017		.2740 .1546	.0650 .0437	.0153 .0240		.0089 .0088	.9758
24 E	.7502		.2028	.0470	.0194		.0073	. 9673 - 9733
25	.7219		. 2422	.0359	.0070		.0028	.9902
25A	.7315		.2016	.0669	.0043		.0017	.9941
25B	.8257		.1341	. 0403	₄ 0088		.0031	. 9881
25C	. 7262		.2053	. 0686	.0057		.0021	.9922
250	.8105 .7440		.14 9 6	.0399	.0036		.0030	9933
25E	• (440		.1911	.0649	.0018		.0020	. 9962
30 701		.1930	.7650	.0420		.0064	.0241	. 9695
30A 30B		. 1931 . 1984	.7648 .7685	.0421 .0331		.0066 .0047	.0249	. 9685
30C		.1943	.7668	.0389		.0029	.0220 .0132	• 9732 • 9837
30D		.2015	.7643	.0342		.0077	.0283	.9640
30E		.1963	.7642	. 0395		.0039	.0169	9792
31		.1565	.8051	. 0384		.0215	.0817	.8967
31A		.1696	.6826	.1477		.0204	.0759	9037
31B		-1579	- 7956	.0465		.0152	. 0578	•9277
31C		.1559	.7778	.0663		.0130	. 0478	. 9391
31 2 310		.1579 .1595	.8012 .7917	.0409 .0488		.0130 .0081	.0510 .0324	• 9359 • 9595
31F		.1871	.7608	.0521		.0068	.0276	.9656
31G		.1887	.7643	.0471		.0093	.0304	.9619
31H		. 1892	.7646	.0462			-	
32		.1846	.7385	. 0769		.0048	.0200	•9752
32A		.1906	.7581	.0513		.0031	.0125	. 9844
32B		.1876	.7519	. 0 605		.0092	.0388	. 9520
320 320		.1905 .1931	.7500 7578	• 0595 0/100		. 010 ¹ 4	.0432	. 9464
32%		.1931 .1 98 2	.7578 .7713	.0490 .0305		.0047 .0015	.0196 .0061	•9757 • 99 23
33								
33 33a		.1787 .1793	. 7358 . 7335	.0855 .0872		. 0107 . 00 76	.0430 .0308	.9464 .9616
33B		.1808	• 7394	.0797		.0129	.0516	• 9355
33C		.1813	7389	.0797		.0081	.0318	.9601
3 3 0		.1809	. 7383	.0807		.0071	.0283	.9646
35E		.1780	.7274	. 0 946		.0051	.0208	.9741

TABLE XX CONT'D

		LIQUID PHASE	MOLE FRACTIC	ON CONTRACT	VAPOR PHASE MOLE FRACTION				
SAMPLE	$\mathbf{x}_{\mathbf{BZ}}$	xcx	x ^{HX}	$\mathbf{x}_{\mathbf{H}_2}$	$\mathbf{Y}_{\mathbf{BZ}}$	Ycx	YHX	Y _{H2}	
3 4		.8477	.1349	.0174		.0275	, 0 288	•9 ⁴ 37	
3 ¹ 1A		.7841	.1805	.0353		.0116	.0143	.9741	
34		.8550	.1215	.0235		.0211	.0 219	. 9570	
3 ^h A		.8109	-1650	.0241		. 0147	.0157	•9696	
34B		.8197	.1614	.0188		.0261	.0272	•9 ¹ 67	
340 340		.8021 .8021	. 1822 . 1890	.0157 .0088		.0160	.0186	.9654	
34:3		.8021 0غ18.	.1096	.0178		.0070 .0042	. 007 5 . 0055	.9855 .9903	
34		.0120	\$ A OA	*0110		.0282	.0071	.9646	
34A						.0116	.0070	.9813	
34						.0214	.0037	9748	
34A						.0149	. 0037	.9814	
34B						.0267	. 0074	• 9659	
34C						.0162	.0061	- 9777	
34D 34E						.0070 .00 ¹ 42	.0028	.9901	
J -1 4						,0042	.0021	.9936	
35		.7758	.1756	• 0 ⁴ 59		1			
35A		.7376	.1866	.0758		.0114	•0118	.9768	
35B 350		.7614 .8235	.1778 .1535	.0607 .0229		.0046 .0078	.0051 .0142	• 9903 0780	
35D		.8676	.1039	.0284		• 0019	.0049	•9780 •9906	
35E		.8321	.1235	.0446		.0037	.0037	.9926	
35C		9335	.2242	.0429				• • • • • • • • • • • • • • • • • • • •	
35D		.7921	.1547	. 0532					
35E		.7416	.1788	.0796					
35A						.0115	.0023	9862	
35B 350						• 00 ¹ 17	.0013	.9940	
35D						.0079 .0045	.0005 .0015	.9916 .9940	
35 E						.0037	.0009	9953	
			-10-	-0					
36 361		• 7717	.1483	.0800		.0170	.0185	. 9645	
36a 36b		. 7244 . 7936	.1723 .1573	. 1034 . 0492		.0144	.0166	.9690	
36C		• 7930 • 7672	.1865	.0492 .0463		.0158 .0103	.0168 .0114	.9674	
36D		• 77739	.1539	.0722		.0183	.0192	.9783 .9624	
36E		7745	.1566	4 0688		.0112	.0122	.9767	
36			• • •	•		.0173	.0050	9776	
36A						.0145	.0087	.9767	
36B						.0160	.0048	9792	
36c						.0103	• 0040	. 9800	
36D						.0186	.0051	.9763	
36 E						.0113	.0041	. 9846	
37		. 7879	. 1925	.0197		.0214	.0214	• 9572	
37A		.7762	. 1844	• 0394		.0158	.0163	. 9680	
37B		.8053	.1532	.0415		.0231	. 0240	• 9529	
37C		.8146	.1648	. 0205		.0131	.0131	• 9739	
37D		- 7957	.1582 .1681	. 0460		.0138	•0144	.9718	
37≊		. 7922	* 1001	.0397		.0166	. 01.80	. 9654	
40	.2933	. 6803		-0264	.0162	.0247		.9591	
40A	. 2926	.6824		.0249	. 0049	.0111		. 9839	
40в 4 0с	. 2897	.6825 .6922		.0278	.0033	.0084 .0083		, 9883	
400 400	.2928 .2951	.6856		.0149 .0193	.0036 .0044	.0005		. 9880 . 9845	
4OE	.2955	.6893		.0152	.0041	.0092		.9867	
Y =		4 1							
41	.2796	.6490		.0714	.0071	.0164		.9765	
41A 41B	.2757	.6430 .6470		.0812	.0011	.0028		.9960	
41B 41C	.2791 .2586	.6928		. 0739 . 0486	.0028 .0023	.0062 .0046		.9910 .9931	
41D	.2745	.6337		.0918	.0031	.0068		.9901	
41 E	.2881	6725		. 039 ⁴	.0017	. 00140		9942	
lio	0066	£1.00		0650	0000	2000		-/0-	
42 42 A	.2866 .2913	. 6482 . 6606		.0652 .0481	, 0098 , 0066	.0220 .0152		. 9683 9781	
42A 42B	.2913	, 6608		.0401 .0475	.0124	.0278		.9781 .9597	
42C	2861	.6449		.0690	.0051	.0118		.9830	
142D	2898	.6623		.0475	. 0065	.0158		.9776	
42E	. 2854	.6513		.0632	. 0065	.0148		. 9787	
43	.2776	4 6832		.0392	.0290	.0711		.8998	
43A	.2823	.6940		.0237	.0290	.0129		.9819	
43B	2771	6809		.0421	.0314	.0761		.8926	
43C	2790	.6881		.0329	.0079	.0182		9739	
43D	.2792	. 6867		. 0340	.0082	.0206		.9711	
43E	.2792	. 6874		• 0334	.0068	.0165		•9767	
44	.8229	.1406		. 0365	.0425	.0076		• 9499	
1111 V	.7500	.1785		.0714	.0194	.0097		• 9709	
1414B	.7965	.1681		. 0354	. 00 84	.0017		. 9899	
44 14	70Cl.	4		0700	. 0 892	.0125		.8970	
ት∤Φ ተ∤C	. 7964 7067	.1713 1788		. 0322 03hh	1600	V4E0		7057	
44D	. 7967 . 8238	.1788 .1566		•0244 •0196	.1689	.0358		• 7953	
44 	.8456	.1296		.0377	, 0501	.0083		.9417	
инВ	.8417	1392		.0189	.0200	.0043		9756	
44V	.7712	.1774		.0514		-			

TABLE XX CONT'D

		LIQUID PHAS	e moir fractio	OIN		VAPOR PHASE MOLE FRACTION				
SAMPLE	x _{BZ}	XCX	XHX	x _{H2}	YEZ	Y _{CX}	YHX	Y _{H2}		
45 45 A	. 8446 . 7972	.1338 .1664		.0216 .0363	.0854 .0817	.0149 .0154		.8997 .9028		
45B	.8611	.1335		.0055	2533	0404		.7063		
45C 45D	. 7870 . 8684	.1559 .1224		. 0570	****			-00-		
45 ™	•7873	.1224		.0092 .0653	.0091 .0047	.0029 .0013		. 9885 • 9937		
45	.8175	.1264		.0560	.0815	.0131		.9053		
45A	.7831	.1650		.0518	• 0973	.0165		.8861		
45B	. 8548	.1287		.0165	.3032	• 0448		. 6520		
46 46 a	.7863 .7754	.1189 .1323		. 0947 . 0923	. 0487	.0081		.9431		
46в	.7161	.1355		.1484	. 2266	. 0368		.7366		
46c 46d	. 2902 . 8326	.4814 .1224		. 2283 . 0450	.0201	.0034		. 9764		
46E	.7653	.1306		.1041	.0220 .0252	•00 ⁴ 1		•9739 •9700		
47	.8507	. 1357		.0136	.0112	.0033		. 9856		
47A 47B	. 8288 . 8206	.1407 .1296		.0305 .0499	.0115 .0106	.0035 .0029		•9850		
47C	. 8444	.1331		.0267	.0170	.0029		. 9865 . 979 ¹ 4		
47D	.8224	.1220		.0556	.0231	.0047		.9721		
47 <u>e</u> 47 <u>e</u>	. 7958	. 1291		.0751	.0151 .0244	.0032 .0038		.9817 .9718		
,_ 50	. 4955	.1738	.2918	. 0389	.0952	.0357	0076			
50A	• 19 55 • 4845	.1679	.3078	.0398	.0310	.0126	.0876 .0370	.7815 .9194		
50B	.5146	. 1754	2792	. 0307	.0181	.0075	.0106	.9638		
500 500	•5039	.1607	.3123	.0231	.0079	.0030	.0060	. 9831		
5000 5008	.5045 .4961	.1655 .1771	. 3039 . 3072	.0261 .0196	.0277 .0242	.0092 .0089	.0193 .0218	•9437 •9451		
50J	.4822	.1657	.3317	.0241	• 02 .2	.0009	• 02.30	• 5 • 7 ±		
50F	- 4790	.1632	.3266	.0312						
50G 50E	.4371 .5031	.1497 .1712	.3696 .3040	.0436 .0217						
50D	.4381	.1634	2973	.1012	• 0266	.0108	.0208	.9419		
50E					. 0249	.0100	.0224	. 9428		
501E 501F					.0370 .0049	.0139 .0018	.0324 .0054	.9166 .9879		
50G					.0030	.0010	.0035	•9019 •9924		
50H					.0023	. 0054	.0058	. 9864		
5 0. T					. 00 ⁴ 7	.0019	• 0056	. 9878		
51 51A	.5301 .5639	.1148 .1137	.3151 .2944	.0400 .0280	.0093 .0163	.0019 .0026	•0056 •0043	. 9832 . 9769		
51B	.5715	.1183	.2800	.0200	.0076	.0026	.0043	•97 • 9		
510	• 5457	.1131	.3085	.0327	.0078	.0016	.0039	.9867		
51D 51	.5580 .4139	.1214	•2953	• 0295	.0060	.0017	.0043	.9881		
51B	• 4199 • 4489	.1772 .1785	.3364 .3196	.0724 .0529						
51C	. 4239	.1715	.3561	.0485						
51J 51J					.001 6	.0036	.0064	.9884		
51.T					.0019 .0016	.0043 .0031	.0071 .0052	.9867 .9901		
511					.0012	.0031	.0062	. 9893		
52	• 4932	.1806	.2777	. 0 485	. 0486	.0206	.0374	.8935		
52A	. 4174	.1651	.3170	.1004	. 0365	.0153	-0342	.9140		
52B 52C	• 4549 • 4224	.1769 .1660	.3026 .3320	.0656 .0796	.0217 .0109	.0092 .0039	.0184 .0109	• 9507 • 9743		
520	. 4907	.1678	.2905	.0509	.0116	.0043	.0104	9736		
52E	- 4335	.1714	.2964	.0988	.0085	.0035	. 00 85	• 9795		
520 520	. 4363 . 3645	.1734 .1496	.3224 .3370	.0678 .1486						
52E	.3863	.1698	• 3 ¹ +05	.1034						
53	. 5385	.1678	.2713	.0224	• 0494	.0165	•0354	.8987		
53A 53B	• 5235 • 5478	.1596 .1702	.3122	. OC 47	.0389	.0128	•0353	.9131		
53C	. 4683	.1519	.2751 .3080	.00∄0 .0718	.0062 .0111	.0016 .0035	.0016 .0104	•9907 •9750		
530	•5398	.1705	.2557	.0341	.0104	.0031	.0079	.9786		
5 <i>5</i> 15	.5342	.1453	.2735	• 0 ¹ 470	.0113	.0034	.0090	.9763		
53 53A	.4582 .4731	.0864 .1902	.3806 .3073	•0747 •0296	.0348	.0153	. 0344	•9155		
53B	.4679	.2032	• 28 00	.0428	• 00/1/1	.0027	.0017	.9911		
53C	. 4428	.1857	.3000	.0714	.0105	-0047	.0105	• 9742		
53D 53R	.5015 .4859	.2063	• 2698 20 3 7	.0222	.0106	.0045	.0090 0006	• 9758		
53 € 53 €	• 140 59 • 5 3 57	.1771 .1513	•2937 •2842	.0432 .0286	.0117	.0046	.0096	•9741		
5 3 E	.5231	.1873	2683	.0212				_		
53A 5 3 F	. 4874	.1759	2000	.0369	.0489	.0209	• 0393	.8908		
53G	* #### * #0.14	.1628	.2998 .3473	.0365 .0453	.0343 .0265	.0129 .0097	.0324 .0239	. 9203 . 9398		
53H	. 4895	.1772	.2954	.0380	.0358	.0140	.0308	•9193		
531	• 4333	.1602	- 3575	• 0490	•0296	.0129	.0276	• 9299		

The results of repetitive analyses of the same samples have been summarized in Table XXI. It is believed that these results give the most accurate picture of the major definable source of experimental error. The cause of the observable deviations in the data has not been definitely established. However, the wide difference in the molecular weights of the substances analysed in this work is believed to be a contributing factor.

TABLE XXI

REPETITIVE ANALYSES RESULTS

						IDED TERROTED				
SAMPLE	DATE	mass spec. Run no.	x _{E2}	IQUID PHASE X _{BZ}	MOLE FRACTIO X _{CX}	n X _{HX}	YH2	VAPOR PHASE Y _{BZ}	MOLE FRACTION YCX	YHX
3 ¹ 4V	8/11/60 8/15/60	(6582) (6627)	- 2	~	0.1	M.	•9437 •9570	<i>D</i> E	.0275	.0288 .0219
3 ¹ 4AV	8/11/60 8/15/60	(6583) (6628)					.97 ⁴ 1 .9696		.0116 .0157	.0219
34L	8/11/60 8/15/60	(6584) (6630)	.0068 .0109		• 4932 • 4959	.5000 .4932				·
3 ⁴ AL	8/11/60 8/15/60	(6585) (6631)	.0182 .0117		.4742 .4851	.5076 .5032				
j1,jt ∆	9/30/60 10/6 /60 10/11/60	(6858) (6937) (6954)					• 9499 • 8970 • 9417	.0425 .0892 .0501	.007 6 .0125 .0083	
7+7+B ∆	9/30/60 10/11/60	(6860) (6956)					•9899 •9756	.008 ¹ 4	.0017 .0043	
ሰ ትፓ	9/30/60 10/11/60	(6864) (6960)	. 0365 . 0377	.8229 .8456	.1406 .1296					
44AT	9/30/60 10/11/60	(6865) (6961)	.0714 .0514	.7500 .77;2	.1785 .1774					
44BL	9/30/60 10/11/60	(6866) (6962)	.0354 .0189	.7965 .8417	.1681 .1392					
45 V	9/30/60 10/11/60	(6861) (6957)					. 8997 . 9053	.0854 .0815	.0149 .0131	
45AV	9/30/60 10/11/60	(6862) (6958)					.9028 .8861	.0817 .0973	.015 ⁴ .0165	
45BV	9/30/60 10/11/60	(6863) (6959)					.7063 .6520	.2573 .3032	. 0404 . 0448	
45L	9/30/60 10/11/60	(6867) (6963)	.0216 .0560	.8446 .8175	.1338 .1264					
45AL	9/30/60 10/11/60	(u868) (6964)	.0363 .0518	.7972 .7831	.1664 .1650					
45BL	9/30/60 10/11/60	(6869) (6965)	.0055 .0165	.8611 .8548	.1335 .1287					
50 DV	10/13/60 10/16/60	(6982) (7016)					• 9437 • 9419	.0277 .0266	.0092 .0108	.0193 .0208
50 /5 0/	10/13/60 10/16/60	(6983) (7017)					. 9451 . 9428	.0242 .0249	.0089 .0100	.0218 .0224
51 .77	12/3/60 12/3/60 12/3/60 12/3/60	(7256) (7257) (7247) (7248)					. 9884 . 9867 . 9901 . 9893	.0016 .0019 .0016 .0012	.0036 .00 ¹ 3 .0031 .0031	.0064 .0071 .0052 .0062
52DL	10/16/60 11/18/60	(7022) (7155)	.0509 .1486	. 4907 . 3645	.1678 .1496	. 2905 . 3370				
53AL	10/25/60 11/17/60	(7059) (7137)	.0047 .0296	.5235 .4731	.1596 .1902	•3122 •3073				
53AV	10/25/60 11/17/60 11/17/60	(7053) (7131) (7144)					.9131 .9155 .8908	. 0389 . 0348 . 0489	.0128 .0153 .0209	• 0353 • 0344 • 0393
53DL	10/25/60 11/17/60	(7062) (7140)	.03 ¹ 1 .0222	•5398 •5015	.1705 .2063	. 2557 . 2698				
53DV	10/25/60 11/17/60	(7056) (7134)					.9786 .9758	.010 ⁴ .0106	.0031 .0045	.0079 .0090
53EL	10/25/60 11/17/60 11/17/60 11/17/60	(7063) (7141) (7142) (7143)	.0470 .0432 .0286 .0212	•5342 •4859 •5357 •5231	.1453 .1771 .1513 .1873	. 2735 . 2937 . 2842 . 2683				
5 <i>5</i> EV	10/25/60 11/17/60	(7057) (7135)					.9763 .97 ⁴ 1	.0113 .0117	.0034 .0046	.0090 .0096

GRAPHICAL PRESENTATION OF THE DATA

Certain insights into the effect of aromaticity on the K-values of hydrogen and the effect of hydrogen on the K-values of hydrocarbons may be obtained from a graphical presentation of the experimental data obtained in this work.

Figures 10, 11 and 12 show that the effect of solvent composition on hydrogen K-values is not a linear function of composition. The results of calculations based on the two equations of state method are shown to predict the curvature shown in these figures. Relative volatilities of the hydrocarbons from experimental data as well as from the literature are also shown as an indication of the hydrocarbon interactions.

A graphical correlation of these results requires a parameter that indicates the composition of the solvent. One such parameter in common use is the U.O.P. K factor. Elbishlawi and Spencer (71) have shown that the K-values of methane at constant temperature and pressure may be correlated as a function of this parameter. The experimental hydrogen K-values, as well as hydrogen K-values from the literature, have been plotted in this manner in Figures 13 and 14.

This correlation of hydrogen K-values has an average absolute percentage deviation of 10.8 at 200°F., and an average absolute percentage deviation of 17.2 at 100°F. The modified two equation of state method gave an average absolute percentage deviation of 20.6 at 200°F. and 16.6 at 100°F. for hydrogen K-values.

This graphical correlation of hydrogen K-values brings out several points of interest. The K-values of hydrogen increase as the

aromaticity of the solvent increases, as the system pressure decreases, and as the system temperature increases. However, the U.O.P. K factor does not completely define the effect of the solvent on hydrogen K-values. Figure 15 shows two different solvents that have a U.O.P. K of 11.0. One is pure cyclohexane, while the other is a mixture of hexane and benzene. Improved accuracy in the prediction of hydrogen K-values will require more specific information about the solvent than the U.O.P. K can provide.

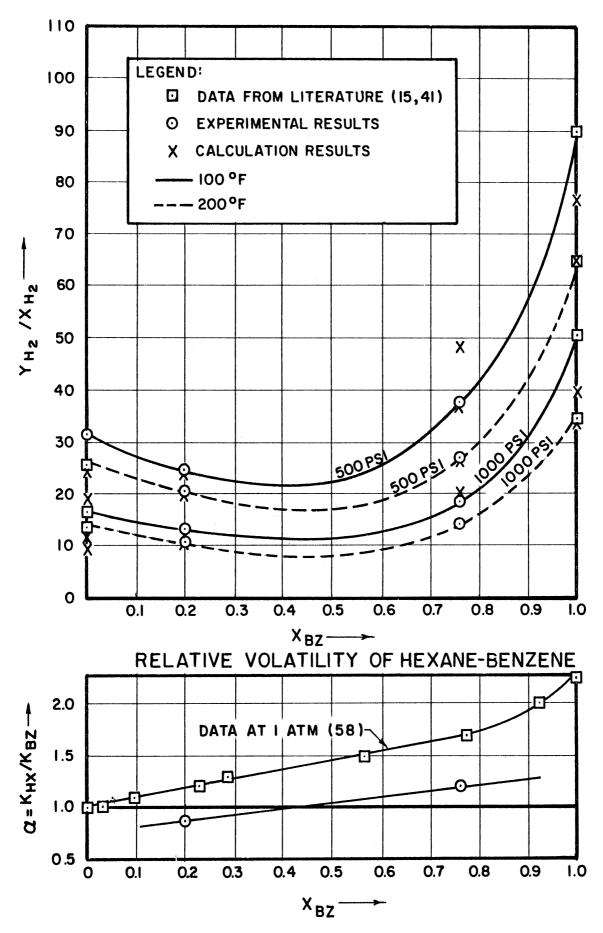
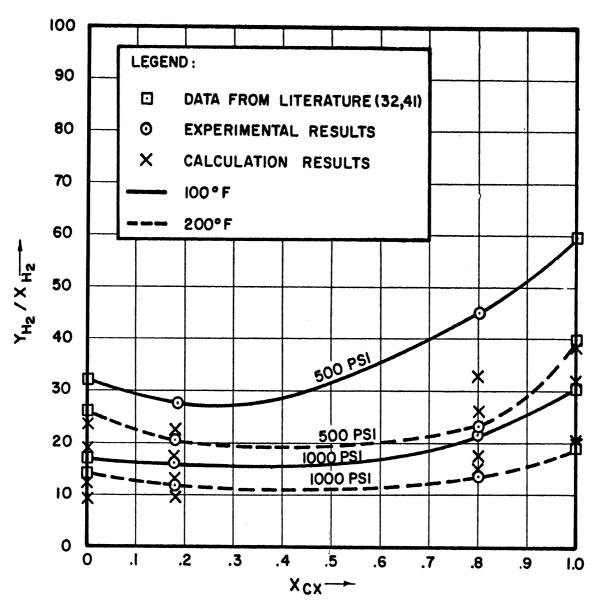



Figure 10. Hydrogen Vapor-Liquid Equilibrium Composition Ratios in Hexane-Benzene.

RELATIVE VOLATILITY OF HEXANE - CYCLOHEXANE

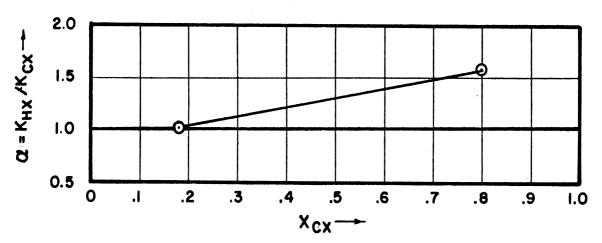
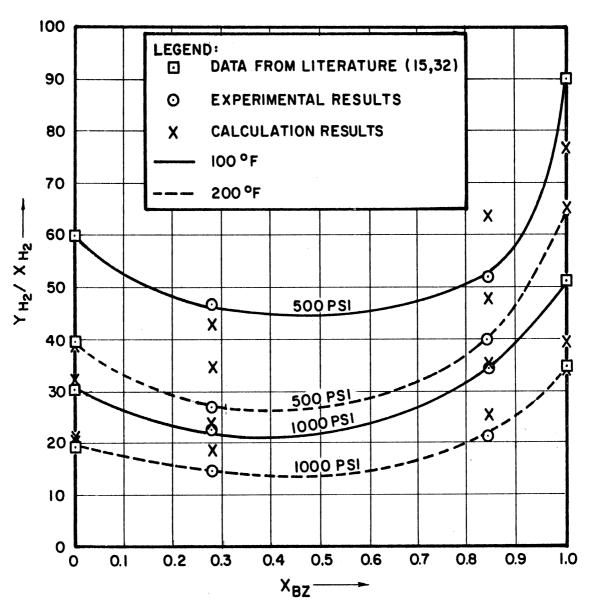



Figure 11. Hydrogen Vapor-Liquid Equilibrium Composition Ratios in Hexane-Cyclohexane.

RELATIVE VOLATILITY OF BENZENE - CYCLOHEXANE

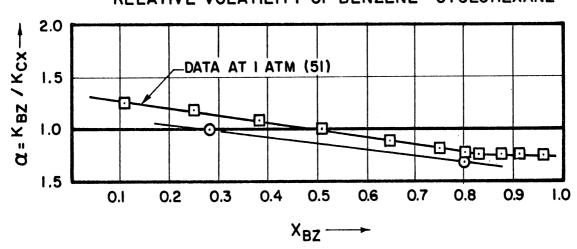


Figure 12. Hydrogen Vapor-Liquid Equilibrium Composition Ratios in Benzene-Cyclohexane.

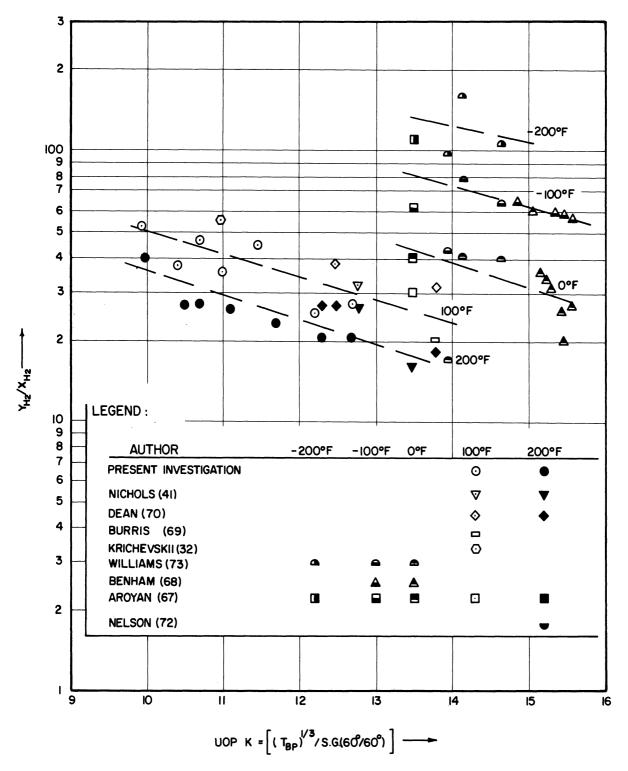


Figure 13. Hydrogen Vapor-Liquid Equilibrium Ratios at 500 Psi as a Function of UOP K Factors of Hydrogen Free Solvent.

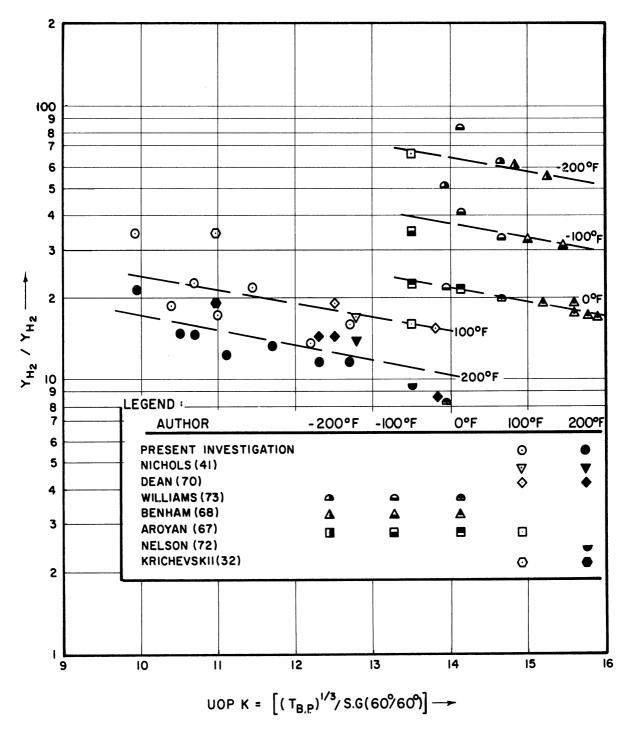


Figure 14. Hydrogen Vapor-Liquid Equilibrium Ratios at 1000 Psi as a Function of UOP K Factors of Hydrogen Free Solvent.

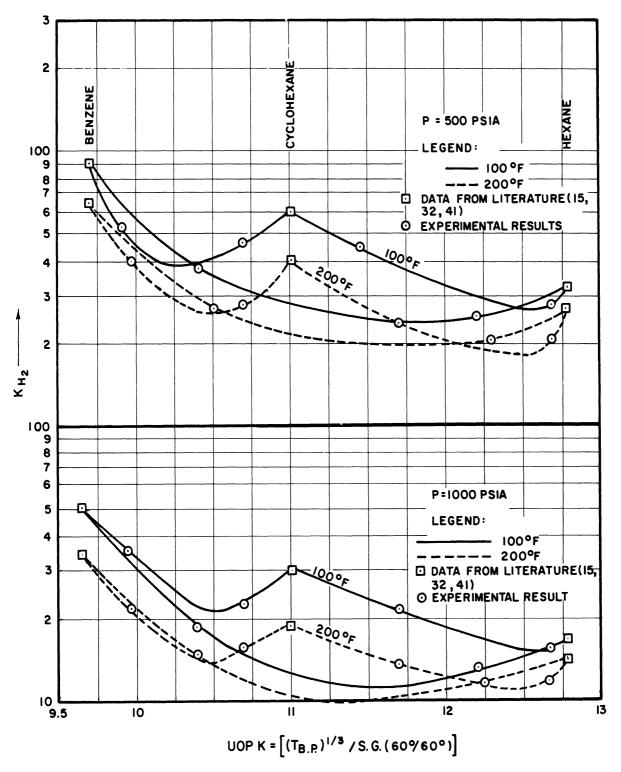


Figure 15. Vapor-Liquid Equilibrium Composition Ratios of Hydrogen as Function of the Solvent's UOP K Factor.

In Figures 16, 17 and 18, the K-values of the hydrocarbons studied in this work are shown on a conventional log-log plot. At a given system temperature and pressure, the K-values of two different hydrocarbons in the presence of hydrogen appear to be proportional to their vapor pressures. That is:

$$\frac{K_{i}}{K_{j}} = \frac{P_{i}^{O}}{P_{j}^{O}}$$

at constant P and T.

Data reported by Nichols (41) for the system hydrogen-hexane has been used to establish the validity of this relationship. All experimental hydrocarbon K-values were predicted to within approximately 25% in this manner.

Another method of correlating hydrocarbon K-values is presented in Figure 19. Several simplifying assumptions are incorporated into this graph. Since the hydrocarbon K-values measured in this work appeared to be proportional to their vapor pressures, Raoult's and Dalton's Laws were assumed to give a first order approximation of these K-values.

$$K_i = Y_i/X_i = P_i^O/P$$

or

$$K_iP = P_i^0$$

The vapor pressure of component "i" may be estimated from the Clausius-Clapeyron Equation:

$$\log \frac{(P_i^0)_1}{(P_i^0)_2} = \frac{\Delta H_V}{2.303R} \left[\frac{1}{T_2} - \frac{1}{T_1}\right]$$

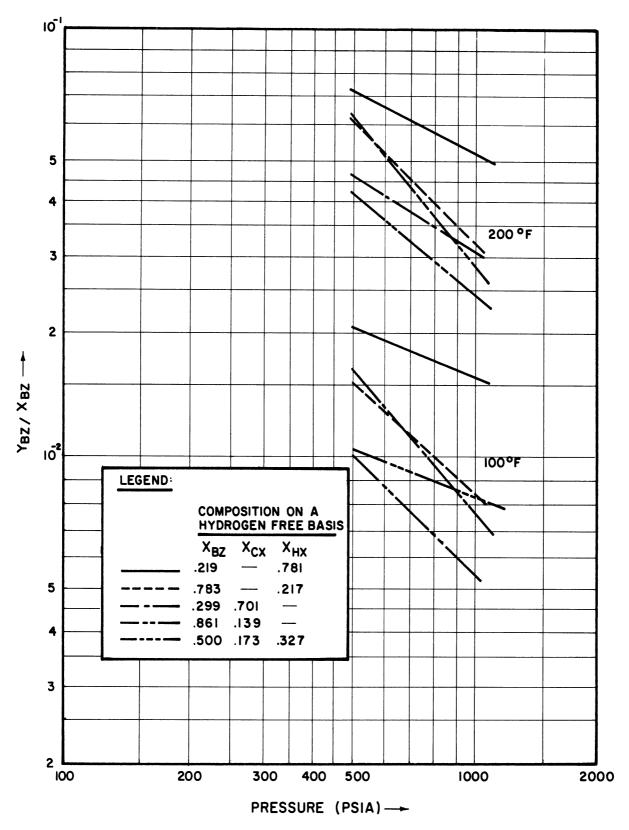


Figure 16. Benzene Vapor-Liquid Equilibrium Composition Ratios.

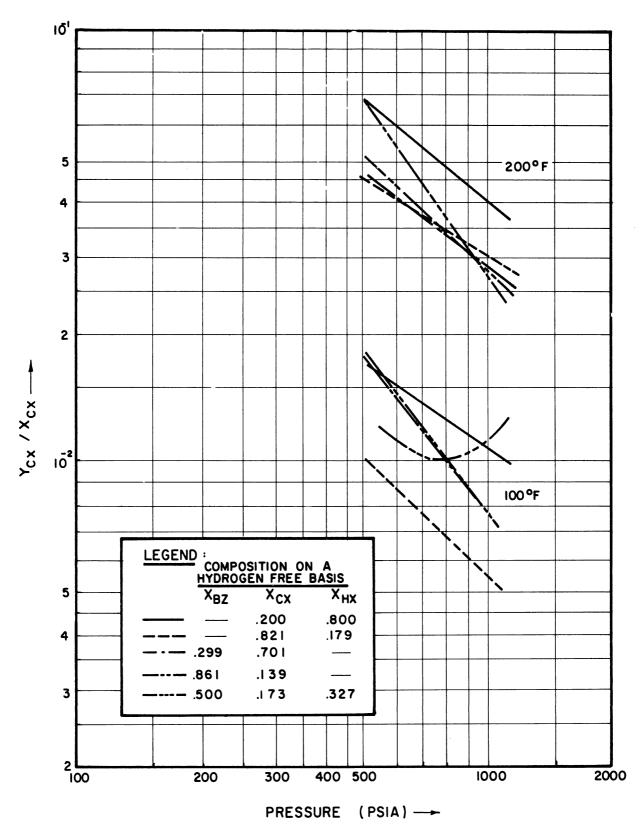


Figure 17. Cyclohexane Vapor-Liquid Equilibrium Composition Ratios.

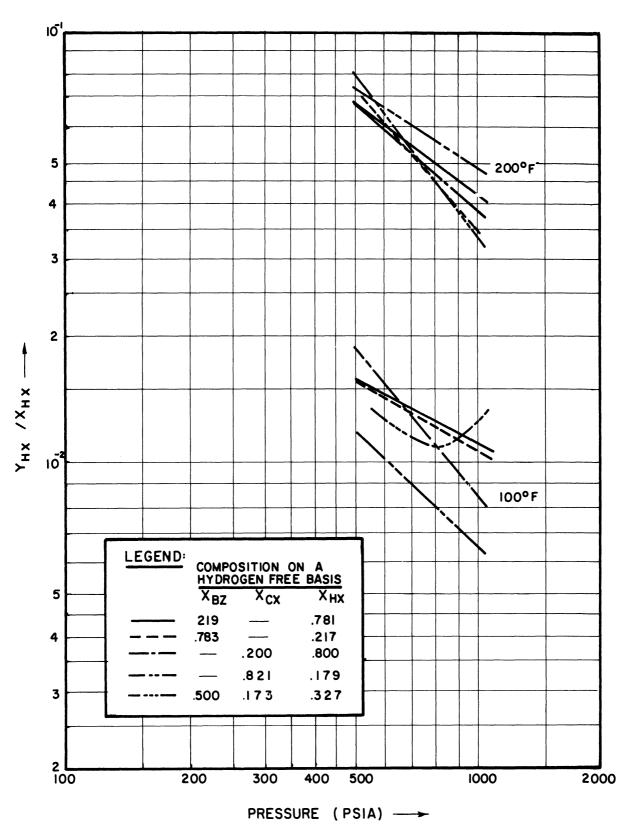
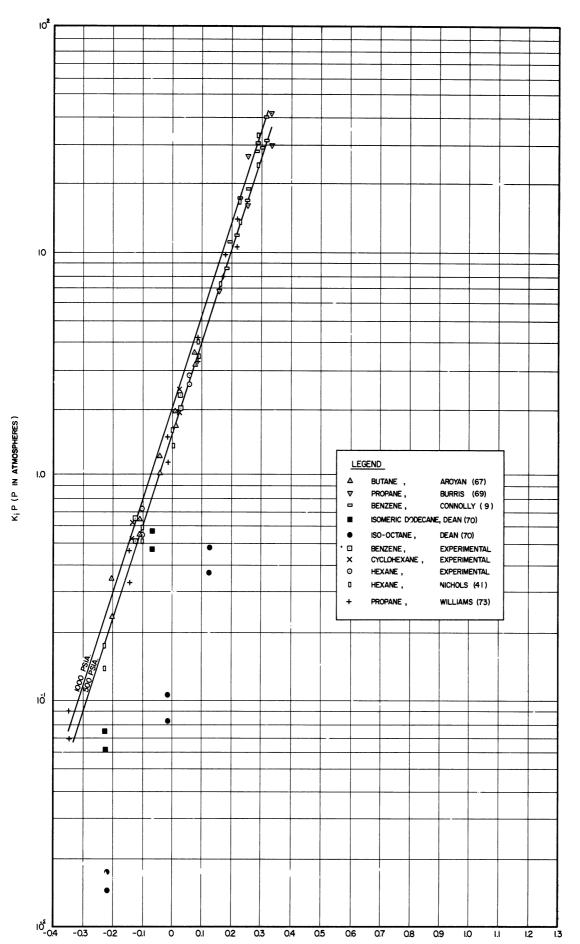



Figure 18. Hexane Vapor-Liquid Equilibrium Composition Ratios.

in Presence of Hydrogen as a Function of the System Pressure Vapor-Liquid Equilibrium Composition Ratios of Hydrocarbons and the Ratio of Hydrocarbon Boiling Point Temperature to System Temperature. Figure 19.

If the atmospheric boiling point of the component is chosen as a reference state, the vapor pressure of the component at any other temperature is given by the relationship:

$$\log P_{i}^{o} = \frac{\Delta H_{V}}{2.303R} \left[\frac{1}{T_{B,P}} - \frac{1}{T} \right]$$

Trouton's empirical ratio indicates that at atmospheric pressure:

$$\frac{\Delta H_V}{T_{B_a P_a}} = 21$$

so that

$$\log P_{i}^{o} = \frac{21}{2.303R} \left(1 - \frac{T_{B.P.}}{T}\right)$$

or

$$\log K_{i}P = 4.6 \left(1 - \frac{T_{B_{\bullet}P_{\bullet}}}{T}\right)$$

This relationship is in a reduced form, and except for data on isomeric dodecane and iso-octane by Dean and Tooke (70), it appears to represent vapor-liquid equilibrium composition ratios of non-polar hydrocarbons in the presence of hydrogen to 1000 psia. The effect of pressure on the hydrocarbon molal heat of vaporization is reflected in the fact that the slope of the lines shown in Figure 19 is 4.2 rather than 4.6.

SAMPLE CALCULATION

In order to further clarify the methods used to predict vapor-liquid equilibrium compositions in this dissertation, the following section has been added.

Estimating Overall Composition

The first step in calculations of this type is to estimate the overall composition of the phases. In industrial practice, the overall composition of the phases is the feed stream composition to an equilibrium stage.

The overall composition of the phases present in the equilibrium cell in this work has been estimated from the experimental equilibrium composition data. By a material balance around the equilibrium cell:

$$F = L + D$$

$$Fx_{F_{i}} = Lx_{i} + Dy_{i}$$

Per mole of feed:

$$D = \frac{x_{F_1} - x_1}{y_1 - x_1} = \frac{x_{F_2} - x_2}{y_2 - x_2} = \frac{x_{F_3} - x_3}{y_3 - x_3} = \frac{x_{F_4} - x_4}{y_4 - x_4}$$

where subscript 1 indicates benzene, subscript 2 indicates cyclohexane, subscript 3 indicates hexane, and subscript 4 indicates hydrogen.

$$(x_{F_{\downarrow_1}} - x_{\downarrow_1})(\frac{y_1 - x_1}{y_{\downarrow_1} - x_{\downarrow_1}}) = x_{F_1} - x_1$$

An additional restriction is required to provide a completely defined set of equations for the overall composition. In this work, the assumption was made that the hydrogen free composition of the liquid phase and calculated feed were equal. That is:

$$\frac{x_{F_{\underline{i}}}}{1-x_{F_{\underline{i}}}} = \frac{x_{\underline{i}}}{1-x_{\underline{i}_{\underline{i}}}}$$

or for benzene:

$$x_{F_1} = \frac{x_1}{1-x_4} - x_{F_4} (\frac{x_1}{1-x_4})$$

Substituting this relationship into the equation for x_{F_h} :

$$\mathbf{x}_{F_{\downarrow_{1}}} \ (\frac{\mathbf{y}_{1} - \mathbf{x}_{1}}{\mathbf{y}_{\downarrow_{1}} - \mathbf{x}_{\downarrow_{1}}}) \ - \ \mathbf{x}_{\downarrow_{1}} (\frac{\mathbf{y}_{1} - \mathbf{x}_{1}}{\mathbf{y}_{\downarrow_{1}} - \mathbf{x}_{\downarrow_{1}}}) \ = \ \frac{\mathbf{x}_{1}}{1 - \mathbf{x}_{\downarrow_{1}}} \ - \ \mathbf{x}_{F_{\downarrow_{1}}} (\frac{\mathbf{x}_{1}}{1 - \mathbf{x}_{\downarrow_{1}}}) \ - \ \mathbf{x}_{1}$$

Rearranging

$$\mathbf{x}_{F_{4}} = \frac{\frac{\mathbf{x}_{1}}{1-\mathbf{x}_{4}} + \mathbf{x}_{4}(\frac{\mathbf{y}_{1}-\mathbf{x}_{1}}{\mathbf{y}_{4}-\mathbf{x}_{4}}) - \mathbf{x}_{1}}{\frac{\mathbf{y}_{1}-\mathbf{x}_{1}}{\mathbf{y}_{4}-\mathbf{x}_{4}} + \frac{\mathbf{x}_{1}}{1-\mathbf{x}_{4}}}$$

then

$$x_{F_1} = x_1 \left(\frac{1 - x_{F_1}}{1 - x_{h}} \right)$$

$$x_{F_2} = x_2 \left(\frac{1 - x_{F_1}}{1 - x_{I_1}} \right)$$

and

$$x_{F_3} = x_3 \left(\frac{1 - x_{F_1}}{1 - x_{F_2}} \right)$$

Sample Calculation

The ideas and equations presented thus far will be combined to illustrate the calculation presented in Table XVII for Run 18.

The given data is:

Pressure = 567 Psia

Temperature = 100°F.

	X	$\underline{\mathtt{y}}$
Benzene	0,210	0.004
Cyclohexane	0.000	0,000
Hexane	0.751	0.011
Hydrogen	0.039	0.985

The first step is to calculate the overall phase composition. From the preceding subsection:

$$\mathbf{x_{F_{H_{2}}}} = \frac{\frac{\mathbf{x_{Bz}}}{1-\mathbf{x_{H_{2}}}} + \mathbf{x_{H_{2}}}(\frac{\mathbf{y_{Bz}}^{-\mathbf{x_{Bz}}}}{\mathbf{y_{H_{2}}}^{-\mathbf{x_{H_{2}}}}}) - \mathbf{x_{Bz}}}{\frac{\mathbf{y_{Bz}} - \mathbf{x_{Bz}}}{\mathbf{y_{H_{2}}} - \mathbf{x_{H_{2}}}} + \frac{\mathbf{x_{bz}}}{1-\mathbf{x_{H_{2}}}}}$$

$$x_{\text{H}_2} = 0.039$$

Then

$$x_{F_{Bz}} = x_{Bz} (\frac{1-x_{FH_2}}{1-x_{H_2}}) = 0.210$$

and

$$x_{F_{Hx}} = x_{Hx} \left(\frac{1-x_{F_{H_2}}}{1-x_{H_2}} \right) = 0.751$$

Vapor-Liquid Equilibrium Composition Ratios

The vapor-liquid equilibrium composition ratios are calculated by means of the two equation of state method.

$$K_{i} = \gamma_{i} \nu_{i} / \varphi_{i}$$

The vapor phase fugacity coefficient, ϕ_i , and the liquid phase activity coefficient, γ_i , are functions of composition. Thus, a first estimate

of all compositions must be made. For this case, assume:

	x	$\overline{\lambda}$
Benzene	0.210	0.002
Hexane	0.750	0.008
Hydrogen	0.040	0.990

Calculations for each of the coefficients shown in the above relationship for the vapor-liquid equilibrium composition ratio follow.

Liquid Phase Activity Coefficient

The Hildebrand Solubility Theory is the basis for the prediction of liquid phase activity coefficients. The equations used are discussed in the main text of this dissertation.

Physical data required for this particular calculation include the liquid phase composition, the liquid molal volume of each component, and the solubility parameter for each component.

Liquid molal volumes have been estimated in two ways. The Watson Expansion factor has been used, where:

$$\underline{\mathbf{v}_{i}}^{L} = (\mathbf{v}_{i}\omega_{i})(5.7 + 3.0 \, \mathbf{T}_{\mathbf{r}_{i}})$$

A compilation of $(V_i^0\omega_i^0)$ is given by Edmister⁽¹⁴⁾ and the critical properties of the components studied here are tabulated in Table VII.

At 100°F., the following liquid volumes may be calculated:

$$\underline{V}_{Bz}^{L} = 11.64 (5.7 + 3.0 \times \frac{560}{1012.7}) = 85.7 \text{ cc/gm-mole}$$

$$\underline{V}_{Hx}^{L} = 16.52 (5.7 + 3.0 \times \frac{560}{914.2}) = 124.6 \text{ cc/gm-mole}$$

$$\underline{V}_{H_2}^{L} = 1.05 (5.7 + 3.0 \times \frac{560}{60.2}) = 35.3 \text{ cc/gm-mole}$$

Specific physical data from the <u>Engineering Data Book (15)</u> indicates that

for the hydrocarbons at 100°F.:

$$\underline{V}_{Bz}^{L} = 78/0.860 = 90.6 \text{ cc/gm-mole}$$

$$\underline{v}_{Hx}^{L} = 86/0.642 = 134 \text{ cc/gm-mole}$$

From Table VII the liquid molal volumes recommended by Chao for all temperatures are found to be:

$$\underline{\underline{V}}_{Bz}^{L} = 89.4 \text{ cc/gm-mole}$$

$$\underline{V}_{Hx}^{L}$$
 = 131.6 cc/gm-mole

$$\underline{\underline{V}}_{H_2}^{L} = 31.0 \text{ cc/gm-mole}$$

Solubility parameters needed for this calculation are discussed in a special appendix on page 67.

This information may now be substituted into the volumetric entropy equation:

$$\ln \gamma_{i} = \ln \frac{\underline{y}_{i}^{L}}{\underline{y}_{M}^{L}} + \frac{\underline{y}_{i}^{L} (\delta_{i} - \delta_{M})^{2}}{RT} + 1.0 - \frac{\underline{y}_{i}^{L}}{\underline{y}_{M}^{L}}$$

where

$$\underline{\underline{v}}_{\underline{M}}^{\underline{L}} = \sum_{i} x_{i} \underline{\underline{v}}_{i}^{\underline{L}}$$

and

$$\delta_{\mathbf{M}} = \sum_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \underline{\mathbf{y}}_{\mathbf{i}}^{\mathbf{L}} \delta_{\mathbf{i}} / \sum_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \underline{\mathbf{y}}_{\mathbf{i}}^{\mathbf{L}}$$

By substituting specific data into these equations, the following liquid activity coefficients are found:

$$\gamma_{\rm Bz} = 1.425$$

$$\gamma_{\rm Hx} = 1.008$$

$$\gamma_{\rm H2} = 1.686$$

Pure Liquid Component Fugacity Coefficient

The pure liquid component fugacity coefficient for hydrogen, $\nu_{\rm H_2}, \mbox{ has been estimated by Chao's method from the data in Tables VI and VII:}$

$$\log \nu_{\text{H}_2} = 1.96718 + 1.02972/T_{\text{r}} - 0.054009 T_{\text{r}} + 0.0005288 T_{\text{r}}^2 + 0.008585 P_{\text{r}} - \log P_{\text{r}}$$

Here $T_{r} = 560/60.2$

 $P_r = 567/190.8$

and $v_{\rm H_2} = 14.929$

The pure liquid component fugacity coefficients for the hydrocarbons has been estimated from a knowledge of the hydrocarbons' vapor pressure and liquid molal volumes:

$$\ln \nu_{i} = \ln \frac{P_{i}^{o}}{P} + \ln \left(\frac{f_{i}}{P}\right)_{P_{i}^{o}} + \frac{V_{i}^{L}(P-P_{i}^{o})}{RT}$$

At 100°F., the following vapor pressures are found in the Data Book on Hydrocarbons by Maxwell (39):

 $P_{Bz}^{o} = 0.215 \text{ atmospheres}$

P^O = 0.343 atmospheres

For both hydrocarbons, $(\frac{f_i}{P})_{P^0}$ is essentially unity. Thus:

 $v_{Bz} = 0.007$

 $\nu_{\rm Hx} = 0.010$

Vapor Phase Fugacity Coefficient

The vapor phase fugacity coefficient has been calculated in three different ways. The first method utilizes the Virial Equation of

State. From Figures 4 through 7, the following experimental virial coefficients are found at 100°F.:

$$(100^{\circ} \text{F.})$$
 $B_{\text{Bz,Bz}} = -1430 \text{ cc/gm-mole}$
 (100°F.)
 $B_{\text{Hx,Hx}} = -1750 \text{ cc/gm-mole}$
 (100°F.)
 $B_{\text{Hz,Hz}} = 14.50 \text{ cc/gm-mole}$

From Figures 8 and 9, the following second virial interaction coefficients are found:

$$B_{Bz,Hx}$$
 = - 1580 cc/gm-mole
 $B_{Bz,Hz}$ = - 4.0 cc/gm-mole
 B_{Bz,H_2} = - 4.0 cc/gm-mole
 B_{Hx,H_2} = 7.0 cc/gm-mole

The virial equation must first be solved for its largest root, the vapor-phase volume:

$$\frac{P\underline{V}_{\underline{M}}^{V}}{RT} = 1 + \frac{B_{\underline{M}}(T)}{\underline{V}_{\underline{M}}^{V}}$$

where

$$B_{M} = y_{Bz}^{2} B_{Bz,Bz}^{(T)} + y_{Hx}^{2} B_{Hx,Hx}^{(T)} + y_{H_{2}}^{2} B_{H_{2},H_{2}}^{(T)} + 2 y_{Bz} y_{Hx} B_{Bz,Hx}^{(T)} + 2 y_{Bz} y_{Hx} B_{Bz,Hx}^{(T)}$$

$$+ 2 y_{Bz} y_{H_{2}}^{2} B_{Bz,H_{2}}^{(T)} + 2 y_{Hx} y_{H_{2}}^{2} B_{Hx,H_{2}}^{(T)}$$

Upon substitution of values presented earlier, this equation yields the result:

$$\underline{V}^{V}$$
 = 675.695 cc/gm-mole

Then

$$\ln \varphi_{i} = \frac{2}{\underline{V}_{M}^{V}} (y_{Bz}B_{i,Bz}^{I} + y_{Hz}B_{i,Hx}^{I} + y_{Hz}B_{i,Hz}^{I}) + y_{Hz}B_{i,Hz}^{I})$$

$$- \ln \frac{\underline{P}_{M}^{V}}{\underline{R}\underline{T}}$$

Solving this equation gives the result:

$$\phi_{Bz} = 0.922$$
 $\phi_{Hx} = 0.951$
 $\phi_{H_0} = 1.023$

The Redlich-Kwong Equation, integrated for moderate pressures, has also been used to predict vapor phase fugacity coefficients.

$$\ln \varphi_{i} = [B_{i} - A_{i}^{2} + (A_{i} - A_{M})^{2}] P$$

where

$$A_i^2 = 0.4278 \frac{T_c^{2.5}}{P_c T^{2.5}}$$
 $B_i = 0.0867 \frac{T_c}{P_c T}$

and

$$A_{\mathbf{M}} = \sum_{\mathbf{i}} y_{\mathbf{i}} A_{\mathbf{i}}$$

This equation gives the results

$$\phi_{Bz} = 0.928$$
 $\phi_{Hx} = 0.960$
 $\phi_{H_2} = 1.024$

Calculation of K-Values and Improved Estimates of Equilibrium Phase Compositions

The information calculated in the preceding sections may now be used to estimate the K-values for each component.

Using the vapor phase fugacity coefficients based on the Virial Equation of State, the following results are obtained:

$$K_{Bz} = \frac{1.425}{0.922} \times 0.007 = 0.011$$

$$K_{Hx} = \frac{1.008}{0.951} \times 0.010 = 0.011$$

$$K_{H_2} = \frac{1.686}{1.023} \times 14.929 = 24.612$$

These values, plus the overall composition, are used to improve the original estimates made of the equilibrium phase compositions.

From the Outline of Correlation Procedure (see page 54ff):

$$x_{H_2}(K_{H_2}-1) \left(\frac{x_{F_{BZ}}(K_{BZ}-K_{Hx})}{x_{F_{H_2}}(K_{BZ}-1) + x_{H_2}(K_{H_2}-K_{Bz})}\right) + K_{Hx}(1-x_{H_2}) + K_{H_2}x_{H_2} = 1.0$$

Substituting the known values and solving for $\mathbf{x}_{H_{\text{O}}}$ gives the result:

$$x_{H_2} = 0.040$$

Then

$$x_{Hx} = \frac{x_{H_2}x_{F_{Hx}}(K_{H_2}-1)}{x_{F_{H_2}}(K_{Hx}-1) + x_{H_2}(K_{H_2}-K_{Hx})}$$

Substituting into this equation gives the result:

$$x_{Hx} = 0.750$$

Finally

$$x_{Bz} = 1.0 - x_{H_2} - x_{Hx}$$

$$= 0.210$$

The vapor phase compositions are found from the relationship:

$$y_i = K_i x_i$$

so that

$$y_{Bz} = 0.002$$

y_{Hx} = 0.008

$$y_{\rm H_2} = 0.990$$

As these are the initial values assumed, the calculation is complete. This same procedure has been used to re-estimate equilibrium phase compositions in which vapor phase fugacity coefficients were estimated from the Redlich-Kwong Equation of State, integrated for moderate pressures.

Calculation of Interaction Virial Coefficients

This calculation is discussed in the section entitled "Calculation Results" (page 75). The experimentally determined equilibrium phase compositions are assumed to be correct. Then

$$\varphi_{i} = \gamma_{i} \nu_{i} / K_{i}$$

Substitution of the experimentally determined compositions into the equations previously discussed gives the results:

$$\phi_{Bz} = (1.423)(0.007)(0.210)/0.004 = 0.523$$

$$\varphi_{Hx} = (1.009)(0.010)(0.751)/0.011 = 0.690$$

$$\phi_{\text{H}_2} = (1.686)(14.929)(0.039)/0.985 = 0.999$$

The virial equation must be solved for the vapor-phase volume, giving the result:

$$\frac{V^{V}}{M}$$
 = 675.430 cc/gm-mole

for the experimental vapor phase composition.

Assuming that a change in the hydrogen-hydrocarbon second virial interaction coefficients will not affect this last result, the equation for the vapor phase fugacity coefficient may be written:

$$\ln \varphi_{i} = \frac{2}{\sqrt{V}} \left(y_{Bz} B_{i,Bz}(T) + y_{Hx} B_{i,Hx}(T) + y_{Hz} B_{i,Hz}(T) \right) - \ln \frac{PV_{M}^{V}}{RT}$$

The values of ϕ_i and \underline{V}_M^V , which have just been determined, plus experimentally determined values of vapor phase compositions and all second virial coefficients except the hydrogen-hydrocarbon second virial interaction coefficients, which are the variables in this calculation, are now substituted into the above relationship.

In order to reduce experimental uncertainty, this set of equations from Run 18 has been combined with similar sets of equations utilizing data from Runs 21, 22 and 25. The combined set of equations has been solved by the method of least squares for the hydrogen-hydrocarbon second virial interaction coefficients, giving the results:

$$(100^{\circ}F.)$$
 B_{Bz,H_2} = - 140.588 cc/gm-mole
 $(100^{\circ}F.)$
 B_{Hx,H_2} = - 51.052 cc/gm-mole

The new estimates of the hydrogen-hydrocarbon second virial interaction coefficients have then been used in a second calculation of equilibrium phase compositions, giving as final results:

	X	$\overline{\lambda}$
Benzene	0,210	0.002
Hexane	0.750	0.008
Hydrogen	0.039	0.990

Computer Program

The complete calculation that has just been described in detail has been programmed for a 704 IBM computer. This program is presented in Table XXII.

TABLE XXII

FORTRAN PROGRAM FOR PREDICTION OF EXPERIMENTAL FESULDS

USING I.B.M. 704 DIGITAL COMPTITER

FORMAT(6F8.3)	-	91	COEFFICIENT.LIQUID PHASE	-VLE00580 FVLE00590
FORMA!(116,F10.2) FORMAT(7F10.4,/F10.4)	VLE00041 VLE00050		3,3H F11,3,3H F11,3,4H F11,3,7 ELIGACITY,DURF F11,3,7	•3HVLF00610
	-		-11.3,3H F11.3,4H F11.3,4 COEELTIENT VADOR OHASE F11.3	VLE00620
DIMENSION B(4,4,2,2),5(4),AVL(4), PC(4),T(1),TRUN(4),P(4),ANU/C(8,4),XSAV(4,4),XSUV(4,4),XRKS(4,4),Y(8,4),YSAV(4,4),YSAV(4,4),	4,41,X	7		VLE00640
CS(4*4),AKVALS(4,4),AKSAV(4,4),AKSUV(4,4),AKRKS(4,4),GS(4,4), C,4),GSUV(4,4),GRKS(4,4),ANUS(4,4),ANUSAV(4,4),ANUSUV(4,4),AN	4,4),6SAV(4VLE00080 4),ANURKS(4VLE00090		.3.3H FI1.3.4H FI1.3.7	VLE00660
Co4)»FS(4,4)»FSAV(4,4)»FSUV(4,4)»FRKS(4,4);VLS(4);VLS(4);VLSAV(4);VL CoVLRKS(4)»VVS(4)»VVSAV(4)»VVSUV(4)»AKVAL(4,4)»XF(4,4),SVL(4)	4).VLSUVT4)VLEDDIDG VL(4).VL(4)VLEO0110		X F11.33.3H F11.33./	VLE00680 VLE00690
C>VV(4)»F(4»4)» TC(4)»G(4»4)»AKVALC(4 <u>%4)</u> ,ARK(4;47,BRR(4;47,E47);P CT(1)»VP(4)»ARKM(4)»BM(4)»XS(4»4)»YS(4»4)»BUVS(4»4»4),BAVS(4»	94),PP(4),TVEE00120 VS(4,4,4),AVLF00130		FI1.3.4H F11.3)	V <u>CE00700</u> VLE00710
C(4,4),FC(4,4),R(4,4),ERR(4),DERR(4) FORN,AT(27H1 RUN NUMBER I 10,/	VLE00140 VI F00150	18	55H ACTIVITY COEFFICIENT, LIQUID PHASE F	-VLE00720
2,21H			F11.3.4H F11.3.4/	VLE00740
VIRIAL EQUATION VALUES REDLICH-KWONG	,		F11.3.4H F11.3)	VLE00760
ADJUSTED UNADJUSTED VALUES/		6	INTERACTION VIRIAL COEFFICIENTS/ B(HYDROGEN-BENZENE)	VLE00780 VLE00790
VOLUME OF LIGHTD 1CC PER GM MOLET F11.3.44H F11.3.4/	FII.3.3.3HVLF00220 VLE00230		F11.3,3H F11.3,/ B(HYDROGEN-CYCLOHEXANE)	VLE00810
VOLUME OF VAPOR (CC PER CM MARETF11.3)	F11.333HVCE00240VLF00250		F11.3.3H F11.33/ B(HY)ROGEN-HEXANE)	VLE00820 VLF00830
		,	FII.3,3H FII.3)	VLF00840
!	F11.3,3HVI F00290	-	*1),B(4,4,1),B(2,1,1),B(3,1,1),B(4,	VLE00860 VLF00870
ALUE	F11.3.3HVLF00310		READ INPUT TAPE 7,2,8(1),8(2),8(3),8(4),AVL(1),AVL(2),AVL(3),AVL(3), VLF00880	VLF00880
3•4H F11•3) ACTIVIT			EAD INPUT TAPE 7,3,VP(1),VP(2),VP(3),PC(4),TC(4),TT	VLE00900 VLE00910
11 . 3 4CIT	F11.3.3HVLE00350		READ INDUT TAPE 7.4.IRUN(MI.PP(M) READ INDUT TAPE 7.5.X [1.M], X(2.M), X(3.M), X(4.M), Y(1.M), Y(2.M), Y(3.VLE00930	VLE00921
F11.3.4H F11.3.7/ FUGACITY COEFFICIENT.VAPOR PHASE	F11.3.3HVLE00370	2,2	TAPE 7	VLE00940
F11.3.4H F11.3) CYCLOHEXANE /	VLE00380		-	VLE00960
ү F11.3,4H F11.3,/		17		VLE00970
X F11.3,4H F11.3,/	1.3.3HVLE00420 VLE00430	23	14.2)=B(L,M,1) (1.4)=Y(1.4M)/X(L,M)	VLE00985 VLE00990
K VALUE F11.3.44H F11.3.	11.3.3HVLE00440	24	71 62670	VLE01000
FIL.3.3H FIL.3.4H FIL.3.7	FVLE00460			VLE01020
1 60		25		VLE01050
FUGACITY COEFFICIENT, VAPOR PHASE FIL. 3,44H F11.3)	F11.3.3HVLE00500		N≡1.	VLE01070
	VLE00520 F11-3-3HV/ F00530		[=194 MINISTER MINISTER MINIS	VLE01090
	VLE00540	a	\(\lambda \) \(\text{S(L, \(\text{M}\)} \) \(\text{N(L, \(\text{M}	VLE01115
F11.3,4H F11.3,7 K VALUF		53	NUE N-1.4	VLE01120 VLE01130

	BUVS(1,4,4)=B(1,4,1) BUVS(2,4,4)=B(2,4,1)	VLE01140	300	DO 307 M=1,4	VLE01770 VLF01775
31	UVS(3,4,M)=B(3,4,1)	01160	200		1 2
		VLE01165	303	04,305	VLEO
		01175	304		VLEC
34		01180	303		VLEC
	((W + +)	VLE01200	306	AKVALC(3,M)=0,0000	VLE01820
ı		VLE01210	307		VLE M
	XF(4+M)=(X(2+M)/(1+0+X(4+M))+(X(4+M)*(Y(2+M)-X(2+M))))/(Y(4+M)-X(•VLE01220		V V V V V V V V V V V V V V V V V V V	VLE01865
1	t • 3	VLEU1230	308	ERR(M) = X(4,0M) (AKVALC(4,0M) - 1.0) ((XF(1,0M) (AKVALC(1,0M) - AKVALC(3,0M)))/V	VLE
		VLE01240 VI F01250		C(XF(4M)(AKVALC[1]))	V L F.
-	XF(3.0) = X(3.0) * (1.0 - XF(4.0)) / (1.0 - X(4.0))	VIFOTZEO		CC (A N) A N (I) 2 A N (I) 1 A N (V) (C (3 A N) (1 A O V) (C (3 A N) 1 A O V) (C (3 A N) A	
		VLE01270			VLF01874
	JND-1.0) 53,73,53	01427	309	IF(ABSF(ERR(M))-0.0001) 313,313,310	VLE01880
1	OUTPUT TAPE 6,191,((XF(L,M),L=1,4),M=1,4)	VLE01428	310	DERR(M)=(ERR(M)-AKVALC(3*M)+1*0)/(X(4*M))-X(4*M)(AKVALC(4*M)-1*0)(V	VLE
		VLE01429		C(xF(1,*M)*(AKVALC(1,*M)-AKVALC(3,*M))(AKVALC(4,*M)-AKVALC(1,*M)))/((XF(V	VLE
į		VLE01430	1	C4.M) (AKVALC(1.M)-1.0)+X(4.M) (AKVALC(4.M)-AKVALC(1.M)))**2)+(XF(2.MV	VLE:
	VEC.	VLE01440 VIF01450		(C) (AKVAC(C(2-M) - AKVAC(C(2-M)) (AKVAC(C(2-M)) - AKVAC((3-M))) / ((AF(4+M)) (AKVAC(C(3-M)) (AKVAC(C(3-	/ / ! !
	(7) S*(7) \N * \V \(\mathreal{V}\)	VI F01460		CALCISMIT 1801 ANI	
	754	VLE01470	312	A(44m)=A(44m)=EAR(m)/DERN(m) GO TO 308	V -
	1	VLEOI480	313	X (8 • M) = X (4 • M)	VLE
-	Y(3,M)*	01490	314	X(5,M)=(X(8,M)*XF(1,M)*(AKVALC(4,M)-1,0))/(XF(4,M)(AKVALC(1,M)-1, V	VLE
	CB(3>3>K)+Y(4*M)*Y(4*M)*B(4*4*K)+2*0*Y(1*M)*Y(2*M)*B(1*2*K)+Z*O*Y(1VC	01500		C)+X(8,M)(AKVALC(4,M)-AKVALC(1,M)))	VLE
	(3°M)*B	01510		X(6,M)=(X(8,M)*XF(2,M)(AKVALC(4,M)-1,0))/(XF(4,M)(AKVALC(2,M)-1,0)V	VLE
	2	VLE01520		(1)	VLE01924
-	NOT	/ P I V LE 0 15 50			VLE01925
	7. 1 = 1 - 1.	VLE01240	315	V(5*M)=AVALC(1*M)**X(5*M)	VLE01930
į		* LEG1550			VLE01931
		VLF01565	316		VLF01933
ĺ	•2•K)+Y(3•M)*B(L•3•K)+Y(4•M)*B(L•4•K)))	VLF01570	2		VI FOIR41
- !		VLE01580	105	TE OUTPUT TAPE 6+192+((X(L+M)+Y(L+M)+ANU(L+M)+G(L+M)+F(L+M)+L	=1VLE01842
		VLE01590		<u> </u>	VLE01843
1	⊢	VLE01600			VLE01844
	C14111	01601	85		VLE01850
		LE01602	98		VLE01860
	Z)*(T(X)-VT(L))/(8Z•05/*)	01910	87		VLE01870
İ	NO (C. P. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0.1020	200	-X(LL9M)/-U+UVUUI/ XI+XI+BX	VLEU1000
	0,68	VLF01635	60		VLF01900
)/VL(M))*EXP((AVL(L)*(S(L)-SVL(M)/VL(M))**2)/(1.987	11640	06		
		VLE11641	91	ABSF(Y(L,M)-Y(LL,M))-0.0001) 92,92,89	VLE01920
		11642	92		VLE01925
400	G(L,M)=EXP((AVL(L)*(S(L)-SVL(M)/VL(M))**2)/(1,987*T))	V.LE11643	63		VLE01930
		01650	46	,120,167	VLE01940
i	CONTINUE SYSTEM STATES OF THE	VLE01660	95		VLE01950
	300,72,300	VLE016/0	;		N .
	(W) (A= (X)	VLE01000	96	;UV(M)=VL(M)	VLE01970
		V F01700	~ a	DO 109 F=194	> >
į	***************************************	VLF01710	00		VI F02000
į		01720	100		Z. E.
	[•M)	VLE01730	101	ANUSUV(L,M)=ANU(L,M)	VLE02030
	F(L,M)	VLE01740	102		VLE02040
	VLE	VLE01750	103	YSUV(L,M)=Y(L,M)	VLE02050

108 J=J+1 109 DO 113 M=1+4	VLE02080 14	3 CONTINUE BD=0.00	VLE02480 VLE02490
	VLE02090	DO 144 M=194	VLE02500
- [VLE32100	BD=BD+Y(4,9M)*A(2,9M)+Y(2,9M)*A(4,9M)	VLE02510
112 Y(L,M)=YS(L,M)	VLE02110 144		V.E02520
1	VI F02130	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VE 02230
DO 119 M=194	VLE02140	CD=CD+Y(4+M)*A(3+M)+Y(3+M)*A(4+M)	VLE02550
M)*ARK(I,•M)+Y(2,•M)*ARK(2,•M)+Y(3,•M)*ARK(3,•M)+Y(4.M)*ARKVLE02150 14	5	VLE02560
117 00 118 1 = 1 - 4	VLEUZIBO	Ar-(-000	VLEUZS 10
- 00	VLE02180	DO :40 M=104 AA=AA+Y(40M)**2+Y(10M)**2	VLE02585
119 CONTINUE GO TO 63	VLE02190 146	CONTINUE	VLE02590
	VLEGZZOO	DO 147 X=1 •4	VLF02600
1			VLE02605
122 DO 128 L=1•4 123 XRKS(L•M)=X(L•M)	VLE02220 147		VLE02610 VLF02615
	VLE02240	D0 148 M=194	VLE02620
			VLE02625
126 GRKS(L*M)=G(L*M) 127 ANIBKS(L*M)=ANI(L*M)	VLEU226U 148		VLE02630 VIE02635
i	VIE02280	DA - 146 B31-4	
	VLE02290	BA=BA+Y(1,M)*Y(2,M)	VLE02645
130 K=K+1	VEE02300 149		VCE02650
	VIEU2320	00-00-00 00-00-00-00-00-00-00-00-00-00-0	VLEUESS
			VLE02665
	VEL02340 150	1	VLE32670
135 ANU(L,M) = ANU(L,M)	/LE02350	BC=0•00	VLE02675
	VLE02370	DO 151 M=104 BC=BC+Y(3.1*)/2.2.1	VLE02680 VLF02685
	VLE02380 15	_	VLE02690
DO 142 M=1•4	'		VLE02695
V(M)/(82.057*1)/-Y(4.M)	*B(4,4,VLE02400	DO 152 M=1,4	VLE02700
	VI F02402	CA-CANTINE	VIEDZZIO
R(L,M)=FC(L,M	-1	7	VLE02715 .
	VLE02405	DO 153 M=1,4	VLE02720
201 R(1, M) = 1,0000	VLE02406		VLE02725
202 IF(X(2*M)) 204*203*204 203 R/2*M)=1-0000	VLEUZ4U/ 15	m	VLE02/30 VIE02735
	VLF02400	00-154 M=1-4	VLF02740
R(3,M)=1.0000	VLE02410	CC=CC+Y(4*M)**2+Y(3*M)**2	VLE02745
)/2.0*ELOG(R(L,M))-Y(1,M)*B(L,1,K)-Y(2,M)*B(L,Z,K)-Y			VLE02750
14.0 (M) * (I - 5.4.8.)	VLEU2430	1	VLE02760
142 CONTINOT 209 DO 217 M=1,4		56 EB=AD*BB*CC+AB*BC*CU+AC*BB*DC#D+AC*BB*CD=BV*AB*CC=AA*CB*BC*S7 EC=AA*BD*CC+AD*BC*CA+AC*CD*BA=AC*BD*CA-BA*AD*CC-AA*CD*BC	VLE02780
İ	-	-	VLE02790
İ	VLE02442 15	1	VLE02800
IF(X(∠*M)) A(2•M)≖0•0000		160 B(2,4,2)=EC/EA 161 B(3,4,2)=ED/EA	VLE02810 VIF02820
į	 		VLE02830
1	VLE02446		VLE02840
217 CONTINUE 218 An=0.00	VLE02448 VLF02450	BAVS(294,M)=B(294,2)	VLE02850 VI F02860
	VLE02460	B(4.1.2)=B(1.4.2)	VLE02861
N	07.4507.17	(1	0.00

TABLE XXII CONT'D

165	B(4,3,2)=B(3,4,2)	VLE0286
	K=K+1	VLE0287
165	GO TO 109	VLE0288
167	Do 177 M=1•4	VLE0289 VLE0290
168	VVSAV(M)=VV(M)	VLE0290
169	VLSAV(M)=VL(M)	VLE0292
170	DO 176 L=1,4	VLE0292
171	$\frac{AKSAV(L,M)=G(L,M)*ANU(L,M)/F(L,M)}{F(AV(L,M)-F(L,M)}$	VLE0294
172	FSAV(L,M)=F(L,M)	VLE0295
173 174	GSAV(L,M)=G(L,M) ANUSAV(L,M)=ANU(L,M)	VLE0296
175	XSAV(L,M)=X(L,M)	VLE0297
176	YSAV(L,M)=Y(L,M)	VLE0298
177	CONTINUE	VLF0299
178	DO 189 M=1,4	VLE0299
179	WRITE OUTPUT TAPE 6,9, IRUN(M),TT,PP(M)	VLE0300
180	WRITE OUTPUT TAPE 6,10, VLS(M), VLSAV(M), VLSUV(M), VLRKS(M), VV	S(M) VVVLE0301
	CSAV(M) • VVSUV(M)	VLE0302
181	WRITE OUTPUT TAPE 6,11, YS(1,M), YEAV(1,M), YSUV(1,M), YRKS(1,M)	
	CM) , XSAV(1, M) , XSUV(1, M) , XRKS(1, M) , AKVALS(1, M) , AKSAV(1, M) , AKS	
	C,AKRKS(1,M)	VLE0305
182	WRITE OUTPUT TAPE 6,12,GS(1,M),GSAV(1,M),GSUV(1,M),GRKS(1,M	1) , ANUS (VLE 0 3 0 6
	C1,M),ANUSAV(1,M),ANUSUV(1,M),ANURKS(1,M),FS(1,M),FSAV(1,M),	
	CM) •FRKS(1•M)	VLE0308
183	WRITE OUTPUT TAPE 6,13,YS(2,M),YSAV(2,M),YSUV(2,M),YRKS(2,M	
	CM) , XSAV(2, M) , XSUV(2, M) , XRKS(2, M) , AKVALS(2, M) , AKSAV(2, M) , AKS	SUV(2,M)VLE0310
	C+AKRKS(2+M)	VLE0311
184	WRITE OUTPUT TAPE 6,14,GS(2,M),GSAV(2,M),GSUV(2,M),GRKS(2,M)	11 • ANUS (VLEU312
	(2,M),ANUSAV(2,M),ANUSUV(2,M),ANURKS(2,M),FS(2,M),FSAV(2,M)	VLE0314
185	CM),FRKS(2,M) WRITE OUTPUT TAPE 6,15,YS(3,M),YSAV(3,M),YSUV(3,M),YRKS(3,M	
105	CM), XSAV(3, M), XSUV(3, M), XRKS(3, M), AKVALS(3, M), AKSAV(3, M), AKSAV(3, M)	11
	C. AKRKS (3, M)	VLE0317
186	WRITE OUTPUT TAPE 6,16,GS(3,M),GSAV(3,M),GSUV(3,M),GRKS(3,M)	
_100	(3,M), ANUSAV(3,M), ANUSUV(3,M), ANURKS(3,M), FS(3,M), FSAV(3,M)	FSUV(3.VLF0319
	CM) • FRKS(3•M)	VLF0320
187	WRITE OUTPUT TAPE 6,17, YS(4,M), YSAV(4,M), YSUV(4,M), YRKS(4,M	
	CM) , XSAV(4, M) , XSUV(4, M) , XRKS(4, M) , AKVALS(4, M) , AKSAV(4, M) , AKS	SUV (4 .M) VLE0322
	C,AKRKS(4,M)	VLE0323
188	WRITE OUTPUT TAPE 6,18,GS(4,M),GSAV(4,M),GSUV(4,M),GRKS(4,M	1) • ANUS (VLE0324
	(4,M), ANUSAV(4,M), ANUSUV(4,M), ANURKS(4,M), FS(4,M), FSAV(4,M)	FSUV14, VLE032
	CM) •FRKS(4•M)	VLE0326
189	WRITE OUTPUT TAPE 6,19, BAVS(1,4,M), BUVS(1,4,M), BAVS(2,4,M),	BUVS (2, VLE0327
	C4,M),BAVS(3,4,M),BUVS(3,4,M)	VLE0328
190	GO TO 20	VLE0329
191	FORMAT (1H 8F6.5/1H08F6.5//)	VLE0330
	FORMAT(1H 8F7•5//)	VLF033

BIBLIOGRAPHY

- 1. Benedict, M., Webb, G. B., and Rubin, L. C. J. Chem. Phys., 8, (1940) 33^{14} .
- 2. Benedict, M., Webb, G. B., and Rubin, L. C. Chem. Eng. Prog., 47, (1951) 419.
- 3. Benedict, M., Webb, G. B., and Rubin, L. C. <u>Chem. Eng. Prog.</u>, <u>47</u>, (1951) 449.
- 4. Benedict, M., Webb, G. B., Rubin, L. C., and Friend, L. Chem. Eng. Prog., 47, (1951) 571.
- 5. Benedict, M., Webb, G. B., Rubin, L. C., and Friend, L. Chem. Eng. Prog., 47, (1951) 609.
- 6. Benham, A. L. Ph.D. Thesis, University of Michigan, 1956.
- 7. Chang, C. S. Wang, Ph.D. Thesis, University of Michigan, 1944.
- 8. Chao, K. C., and Seader, J. D. A.I.Ch.E. Convention, Tulsa, 1960.
- 9. Connolly, J. F. Personal Communication, 1959.
- 10. Cosway, H. F. Ph.D. Thesis, University of Michigan, 1958.
- 11. Cox, J. D., and Stubley, D. Trans. Far. Soc., 56, 4, (1960) 484.
- 12. David, H. G., Hamann, S. D., and Thomas, R. B. Australian Jour. of Chem., 12, 3, (1959) 309.
- 13. DePriester, C. I. Chem. Eng. Prog. Symposium Series, 49, (1953) 1.
- 14. Edmister, W. C. Pet. Ref., 39, 12, (1960) 159.
- 15. Engineering Data Book, N.G.S.M.A., 7th ed., Tulsa, Oklahoma, 1957.
- 16. Flory, P. J. J. Chem. Phys., 9, (1941) 660.
- 17. Flory, P. J. J. Chem. Phys., 10, (1942) 51.
- 18. Frolich, E., Tauch, J., Hogan, J. J., and Peer, A. A. <u>Ind. Eng. Chem.</u>, 23, 5, (1931) 548.
- 19. Harrison, J. M., and Berg, L. Ind. Eng. Chem., 38, (1946) 117.
- 20. Hildebrand, J. H., and Scott, R. B. Solubility of Non-Electrolytes, New York: Reinhold, 1950.

- 21. Hirschfelder, J. O., Buehler, R. J., McGee, H. A., Jr., and Sutton, J. R. Ind. Eng. Chem., 50, 3, (1958) 375.
- 22. Hirschfelder, J. O. and Curtiss, C. F. <u>J. Chem. Phys.</u>, <u>8</u>, 10, (1942) 491.
- 23. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B. Molecular Theory of Gases and Liquids, New York: John Wiley and Sons, Inc., 1954.
- 24. Hougen, O. A., and Watson, K. M. <u>Chemical Process Principles</u>, <u>II</u>, New York: John Wiley and Sons, Inc., 1947.
- 25. Huggins, M. L. J. Chem. Phys., 9, (1941) 440.
- 26. Ipatieff, V., Teodorovitch, V. P., and Levine, I. M. Oil and Gas Jour., 32, (1933) 14.
- 27. Kay, W. B. Ind. Eng. Chem., 28, (1936) 1014.
- 28. Kay, W. B. Ind. Eng. Chem., 30, (1938) 459.
- 29. Kay, W. B., Personal Communication, 1958.
- 30. "Kellogg Equilibrium Charts," New York: The M. W. Kellogg Co.
- 31. Krichevskii, I. R., and Efremova, G. D. <u>Zh. Fiz. Khim., USSR</u>, <u>22</u>, (1948) 1116.
- 32. Krichevskii, I. R., and Sorina, G. A. Zh. Fiz. Khim., USSR, 32, (1958) 2080.
- 33. Kumarkrishna, A.I.Ch.E. Jour., 3, 2, (1957) 191.
- J. D., Roberts, G. A. H., Rowlinson, J. S., and Wilkinson,
 V. J. Proc. Roy. Soc., A196, (1949) 113.
- 35. Lenoir, J. M., and Hipkin, H. G. A.I.Ch.E. Jour., 3, (1957) 318.
- 36. Lenoir, J. M., and White, G. A. Pet. Ref., 32, 10, (1953) 121.
- 37. Lenoir, J. M., and White, G. A. Pet. Ref., 32, 12, (1953) 115.
- 38. Lydersen, A. L., Greenkorn, R. A., and Hougen, O. A. Univ. of Wisconsin, Eng. Expt. Station, Report No. 4, Madison, Wisconsin, 1955.
- 39. Maxwell, J. B. <u>Data Book on Hydrocarbons</u>, New York: D. van Nostrand, 1950.
- 40. Myers, H. S. <u>Ind. Eng. Chem.</u>, <u>47</u>, 10, (1955) 2215.

- 41. Nichols, W. B., Reamer, H. H., and Sage, B. H. A.I.Ch.E. Jour., 3, (1957) 262.
- 42. Opfell, J. B., Sage, B. H., and Ptizer, K. S. <u>Ind. Eng. Chem.</u>, <u>48</u>, 11, (1956) 2069.
- 43. Organick, E. I., and Studhalter, W. R. Chem. Eng. Prog., 44, 11, (1948) 847.
- 44. Perry, J. H., ed., <u>Chemical Engineers' Handbook</u>, 3rd ed., New York: McGraw-Hill, 1950.
- 45. Pitzer, K. S., and Curl, R. F. J. Am. Chem. Soc., 79, (1957) 2369.
- 46. Pitzer, K. S., and Curl, R. F. Ind. Eng. Chem., 50, (1958) 265.
- 47. Prausnitz, J. M. A.I.Ch.E. Jour., 5, 1, (1959) 3.
- 48. Prausnitz, J. M. A.I.Ch.E. Jour., 4, 3, (1958) 269.
- 49. Prausnitz, J. M., Chao, K. C., and Edmister, W. C. <u>A.I.Ch.E. Jour.</u>, 6, 2, (1960).
- 50. Redlich, O., and Kwong, J. N. S. Chem. Rev., 44, (1949) 233.
- 51. Richards, A. R., and Hargraves, E. Ind. Eng. Chem., 36, (1944) 805.
- 752. Rossini, F. D., ed., <u>Thermodynamics and Physics of Matter</u>, <u>I</u>, Princeton, N. J.: Princeton Univ. Press, 1955.
- 73. Rossini, F. D., Pitzer, K. S., Arnett, R. L., Braun, R. M., and Pimentel, G. C. Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds, Pittsburgh: Carnegie Press, 1953.
- 54. Scatchard, G., Wood, S. E., and Mochel, J. M. <u>J. Phys. Chem.</u>, <u>43</u>, (1939) 119.
- 55. Scott, D. W., Waddington, G., Smith, J. C., and Huffman, H. M. J. Chem. Phys., 15, 3, (1947) 565.
- 56. Solomon, E. Chem. Eng. Prog. Symposium Series, 48, 3, (1952) 93.
- 57. Thornton, S. D., and Garner, F. H. J. Applied Chem., Suppl. b, (1951) 568.
- 58. Tongberg, C. O., and Johnston, F. <u>Ind. Eng. Chem.</u>, <u>25</u>, (1933) 733.
- 59. Van Laar, Z. <u>Physik. Chem.</u>, <u>72</u>, (1910) 723.

- 60. Van Laar, Z. Physik. Chem., 83, (1913) 599.
- 61. Van Voorhis, J. J. Ph.D. Thesis, University of Michigan, 1955.
- 62. Volk, W. Applied Statistics for Engineers, New York: McGraw-Hill, 1958.
- 63. Waelbroeck, F. G. <u>J. Chem. Phys.</u>, <u>23</u>, 4, (1955) 749.
- 64. Watson, K. M. <u>Ind. Eng. Chem.</u>, <u>35</u>, (1943) 398.
- 65. Weck, H. I., and Hunt, H. Ind. Eng. Chem., 46, 12, (1954) 2521.
- 66. White, R. R. Trans. Am. Inst. Chem. Eng., 41, (1945) 539.
- 67. Aroyan, H. J., and Katz, D. L. <u>Ind. Eng. Chem.</u>, <u>43</u>, (1951) 185.
- 68. Benham, A. L., and Katz, D. L. A. I. Ch. E. Journal, 3, (1957) 33.
- 69. Burris, W. L., Hsu, N. T., Reamer, H. H., and Sage, B. H. Ind. Eng. Chem., 45, (1953) 210.
- 70. Dean, M. R., and Tooke, J. W. Ind. Eng. Chem., 38, (1946) 389.
- 71. Elbishlawi, M., and Spencer, J. R. Ind. Eng. Chem., 43, (1951) 1811.
- 72. Nelson, E. E., and Bonnell, W. S. Ind. Eng. Chem., 35, (1943) 204.
- 73. Williams, R. B., and Katz, D. L. <u>Ind. Eng. Chem.</u>, 46, (1954) 2512.

