AlAA 2003-3559

16th AIAA Computational Fluid Dynamics Conference
23-26 June 2003, Orlando, Florida

Upwind and High-Resolution Methods
for Compressible Flow:

From Donor Cell to Residual-Distribution
Schemes

Bram van Leer™
W. M. Keck Foundation Laboratory for Computational Fluid Dynamics
Department of Aerospace Engineering
The University of Michigan, Ann Arbor, MI 48109

In this paper I review three key topics in CFD that have kept researchers busy
for half a century. First, the concept of upwind differencing, evident for 1-D linear
advection. Second, its implementation for nonlinear systems in the form of high-
resolution schemes, now regarded as classical. Third, its genuinely multidimensional
implementation in the form of residual-distribution schemes, the most recent addi-
tion. This lecture focuses on historical developments; it is not intended as a technical
review of methods, hence the lack of formulas and absence of figures.

the Fourier transform of the intial-value distri-
bution. For two different families of advection
schemes he found it is an upwind scheme that
minimizes the Ls-error made in one time step if
the initial values contain a discontinuity. This
would indicate upwind schemes may be the pre-
ferred choice for compressible flow, where shock
discontinuities are common and arise even from
the smoothest initial data.

Why upwind differencing?

Upwind differencing is a way of differencing the
spatial-derivative terms in the advection equation,
and is almost as old as CFD, starting with the work
of Courant, Isaacson and Rees (1952'). In their
paper, the choice of an upwind-biased stencil fol-
lows rather naturally from the ”backward” variant
of the Method of Characteristics. In the course of
the decades further evidence has been gathered in

support of upwind disceretizations. o Van Leer, 1986. Reversing Fromm'’s procedure,

e Godunov, 1959. The Russian mathematician
S. K. Godunov? favored the first-order-accurate
upwind scheme among a family of simple de-
scretizations, because it is the most accurate
one that preserves the monotonicity of an ini-
tially monotone discrete solution.

o Fromm, 1968. IBM researcher Jacob Fromm?

constructed higher-order advection schemes

with low dispersive error, by combining schemes
with predominantly negative and predomi-
nantly positive phase errors: “Zero Average

Phase Error Method.” The resulting schemes

turn out to be upwind biased.

o Wesseling, 1973. Dutch aerospace engineer
(turned numerical analyst) Pieter Wesseling?
used Parseval’s theorem to relate the numer-
ical error committed by advection schemes to
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Dutch astrophysicist (turned aerospace engi-
neer) Bram van Leer® developed an operational
definition of upwind schemes. For example, a
linear update scheme of the form

w =" Cr(w)ujp, (1)
k

is called upwind-biased with respect to the CFL-
number range (0,1) if and only if its coefficents
satisfy the symmetry relation
Cr(1=v) = Cp1(v); (2)
here v is the CFL number. For any such scheme,
the result of one step with CFL number v fol-
lowed by a step with CFL-number 1 — v, is
free of dispersion, a quantitative expression of
Fromm’s idea. It further follows that such a
scheme is free of dispersion for v = 1/2.

Jeltsch, 1987. Mathematicians including Swiss
Rolf Jeltsch,® searching for advection stencils
with the greatest potential accuracy for a given
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number of grid-points, have proved that these
stencils are upwind biased.

The price one has to pay for all this goodness is the
computational effort in determining the advection
direction. That is trivial for a linear 1-D advection
equation, but a major effort for nonlinear advection
operators hidden in nonlinear systems of multidi-
mensional conservation laws.

Implementation for nonlinear
conservation laws
Riemann solvers

Having resigned to upwind differencing for advec-
tion, I will now discuss the step of implementing this
concept in finite-volume fashion for a nonlinear sys-
tem of conservation laws such as the Euler equations.

The finite-volume interpretation of the simplest
upwind advection scheme is the ” donor-cell” scheme,
where the advected quantity streams from the up-
wind ”donor” cell into the cell to be updated. This
terminology stems from the Los Alamos and Liver-
more National Laboratories. In his landmark 1959
paper, Godunov developed an ingenious interpreta-
tion of the donor-cell scheme, which could imme-
diately be generalized to the 1-D Euler equations,
or any other hyperbolic system of nonlinear conser-
vation laws. The key to this generalization is the
solution to Riemann’s initial-value problem, that is,
the problem of the inviscid interaction of two uni-
form gases at a plane interface. Differences between
these states will be resolved by a system of plane
waves moving away from the interface. If the equa-
tion of state of the gas is simple, the exact solution
in the disturbed region can be obtained to any pre-
cision with medium computational effort, and in an
approximate way with little effort. Often an ap-
proximation is sufficient for use in a finite-volume
scheme, since only an interface flux is needed, and
the details of the sub-grid solution are averaged out
anyway after each time step.

For two decades Godunov’s finite-volume scheme
was of little influence in Western numerical cir-
cles, although it was mentioned in the book by
R. D. Richtmyer and K. W. Morton.” This changed
with the advent of Godunov-type high-resolution
schemes,® when some of the world’s most talented
numerical analysts spent their efforts on, among
other things, developing “approximate Riemann
solvers.”

Let me dwell upon the most popular approxi-
mate Riemann solvers developed in those days, and
their individual pros and cons. They can be or-
dered according to how closely they adhere to the
wave structure of the exact Riemann solution. The
most detailed approximations of the wave system are
found in the solvers of British aeronautical engineer
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Phil Roe (1981%) and American mathematician Stan
Osher (1981!%). The former solver is based on a
local lineaization of the flow equations; the latter re-
places shock waves by simple compression waves.!!
With these models the flux imbalance between two
cells is split into contributions from forward-moving
and backward-moving waves; hence we speak, rather
clumsily, of ”flux-difference splitting,” or, more ele-
gantly, of ”fluctuation splitting.”

A family of solvers in which a smaller or larger
number of waves are ”lumped” was presented by the
Israeli mathematician Ami Harten (1 1994), CFD’s
American nestor Peter Lax, and Bram van Leer
(198312); this approach is now indicated by the ini-
tials HLL. Tt is particularly useful when the detailed
Riemann solution is complicated, as for extended
hydrodynamics!® and magnetohydrodynamics,'4 or
when a steady flow solution is sought in which cer-
tain kinds of waves never appear.'® The latest and
most efficient descendant in this family is HLLL, a
flux due to aerospace engineer (turned space scien-
tist) Timur Linde (2000').

In "flux-vector splitting” or simply ”flux split-
ting,” the fluxes themselves are are split into forward
and backward contributions. This may interpreted
as the result of transport by particles rather than
by waves, and is related to methodology for inte-
grating the Boltzmann equation. Representative of
such methods are the “Beam Scheme” of astronomer
Kevin Prendergast (1974'7), a true “Boltzmann
solver,” the splitting of NASA Ames’ Joe Steger (f
1992) and Bob Warming (1981'8), which turned out
to be a special case of the Beam Scheme, and the
differentiable splitting of Van Leer (1982'%). Cur-
rently, the most advanced CFD methods founded
on the Boltzmann equation are due to Hong-Kong-
based Kun Xu,?° a former student of Prendergast.

Computational aerodynamicists became particu-
larly fond of upwind flux formulas because these
produced the narrowest possible shock structures in
transonic flow simulations.?!>22 Tt can be shown that
the upwind flux formula based on Roe’s approxi-
mate Riemann solver yields a steady normal-shock
structure (if aligned with the grid) that contains at
most one internal cell, whereas the differential flux
formulas of Osher!? and Van Leer!® include one or
two internal cells. This property is lost for shocks
oblique to the grid, which serves as a motivation for
the search of truly multi-D upwind methods (see the
last section).

While scoring high in shock representation, flux
splitting can be shown to lead to diffusion across
contact discontinuities and shear layers, even if
these are steady and aligned with the grid.?® This
type of numerical error is absent for detailed Rie-
mann solvers like Roe’s or Osher’s, which explicitely
recognize such waves. A hybrid splitting, combining
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the best of fluctuation splitting (accuracy) and
flux splitting (simplicity) is AUSM (Advection
Upwind Split Method) developed by NASA Lewis’
Meng-Sing Liou and Chris Steffen (1993) under the
name AUSM (Advection Upwind Split Method). It
has become a very popular numerical flux function;
for the latest update on the AUSM family see Liou
(200124).

Helpful Hint Nr. 1. Riemann-solver-based fluxes
have nothing to do with limiters, used in higher-
order schemes to avoid numerical oscillations. There
is no such thing as a “TVD Riemann solver;” using
such language reveals ignorance.

This, though, leads us to the next subject.

High-resolution schemes

Interlaced with the evolution of upwind methods
is the history of high-resolution schemes: schemes
that are at least second-order accurate in regions
where the solution is smooth, while capturing dis-
continuities as narrow, monotone structures.

For an appreciation of the problem of designing
a high-resolution scheme for the Euler equations it
is useful to first consider modeling the linear advec-
tion of a step function. Here we immediately run
into a famous theorem included by Godunov in his
1959 paper: if an advection scheme preserves the
monotonicity of the solution it is at most first-order
accurate. This result could discourage anyone at-
tempting to improve advection schems; fortunately,
there is a way to circumvent it. In the proof of
this theorem it is tacitly assumed that the linear
advection equation is approximated by a linear dis-
cretization; once nonlinear discretizations are admit-
ted the theorem no longer stands and high-resolution
schemes become possible.

The realization that Godunov’s theorem could
be circumvented came at the start of the 1970s,
when, within the span of one year, three indepen-
dent approaches were launched for the construction
of oscillation-free higher-order advection schemes.
Astrophysicist Jay Boris (Naval Research Labora-
tory) presented the first non-oscillatory second-order
scheme SHASTA - Sharp and Smooth Transport Al-
gorithm - at a seminar course in Trieste in August
1971,%5 followed by another astrophysicist, Bram
van Leer (then at Leiden Observatory, Netherlands),
who presented a non-oscillatory modification of the
Lax-Wendroff scheme at the 3rd International Con-
ference on Numerical Methods in Fluid Dynamics
(ICNMFD) in Paris in July 1972.26 These ap-
proaches, while quite distinct, are similar in their
use of nonlinearity to prevent numerical oscillations
in regions of strongly varying solution gradients, a
theme that has persisted in hyperbolic method de-

velopment ever since. It is useful to discuss the
two approaches separately in some detail. As to the
third, Russian approach, see the subsection “A his-
torical injustice.”

The algorithms developed by Boris, D. L. Book et
al. are known as Flux-Corrected Transport (FCT)
methods and have a predictor-corrector structure.
A first-order, non-oscillatory scheme is used to es-
timate the solution at the advanced time level; a
correction step then removes the large dissipative er-
ror made in the first step, uncovering a solution with
second- or third-order accuracy. During the second
step the corrective fluxes are compared to the provi-
sional solution values and limited where necessary,
in order to ensure that no new extrema will arise, nor
existing extrema grow. The comparison step makes
the overall method nonlinear: the coefficients in the
scheme depend on the solution itself, even when ap-
plied to a linear equation.

The development of FCT methods is described in
four key papers published in the period 1973-79 in
the Journal of Computational Physics (JCP), viz. a
sequence of three by Boris et al.2"? and a fourth
by S. Zalesak,® also at NRL. FCT methods are
widely used for simulating violent time-dependent
flows, but are less suited for steady-state calculations
and therefore have had little influence on computa-
tional aerodynamics.

The methodology of Van Leer was published in a
series of five papers, starting with the above confer-
ence paper; the other four appeared in JCP in the
period 1974-79.8:31733 Tn this work, oscillations are
regarded as the result of oscillatory interpolation of
the discrete intitial values; the remedy therefore con-
sists of introducing non-oscillatory or monotonicity-
preserving interpolation. The simplest higher-order
schemes reconstruct a linear or quadratic distribu-
tion in a cell using three contiguous cell averages.
Monotonicity is preserved by limiting the values of
the first and second derivatives of the distribution.

Following Godunov, Van Leer’s schemes include
fluxes derived from the solution of Riemann prob-
lems. When combined with higher-order reconstruc-
tion this leads to upwind-biased differencing, hence
the name MUSCL - Monotone Upstream Scheme
for Conservation Laws - given to the first com-
puter code based on the above principles. This
code was written at Leiden Observatory by astro-
physicist Paul Woodward. It uses piecewise linear
interpolation and achieves second-order accuracy for
smooth flow. MUSCL and its sequel PPM (Piece-
wise Parabolic Method) were advanced and popular-
ized in the early 1980s by Woodward and numerical
analyst Phil Colella at Lawrence Livermore Labo-
ratory.?*3% A landmark paper is their 1984 JCP
review,?® an elaborate comparative study in which
Godunov-type schemes, FCT and more traditional
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methods are pitted against one another.

The emergence of high-resolution Godunov-type
methods created yet another research trend: de-
signing effective limiters for use in one-dimensional
higher-order reconstruction.?”3®  Particularly in-
teresting is the history of the involvement of Ami
Harten.

Initially Harten did not embrace the concept of
non-oscillatory interpolation, because it seemed re-
stricted to one space dimension. Instead he was in-
spired by the work of Lax’s student James Glimm,*°
who had shown that the total variation of the so-
lution of a scalar 1-D conservation law can not
increase, and actually decreases in a shock. By
analogy, Harten introduced the total variation of
a discrete function as a measure of its oscilla-
tory nature,*’"42 a quantity with the promise of
multidimensional applicability. This led to the
formulation of Total-Variation-Diminishing (TVD)
schemes for scalar nonlinear conservation laws; the
acronym TVD quickly became synonymous with
high-resolution, usually upwind, schemes (see Help-
ful Hint Nr. 1 above). Harten derived local con-
ditions sufficient for ensuring the TVD property;
for a linear conservation law these reduce to the
constraint of monotone interpolation. It later was
shown by numerical analysts Jonathan Goodman
and Randy LeVeque®® that the total variation is
too blunt a tool to be of use in constraining multi-
dimensional discrete functions: a multi-dimensional
TVD advection scheme can be no better than first-
order accurate.

Harten then returned to non-oscillatory inter-
polation theory, and, from 1985 onward, devel-
oped the theory of Essentially Non-Oscillatory
(ENO) interpolation, joined by Osher, numeri-
cal analyst Bjorn Engquist, mechanical engineer
Sukumar Chakravarthy, Osher’s student Chi-Wang
Shu*47 and others. ENO schemes are only Total-
Variation-Bounded (TVB) and do generalize to
multi-dimensional equations.

In these schemes a systematic procedure se-
lects the discrete stencil whose data will give the
smoothest interpolant, i. e. the function with the
lowest values of its derivatives. This procedure is
nonlinear everywhere, that is, even in regions where
there is not the slightest danger of numerical oscilla-
tions arising. In later years ENO has been replaced
by the milder version WENO (Weighted ENO*8). A
particularly attractive formulation of limiters com-
parable to WENO is due to Hung Huynh at NASA
Glenn. His limiters are based on three arguments,
but the notation is terse owing to the introduction
of the concept of the “median” of three numbers.

The ENO procedure is the only known non-
oscillatory interpolation that allows a truly
multidimensional extension, albeit very costly. The
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single paper about this subject is due to the French
numerical analyst Rémi Abgrall.?

Helpful Hint Nr. 2. A limiter is a nonlinear al-
gorithm that reduces the high-derivative content of
an subgrid interpolant in order to make it non-
oscillatory; it is mot the interpolant itself. Call-
ing standard polynomial interpolation a “limiter”
is a bad practice, again revealing the ignorance of
the speaker. This habit was probably caused by
the appearance of interpolants with built-in limiter,
such as “harmonic gradient averaging” due to Van
Leer (1977%), and similar techniques due to Dutch
astronomer Dick van Albada (1982%°) and Dutch
aerospace engineer Barry Koren (1989%). Such in-
terpolants can still be written as a target polynomial
interpolant modified by a limiter; for instance, the
harmonic average of successive finite-differences,

(AW), = {% (A#W] + ﬁ)}_l, 3)

may be written as

AW, + A_W;
Aw); = ———— x (4)

L (AW AWy %)

A+Wj + A_Wj ’
The first factor is the standard central difference, the
second factor is the limiter. Note that the limiter

contains a discretization of the logarithmic second
derivative of the solution:

<A+Wj—AWj)2 (a2 <8ln|%—vg|>2‘ o

AW, + AW, 4 ox

It is this quantity that senses the high rate of
change of the solution gradient at the foot and head
of a captured discontinuty.

Helpful Hint Nr. 8. Limiters of the type intro-
duced by Van Leer reduce the higher-order content
of the sub-grid interpolant for the sake of mono-
tonicity, regardless of what conservation law is to
be integrated. Using the expression “flux limiter” is
therefore inappropriate and reveals ignorance.

It is true that limiting the interpolant has an effect
on the fluxes; Osher has actually published shemes
in which the limiting is applied to interpolants of
split fluxes. This approach, motivated by doubtful
computational savings, is undesirable, as split fluxes
are less smooth than the solution itself. In particu-
lar, they are nondifferentiable in a sonic point, unlike
the solution.

In the corrector step of an FCT scheme, though,
the fluxes indeed are limited; in this case the term
“flux limiting” is appropriate.
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A historical injustice

It has been pointed out to me by Dr. Vladimir
Sabelnikov, formerly of TsAGI, the Central Aerody-
namical National Laboratory near Moscow, that a
scheme closely resembling MUSCL (including limit-
ing) was developed in this laboratory by V. P. Kol-
gan (1972%!). Kolgan died young; his work appar-
ently received little notice outside TsAGI. When
I visited Novosibirsk in 1978 in order to present
MUSCL to Godunov and to find out if anything
similar had been developed in the Soviet Union, the
approach appeared to be new to Godunov. He was
not aware of Kolgan’s work.

Hancock’s scheme

Soon after its publication (1979%), MUSCL was
greatly simplified by UC Berkeley graduate (fluid
mechanics) Steve Hancock 1980), while develop-
ing the PISCES industrial simulation code for
Physics International (later absorbed by MacNeal-
Schwendler). Hancock’s predictor-corrector version
would have remained buried in a bulky code man-
ual if not for its description and use in a paper*
by Van Albada, Van Leer and Bill Roberts (as-
tronomer, UVA) on numerical methods for cosmic
gas dynamics. (NB: the same paper includes the
first description of Van Albada’s limiter.) T will use
the present occasion to bring it once more to the
attention of the CFD community, as it has been a
regular workhorse in my department, both in the
Keck CFD Laboratory and in the graduate CFD
curriculum. The method is remarkably robust; for
example, it handles the double-blast-wave problem
of Woodward and Colella®® without any special at-
tention.

Below are coding instructions for the 1-D descrip-
tion given to all advanced CFD students for use in
their first computing project; the trivial 2-D exten-
sion is regularly used in the second project (see Van
Leer®?).

Hancock’s predictor-corrector scheme.

Hancock’s scheme is a MUSCL scheme imple-
mented in predictor-corrector fashion, similar to the
Richtmyer version of Lax-Wendroff. It includes the
following steps (conversions among state quantities
omitted).

1. Reconstruct linear subcell distributions of a
complete set of state variables; these may be
the conserved variables p, pu, pE. In practice,
though, it is not such a good idea to use pE,
which must remain greater than pu?/2; inde-
pendent interpolation of p, pu and pE does not
guarantee this. Better use p, pu, p, or even prim-
itive variables p, u, p; call the latter set W.

*The same paper includes the first description of Van Al-
bada’s limiter.
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You’ll work only with uniform grids, so you
don’t have to worry about variations in Az. In
this case it suffices to define

oW; = ave(W; = Wj1, Wit =W;), (7)
where the average may include your favorite
limiter. Keep the following averages available:

ave(a,b) = a4 ;— b; (algebraic) (8)
minmod (aT“"’, 2a, 2b) ,ab >0,
ave(a,b) = 0, ab < 0;(9)
(double minmod)
minmod{maxmod(a, b),
minmod(2a,2b)}, ab >0
ave(a,h) = { o (20, 20)}, of 2 guo)

(Superbee)

Observe that these three form a hierarchy. Dou-
ble minmod limits the algebraic average of a and
b to twice the smaller of the two: the weakest
limiting still avoiding under/overshoots. Super-
bee, moreover, discards any unlimited value of
the algebraic average in favor of the larger of
the two, yielding artificial steepening wherever
there is no danger of under/overshooting.

. Advance the solution inside cell j by half the full

time-step, using the nonconservative equations
in terms of the primitive variables,

W+ (Aw);W, =0, (11)

where the coefficient matrix Ay is similar to
Ay and reads

u p 0
Ay=[0 u 3 (12)
0 pa® wu
The predictor step thus becomes
= At

. Now compute time-centered interface values us-

ing the old gradients (this is OK in a second-
order scheme):

1
W,_1n = W,- 25w (14)
- 1

. Compute time-centered interface fluxes by solv-

ing a Riemann problem, exactly or approxi-
mately, at each interface:

Fiyy1 =F (Wj+%L=Wj+%R) - (16)
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5. Finally, advance the solution over the full time-
step, using the time-centered interface fluxes:

) At /-~ .
U =0, -5 (B, -F ). an)
Variation 1: if you set §W = 0 everywhere you’ll get
back the first-order upwind scheme; this is useful
for debugging, or for studying the quality of your
numerical flux near a sonic point. Of course there
are cheaper ways to embed the first-order scheme
in your program. In this project, though, we are
not interested in comparing second- to first-order
accuracy; that’s too elementary.

Variation 2: instead of the primitive variables you
may use the characteristic variables V}, in the pre-
dictor step, which actually are the most appropriate
choice when gradient limiting is expected. They
also give the “cleanest” results. Consult me.

Helpful Hint Nr. 4. The coefficient matrix Ay
in the primitive equations is often referred to as the
“primitive Jacobian,” This is incorrect use of the
term Jacobian. A Jacobian matrix is the deriva-
tive of one vector to another one, and Ay is not
the derivative of a vector. The confusion stems
from the fact that the coefficient matrix Ay in the
conservative equations is a true Jacobian, since it re-
sults from differentiating the flux vector with respect
to the conservative state vector (“flux Jacobian”).
Granted, Ay does follow from Ay by a similarity
transformation. I will therefore not go so far as to
say that using the term “primitive Jacobian” reveals
the ignorance of the speaker, since the mistake is suf-
ficiently subtle. But I encourage avoiding it.

Multidimensional extensions

The traditional way of extending upwind differ-
encing to multidimensional equations is by doing it
dimension by dimension. This means that numeri-
cally all transport is done by waves moving normal
to the cell faces. The finite-volume technique will
still be consistent and may even be highly accurate
for smooth flow, but discontinuities oblique to grid
faces will be worse resolved than those aligned with
the grid. More diffusive schemes may not show such
directionality in their resolution, but that does not
make them any better. On the contrary, the sensi-
tivity of the upwind scheme’s numerical error to the
direction of a captured discontinutiy is revealing and
contains the key to its remedy.

Already in the early 1980s a start was made with
the development of directional upwinding. Davis
(198453) rotated the frame of the Riemann solver
to the shock-normal direction, in order to get better
shock resolution. Various methods of this type fol-
lowed, e.g., those by Levy et al. (1993°%) and Dadone

6 OF 8

and Grossman (19915%). A more radical approach is
that of Rumsey et al. (1993°¢), in which the numer-
ical flux is based on a rotated Riemann solver plus
a shear wave normal to the other waves. Unfortu-
nately, flux formulas based on rotated frames, where
the rotation angle follows from flow gradients, are
not robust when used in higher-order schems. They
do achieve the goal of uniform resolution of shocks
and shears independent of direction.

A more fundamental and robust approach, which
also has its roots in the 1980s and is due to Roe
(1986°7), is that of the ” genuinely multidimensional”
upwind schemes. These may be regarded as the true
multi-D generalization of 1-D fluctuation splitting.
The multi-D residual is decomposed into contribu-
tions of different physical origin; these are then sent
downwind in order to represent advection, or dis-
tributed omnidirectionally when representing sub-
sonic acoustic propagation. These methods are best
formulated on simplex-type (finite-element) grids
and include newly developed, compact limiters for
avoiding oscillations.

The schemes have almost exclusively been de-
signed for marching to a steady solution; only re-
cently there has been some activity in formulating
time-accurate extensions, e.g. by Hubbard and Roe
(2000%8).

Genuinely multi-D schemes have matured during
the 1990s owing to the efforts of Roe et al. at the
University of Michigan in Ann Arbor and Herman
Deconinck et al. at the Von Kdrman Institute near
Brussels. Milestones were the doctoral theses of
Lisa Mesaros (1995, UMich®®) and Henri Paillere
(1995, VKI®®). The approach has become popular
only in Europe, where it is actually used for solving
industrial flow problems. A comprehensive report
describing the European effort up to 1996 is the
BRITE/EURAM project book edited by Deconinck
and Koren (199761).

The state of the art is probably still defined by the
theses of Dutchman Erwin van der Weide (1998, TU
Delft, NL52) and Roumanian Doru Caraeni (2000,
TI Lund, S%). Van der Weide solves complex
steady viscous rocket-base-flow problems. His find-
ings are that the method does fulfil its promise of
uniform resolution regardless of direction, but that
convergence to a steady solution suffers, probably
because of the compact, highly nonlinear limiters.
Caraeni develops a third-order-accurate scheme for
Large-Eddy Simulation (LES). Temporal accuracy
is achieved by using the scheme only in an inner it-
erative (pseudo-time) loop, which solves an outer,
implicit update scheme.

The newer name for the multi-D upwind meth-
ods is "residual-distribution schemes.” Roe, Abgrall
and Z.-J. Wang (Michigan State University) are
currently working on achieving high-order accuracy
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without going outside one vertex-defined cell. These
techniques are starting to look more and more like
Discontinuous-Galerkin methods. Their justification
lies in large-eddy and turbulence simulation, as well
as in climate modeling.

Roe and students have also been studying the cou-
pling of residual-distribution schemes to grid adap-
tation.64 65

While the research on residual-distribution
schemes has greatly increased our insight in the
structure of the flow equations and our ability
to numerically represent the flow physics with
minimal grid bias, the reality is that the American
aeronautical community has not bought into this
methodology.  Presumably, the advent of high-
performance computing and promise of massively
parallel computing has quelled any drive toward a
systematic modernization of CFD algorithms. It is
easy to be cynical or at least sceptical regarding the
impact of current cutting-edge algorithm research
on the CFD-users community. I personally believe,
though, that the next round of gains in CFD will
not come from hardware improvement but, once
again, from method development.

In this paper I have made a point of indicating
the disciplines and nationalities of important con-
tributors to the development of CFD in the past half
century. In doing this I wanted to emphasize that
CFD was developed by people of all walks of life, not
just by aeronautical engineers. It is a tribute to our
aerospace community that it has had the openness
of mind to absorb the very best other disciplines had
to offer. Where excellence is the prime goal, xeno-
phobia has no place. May other disciplines follow in
our footsteps.

Those with further interest in upwind and high-
resolution schemes are encouraged to consult the
book “Upwind and High-Resolution Schemes” %% an
anthology of key papers on the subject, preceded
by a technical introduction by Phil Roe and a his-
torical review by myself, from which I have heavily
borrowed for this paper.
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