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Abstract
A new family of optimal Euler preconditioners is pre-
sented that may resolve the stability problem associ-
ated with stagnation points. These preconditioners
produce a close-to-orthogonal eigenvector system and
are less sensitive to flow-angle variation across cells.
Single- and multi-grid benefits of Euler precondition-
ing are presented and illustrated by some numerical re-
sults. Navier-Stokes preconditioning can be extended
from the Euler technique with two methods: (a) by us-
ing block-Jacobi preconditioning for the viscous terms;
(b) by introducing analytic dependence on the cell-
Reynolds number in the preconditioner. Block-Jacobi
preconditioning can also be applied to turbulent vis-
cous flow calculations for a proper rescaling of the
source terms. With these techniques it is possible to
produce a local Navier-Stokes preconditioner effective
for all Mach and cell-Reynolds numbers. Both two
methods are illustrated with numerical tests.

1 Why use local precondition-
ing?

For a Navier-Stokes code to converge fast it is neces-
sary (but not sufficient) that the embedded Euler code
converges fast, too. In working toward more efficient
Navier-Stokes codes it therefore is useful to stay in-
formed on Euler methods, and exploit the latest ad-
vances in that area.
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During the 1990s our understanding of the Euler
convergence process has significantly increased. There
is mounting evidence that the treatment of the true ad-
vection equations hidden in the Euler system (e.g. ad-
vection of entropy) has to be different from that of
the coupled acoustic equations arising in subsonic flow.
Whether starting from the equations in conservation
form or primitive variables, this calls for a suitable
decomposition of the system, in which the embed-
ded acoustic equations are isolated from the advection
equations.

Ta'asan [22] suggests using a set of "canonical"
equations based on the steady form of the Euler equa-
tions; this has its roots in vintage rules prescribed by
Brandt in his 1984 Multi-Grid Guide [3]. In Brandt's
work the emphasis is on achieving the theoretical limit
of multigrid convergence, and not necessarily on the
accuracy of the spatial operator.

In contrast, Roe and Mesaros [18, 17] searched
for a genuinely multi-dimensional splitting of the spa-
tial Euler operator ("fluctuation splitting") that would
match accuracy to compactness. They ended up dis-
cretizing of the system that results from applying the
local preconditioning of Van Leer, Lee and Roe [28].
The most advanced applications of these precondi-
tioned equations are by Deconinck et al. [7], and use
the so-called matrix form of the PSI advection scheme,
which automatically distinguishes between omnidirec-
tional acoustic wave propagation and unidirectional
advection.

The combination of the preconditioned equations
and the fluctuation-split scheme, formulated on un-
structured triangular or tetrahedral grids, differs in
essence from standard Euler schemes. Such a nu-
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merical strategy will not easily be adopted by the
larger CFD community, which has a considerable
effort invested in higher-order Godunov-type meth-
ods with TVD limiters. Fortunately, it has been
demonstrated that the use of the preconditioned
equations1 alone, without any essential modification of
the discretization2 , has a large potential pay-off. In
addition to providing the decoupling for implementing
fluctuation splitting, proper local preconditioning can
have the following major, well documented, benefits.

1. It removes from the Euler equations the stiffness
caused by the range of characteristic speeds, thus
improving the convergence rate of any marching
scheme [28, 12, 10, 27];

2. It makes the system behave more like a scalar
equation, thus facilitating the design of effective
auxiliary techniques, such as multi-grid smoothers
[14, 15, 13, 16], residual smoothing [13], approxi-
mate factorization [11];

3. It produces discretizations that remain accurate
in the limit of vanishing Mach number [28, 12, 10,
26, 27, 21, 11].

In short, there are single-grid-relaxation, multi-grid-
relaxation and accuracy benefits to the simple explicit
technique of local preconditioning. Those who are not
taking advantage of these are selling themselves short.
In Section 2 we show some numerical results in support
of the above benefits.

The extension of local preconditioners from the
Euler to the Navier-Stokes equations is not trivial. The
wave speeds now become complex as a result of the dis-
sipative terms, which greatly complicates any analysis,
even when carried out with symbolic manipulation. A
new parameter, the Reynolds number, appears in the
equations; in their discretized form the key quantity is
the cell Reynolds number Re^. For medium (w 1) to
high values of Reh there is little need to deviate from
the Euler preconditioner [11, 27], but for lower values
of Reh this "Euler approach" fails.

In Section 4, we present the design analysis for a
Navier-Stokes preconditioner that works for all values

= 0

1If the2-D Euler equations are written as Ut+AU
0, the preconditioned equations read U< + P(AUj:
or P-'Ut + AUx + BUy = 0.

2 Besides multiplication of the residual by the preconditioning
matrix, the artificial-dissipation matrices must be modified, so
that they are appropriate for the preconditioned equations. If
the flux Jacobian is A, the corresponding dissipation matrix is
some average of |A|, and the preconditioning matrix P, then the
dissipation matrix must be changed into P—1 |PA|. This means
that after preconditioning the dissipation matrix becomes |PA|,
which matches the preconditioned coefficient matrix PA.

of M and Reh- Numerical tests illustrating the perfor-
mance of this preconditioner are presented in Section
5.

2 Benefits of Euler precondi-
tioning

2.1 Effect on single- and multi-grid re-
laxation

As mentioned above, the equalization of wave speeds,
achieved by optimal Euler preconditioners, removes the
stiffness encountered in steady-state calculations (es-
pecially explicit calculations), yielding convergence ac-
celeration already on a single grid. Furthermore, the
concentration of discrete eigenvalues, achieved by op-
timal Euler preconditioners, makes it possible to de-
sign multistage marching schemes with optimal high-
frequency damping regardless of flow angle and Mach
number; these are particularly suited for multigrid re-
laxation on semi-coarsened grids. The single-grid and
multigrid convergence-acceleration mechanisms are in-
dependent, so their individual effects add up; this was
demonstrated conclusively by Tai [23] for 1-D Euler
schemes and Lynn [13] for 2-D Euler schemes. Some
of Lynn's results were presented at the previous AIAA
CFD Conference; below we present a different sample,
intended to drive the message of the double benefit
home once more.

Another message worth repeating [16] is that the
local preconditioning matrix resulting from retaining
only the main-diagonal block of an implicit upwind
Euler discretization (point/Jacobi relaxation) does not
have any single-grid acceleration effect. Point/Jacobi-
type preconditioning is currently enjoying a renewed
interest [2, 20] because of its smoothing effect on high-
frequency error combinations, useful in multigrid re-
laxation with semi-coarsening; for this reason it was
already recommended by Mulder [19].

Table 1 illustrates the compound single/multigrid
benefit for a set of second-order-accurate calculations
of inviscid subsonic flow (Minflow = 0.35) in a 2D chan-
nel with a circular bump on one wall (1979 GAMM
Workshop parameters: thickness 4.2% of chord, height
2 chords). A high-resolution spatial discretization (K =
0, Van Albada limiter, Roe's Riemann solver) was used;
time marching was done with a 4-stage scheme opti-
mized for best damping of all high x- and j/-frequency
combinations, as needed for semi-coarsened multigrid
relaxation. A "design graph" for this scheme, i. e. the
optimally scaled Fourier footprint of the spatial dis-
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cretization plotted on top of the scheme's stability do-
main and amplification-level lines, is shown in Figure
1.

The two things to be learned from Table 2 (work
needed for residual reduction) are:

(a) Local matrix preconditioning yields faster conver-
gence than local time-stepping (= scalar precon-
ditioning) on a single grid. In this subsonic case
the speed up is not so impressive, as the single-
grid convergence process is dominated by acoustic
waves bouncing between the walls; these are not
affected by the preconditioning.

(b) The maximum gain from multigrid relaxation is
greater for local matrix preconditioning than for
local time-stepping.

A contrasting aspect is provided by Table 2, which con-
tains the convergence data for a supersonic flow case
(Minflow = 1.4). This set clearly brings out the single-
grid benefit: the single-grid acceleration by matrix pre-
conditioning is so strong that adding more grid levels
yields little additional speed-up.

In the next test problem the initial values con-
sist of a uniform state (flow angle =10°, range of M-
values) with random perturbations on a 32x32 uniform
grid; at the boundaries free-stream conditions are pre-
scribed. A first-order upwind spatial operator with
optimized four-stage time-stepping was used. Table 3
shows work needed till convergence for various relax-
ation strategies: single-grid with local time-stepping
(SG-LTS), single-grid with matrix time-stepping (SG-
MTS), regular multigrid with local time-stepping (MG-
LTS), regular multigrid with matrix time-stepping
(MG-MTS). Both local time-stepping methods are af-
fected by the variation of condition number with Mach
number, whereas the matrix time-stepping methods
are virtually insensitive to Mach number.

The above acceleration can still be enhanced
at little computational cost by introducing explicit
residual smoothing, which significantly increases the
allowable CFL number without compromising high-
frequency damping. Owing to the preconditioning the
smoothing is equally effective for all physical modes
(acoustic and advective). Figure 2 shows a design
graph for the preconditioned 4-stage first-order up-
wind scheme when explicit residual smoothing, with
coefficient e = 0.1 is added. The effect of the residual
smoothing is an increase of the optimized CFL number
from 2.64 to 3.63, without sacrificing high-frequency
damping. The improved convergence is clear upon
comparing Table 4 (perturbation test, work needed us-
ing explicit residual smoothing) with Table 3.

2.2 Effect on accuracy at low Mach
number

One unexpected side effect of certain preconditioners,
such as those of the Van Leer-Turkel family, is that
they prevent the deterioration of accuracy encountered
when computing flows at ever-decreasing Mach num-
ber on a fixed grid, a phenomenon first reported by
Volpe [31]. This beneficial and very useful effect of
local preconditioning is owing to the modification of
the artificial-dissipation matrices that has to be im-
plemented anyway for stability reasons. This required
modification was originally considered a nuisance, since
it makes preconditioning more intrusive; now we know
that codes for compressible flow actually need such a
modification if they are to be applied to problems in
which incompressible and compressible flow occur side
by side. Such situations arise, for instance, in propul-
sion [4], in low-speed high-lift flow [27] and in V/STOL
maneuvering [21]. Local preconditioning makes it pos-
sible to solve flow problems of this kind with a single
code, overcoming both the loss of accuracy and the loss
of convergence speed, not a small accomplishment for
a modest explicit technique.

Since its discovery [28, 12], the accuracy bene-
fit has been demonstrated over and over in numerical
tests [28, 12, 10, 26, 27, 18, 17, 21, 7, 11]; we need
not repeat any of these here. An important develop-
ment, still worth emphasizing, is that the effect has
also been explained with mathematical analysis. The
asymptotic analysis by Turkel [26] et al. provides the
detailed structure a preconditioning matrix must have
in order to properly balance the artificial dissipation
terms with the inviscid flux terms for M —* 0 (lack
of balance causes the loss of accuracy). Reed's [21]
analysis is based on the modified equation and is less
detailed; it shows that the truncation error of the dis-
crete pressure equation is multiplied by M2 owing to
the preconditioning.

An important observation based on the analysis of
Turkel et al. is that point/Jacobi-type preconditioning
does not have the structure needed for accuracy preser-
vation in the incompressible limit. This is clear from
its common use, which does not include any change
to the artificial-dissipation matrices. However, even if
it would be used to modify the latter, this would not
properly balance the terms in the scheme when M ap-
proaches 0.

The analysis in [26] does not answer the question
if a local loss of accuracy can result in a very limited
region of low Mach number, such as a stagnation re-
gion, if no preconditioning is used. We suspect there
indeed is a local loss of accuracy, but there has been
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Number of stages

No.

of

grid

levels

1
2

3
4

Local time-stepping

3

3702

2241

692

755

4

3740

1622
582

751

5

3685

1284

582

705

6

3744

1087

583

708

Matrix preconditioning

3

3126

1366
388

319

4

2976

1271

301
191

5

2380

780
632

194

6

2916

838
615

219

Table 1: Work units required to reduce \\TE\\i to 5 x 10~2; channel flow, M = 0.35; 64 x 32 grid. Defect-
correction cycles; nested iteration for initial guess.

Number of stages

No.

of

grid

levels

1

2

3
4

Local time-stepping

3

1422

895
724

809

4
1384

933
898
1047

5
1365
781
722

993

6
,1344

753
769
732

Matrix preconditioning

3
420

356
361
436

4

420
350
370
399

5
425

332

360
380

6
414
309

358
400

Table 2: Same as Table 2, but for M = 1.4.

no study to confirm this. If proven correct, it might
have far-reaching consequences for our trust in stan-
dard discretizations.

3 Advances in Euler precondi-
tioning

One serious problem associated with the use of local
preconditioning, even if it does the right thing in the
limit of incompressibility, is that it commonly breaks
down locally when the Mach number vanishes, i. e. in
a stagnation point. This break-down manifests itself
in non-convergence, if not instability. At the previ-
ous AIAA CFD Conference two papers were presented
adressing different causes of this problem:

1. Sensitivity of the preconditioning matrix to the
flow angle for M —» 0 [29], an point of concern
particularly for the Van Leer-Lee-Roe matrix;

2. Degeneration of the eigenvector system of the pre-
conditioned equations for M —> 0[?], a problem
plaguing most preconditioners currently in use.

Of these factors, the latter is by far the most serious.
To reduce the flow-angle sensitivity, the authors

of the first paper chose to allow an increase of the con-
dition number from 1 to 2; this at least made a noncon-
servative flow code converge to an accurate low-speed
solution, which previously had been unattainable [18].
As a "fix" for eigenvectors becoming parallel3, Darmo-
fal and Schmid suggested to limit the value of M in
the preconditioner from below, for instance,

M]im = max(M, (1)

where e is a small fraction; this was shown to cure
even conservative schemes. The necessity of such lim-
iting had already been found in practice by Turkel [25],
although Turkel attributed it to the loss of symmetriz-

3The original system has a fully orthogonal eigenvector
structure.
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Mach Number

SG-LTS
SG-MTS
MG-LTS

MG-MTS

0.1
1224

280

996

76

0.35

408

272

401
76

0.5
352

272

263
83

0.85
984

272

263

83

0.99
1512

224

816

83

1.01
1552

188

1757

83

1.2
784

160

290

83

2.0
272

148
252

90

5.0
164

128

228

103

Table 3: Work required to reduce residual norm by 10 5; perturbed uniform flow, $ = 10°

Mach Number

SG-LTS

SG-MTS

MG-LTS

MG-MTS

0.1

688

176
760
62

0.35
204

172

256
62

0.5

196

168
208
62

0.85

556

168
166

69

0.99

848

136
650

69

1.01

916

116

1438

69

1.2

436

96
180

69

2.0

152

88
180

76

5.0

108
72

187

83

Table 4: Same as Table 4, but with the use of explicit residual smoothing (f — 0.1).

ability of the system after preconditioning. Unfortu-
nately, the appearance of two different Mach numbers
considerably complicates the analysis and design of any
but the simplest preconditioners, as well as the con-
struction of the corresponding artificial-dissipation ma-
trices; the powers of symbolic manipulation are easily
exhausted. In addition, the choice of the cut-off value
for M is problem-dependent; a "safe" larger value of
Miim may noticeably slow down convergence.

We therefore are pleased to report here - with
guarded optimism - that we have found, and are in-
vestigating, a group of preconditioning matrices suffer-
ing much less from the above eigenvector degeneration.
Specifically, eigenvectors related to plane waves mov-
ing in the same direction are non-parallel in the limit
of M —»• 0; many can actually be made orthogonal, and
some even for the entire Mach-number range. Among
these matrices there may be one that does not require
the Darmofal-Schmid fix.

Some of these matrices are members of the
same family that includes the Van Leer-Lee-Roe and
Turkel matrices. To fix our thoughts, let us as-
sume that the Euler equations are expressed in terms
of the symmetrizing variables U, defined by <fU =
(dp/pa,du,dv,dw,dS), and that the flow is aligned

with the positive a;—axis. Using the notation /? =
\/l-M2 for M < I , the Van Leer/Turkel family with
free parameter / has the generic two-dimensional form

PvL,96 =

/ M2

~J~
_M

0

, 0

M f
-J-f
l + i

0

0

0 0 \

0 0

/? o
0 1 ,

(2)

For / = 1 this is the Van Leer-Lee-Roe matrix, for
/ = 0 a version of the Turkel matrix, made optimal for
the transonic flow regime. If, for small M, we choose
/ close to — 1, i. e.

/«-! + rM2,

it is seen that the element P^ becomes small:

(3)

(4)

This form can still be positive-definite, and has the
improved eigenvector structure mentioned earlier.

We first experimented with the case r = — |; the
matrix in question was developed by D. Lee [11] with

846



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

the purpose of removing any flow-angle dependence4.
This matrix, presumably suitable for computing stag-
nating flow, reads:

M2

stagnation —

M\

(bo
/14 M2

-1)M2

0

0

0

0

1

0

0 '

0

01 )
(5)

0

where 60 = 0 gives the optimal wave pattern for all
M < 1, but 60 > 1 is needed for positive definiteness
of P and symmetrizability of the preconditioned equa-
tions. In the limit of low Mach number, this precon-
ditioner constructs a perfectly orthogonal eigenvector
structures for waves moving in the streamwise direc-
tion and non-parallel eigenvectors for waves moving in
the direction normal to the flow.

The performance of this preconditioning can be
judged from the converged velocity fields shown in Fig-
ure 3: the stagnation preconditioner can successfully
compute stagnating flow in the half-plane. The corre-
sponding convergence histories are shown in Figure 4.
Note the absence of convergence without precondition-
ing, and the instability caused by Van Leer precondi-
tioning.

However, the new preconditioner is not perfect ei-
ther: when dropping the solid-wall reflection condition
in an attempt to compute a full-plane stagnation-flow,
the new preconditioner generated large amounts of vor-
ticity, preventing convergence. For the larger Mach
numbers in transonic regions, the stagnation precondi-
tioner loses its effectiveness due to a severe violation of
admissibility conditions (60 = 0) or an improper wave
pattern (60 > 0).

A variant of the stagnation preconditioner can
be smoothly linked to the Van Leer-Lee-Roe precon-
ditioner, the best performer at M = 1. The new
stagnation-friendly all-purpose preconditioner follows
the matrix structure of (2) with / defined by

/?-2M2

1 + M2 ' (6)

This new preconditioner produces perfectly orthogonal
eigenvectors for waves moving in the streamwise direc-
tion for all Mach numbers, as well as satisfaction of
symmetrizability and positivity conditions. In spite of
the complicated form of (6), the numerical implemena-
tion of this matrix is quite simple because any matrix

of the form (2) produces simply structured artificial-
viscosity matrices, independent of /. We repeat that
the "fix" (1) complicates the construction of artificial-
viscosity matrices. In the stagnation-flow test of Figure
3, this preconditioner was also robust and accelerated
convergence as expected.

4 From Euler to
Navier-Stokes Equations with
turbulence modeling

For the design of Navier-Stokes preconditioners it suf-
fices to consider the linearized equations. In two di-
mensions these can be written as

U( = iEuU + CUrr + DUxy EU.yy (7)

The first term on the right-hand side is the spa-
tial Euler operator; the remaining terms are vis-
cous/conductive. In the discrete version the latter are
approximated by central differencing.

Two ways of extending local Euler preconditioners
to the Navier-Stokes equations have been reported in
the literature:

1. Adding to the Euler preconditioner the vis-
cous/conductive entries arising in block-Jacobi
preconditioning; this technique is due to Godfrey
[8, 10, 9];

2. Introducing cell-Reynolds-number dependence in
the entries of the Euler preconditioner according
to a Navier-Stokes dispersion analysis, a technique
due to Venkateswaran et al. [30]

With regard to the first technique: the objections
to Jacobi-type preconditioning for the Euler residual
are not valid for the Navier-Stokes terms, because these
terms by themselves are very well conditioned5. The
main effect of Jacobi preconditioning when used only
for the viscous/conductive terms is: rescaling the dis-
sipative scales with respect to the convection scales
[11]. This is achieved in practice by fixing the highest-
frequency eigenvalues (represented in the Fourier foot-
print by the left-most negative-real point), regardless
of Mach or cell-Reynolds number:

J-l _p-l , ±
NS — rBu + ̂

E

(8)
4 This matrix is valid for an arbitrary flow angle; it needs no

rotational similarity transformation!
5The dissipative time-scales do not differ more than a factor

max(7/Pr,4/3).
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here q is the flow speed. This formula is valid for first-
order upwind differencing of the Euler terms, subsonic
case; for a higher-order Euler discretizations like a K-
scheme, a correction factor 1 — K to the Euler contri-
bution is required [11]. A strong point in favor of this
composite way of preconditioning is that it properly in-
corporates the cell geometry, and can handle the very
large cell-aspect ratios needed in turbulent boundary-
layer calculation (^R, « 105). The idea of rescaling
through preconditioning can easily be extended to in-
clude source-term rescaling, and is in essence the same
as the point-implicit treatment favored for stiff source
terms. This makes Jacobi-type Navier-Stokes precon-
ditioning suitable for PDE-based turbulence modeling,
which require the capacity to deal with stiff source
terms as well as large cell-aspect ratios. If the source-
term vector on the right-hand side is H, the precondi-
tioner for the extended system of equations takes the
form

p-irNS,turb
„ i 1 ( 2C 2E . <9H— p — i _L _ I ____ 4. ____ _ A/Eu a V(Az)2 (Aj/)2 dU

(9)
Figures 5 and 6 show how the Fourier footprint for this
type of system is affected by the preconditioner. In Fig-
ure 5 (unpreconditioned) notice that some eigenvalues,
due to the presence of the source terms, have moved
to a point on the negative real axis outside the main
locus; this reduces the allowable time step. In Figure
6 (preconditioned) these values have been scaled back.

Unlike Euler preconditioners, composite Navier-
Stokes preconditioners of the above type are simplest
when appearing as P-1. Analytical inversion is not
attractive, so the method becomes truly point-implicit.

The second technique requires a Fourier analysis
of the linearized equation and subsequent eigenvalue
computation; to do this analytically is much harder
than for the Euler equations. In spite of symbolic
computing, complete results have been obtained only
for the unpreconditioned equations in one dimension,
under simplifying assumptions. The effect of precon-
ditioning can only be predicted in certain asymptotic
cases (M and/or Re large or small); evaluating the
performance of a proposed preconditioner requires nu-
merical calculation of eigenvalues.

The eigenvalues coming out of a Navier-Stokes
dispersion analysis are complex, with the imaginary
part representing propagation and the negative real
part damping. The condition number still is defined as
the ratio of the largest and smallest moduli of eigen-
values, and properly takes into account both physical
effects. We therefore continue to pursue the optimiza-
tion of the condition number. Using educated guessing

and symbolic manipulation we have developed a family
of 1-D Navier-Stokes preconditioners that is capable of
connecting the Van Leer-Lee-Roe Euler preconditioner
to each of the two distinct asymptotic viscous regimes
described below. Using the symmetrizing state vari-
ables listed earlier6 we can write this matrix family as

vl,Explicit —

n

-MQ
0

-MQ

Q+l
0

pa

0

1

(10)

where PU and Q must have the following asymptotic
values: [30]:

0(M2), f l e> l
0(|£)> • R e <l> C<1
O(^), Re<£ 1, ̂ »1

11

The three asymptotic regimes are, respectively, the in-
viscid or Euler limit, the acoustic-dominated viscous
limit, and the viscosity-dominated limit.

The two viscous regimes are different in severity of
viscous damping. In the acoustic-dominated limit both
acoustic waves are undamped, so that there is only one
damped mode; in the viscosity-dominated limit there
are two damped modes7. (NB: For the unprecondi-
tioned equations the distinction between the two vis-
cous limits is governed by M/Re rather than M2/Re.)

It should be mentioned that the Reynolds number
used in the dispersion analysis is always based on the
wave length of the Fourier mode considered. When
using the results of this analysis for the formulation of a
.Re-dependent preconditioner, Re must be interpreted
as the cell-Reynolds number Re^.

Inserting Q = 0 produces the equivalent of
Chorin's8 preconditioner, used initially by Turkel [24]
and preferably by Merkle et al. [4].

One problem with this preconditioner is that, ac-
cording to the PDE analysis, it creates a small posi-
tive growth rate for one wave mode [30]. In practice
this mode may be suppressed by the artificial dissipa-
tion present in the discretization, in particular if the

6The symmetrizing variables defined previously by dU =
(dp/pa,du,dv,dw,dS) are sometimes called the "Euler sym-
metrizing variables," and actually are not the best choice for
a Navier-Stokes analysis. The "Navier-Stokes symmetrizing
variables," with dV = (adp/^fyp, du, dv, dw, adT/^-yfr - 1)T),
symmetrize all coefficient matrices in the Navier Stokes equa-
tions [1].

7 There is always one undamped mode corresponding to the
continuity equation, which carries no viscous terms.

8Named after Chorin, because it relates to his artificial-
compressibility method [5].

848



Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

marching scheme is implicit. This, of course, is does
not relieve us of the duty to search for better explicit
preconditioned. It is conceivable that a smarter choice
of the matrix elements will eventually remove the grow-
ing mode, and that the analysis can be extended to
multidimensional preconditioning.

We have found that the growing mode can be re-
moved by combining the result of the dispersion anal-
ysis with the addition of the viscous Jacobi block; this
has produced a useful 2-D preconditioner. Specifically,
we have modified the (1,1) element in the Van Leer-
Lee-Roe preconditioner (cf. Eq. (2)) according to the
branched expression of Eq. (11), and then added the
viscous Jacobi block, as in Eq. (8). The value of a must
be changed correspondingly. Details can be found in
[11] and will be presented in the final paper.

Table 5 shows the condition number achieved by
a variety of Navier-Stokes preconditioners in the three
asymptotic regimes distinguished in Eq. (11). Only
their 1-D versions are considered, as a multidimen-
sional analysis so far has not appeared possible.

For the original Navier-Stokes equations, the stiff-
ness in the Euler limit is independent of Re and in-
creases as the Mach number decreases; for viscosity-
dominated flow, on the other hand, it is independent
of M, increasing when Re decreases. For acoustic-
dominated viscous flow the stiffness varies with both M
and Re. The use of preconditioning completely changes
this pattern. The aim is to make the condition num-
ber equal to 1 or 0(1); this has been achieved using
Eqs. (10,11) (but remember the growing mode), and
there is hope that the Jacobi-type preconditioners can
be improved up to this mark.

The listings in Table 5 are illustrated in detail
by the following four carpet plots, Figures 7-11, based
on numerically obtained eigenvalues. Figure 7 shows
the condition number for the unpreconditioned 1-D
Navier-Stokes equations as a function of Mach num-
ber (10~4 < M < 10"1) and cell-Reynolds number
(10~5 < Re < 105). The number is seen to increase
beyond bound for vanishing M or Re. Figure 8 shows
that the Euler preconditioner of Van Leer-Lee-Roe cre-
ates a large usable domain, Re > 1, larger than the
Euler domain. The same is true for Turkel's precon-
ditioner, see Figure 9. This explains results recently
reported by Turkel et al. [27], viz. that the Euler pre-
conditioner was effective in 2-D and 3-D viscous flow
computations. The cell-Reynolds number in these cal-
culations nowhere dropped below 1, not even in the
most stretched boundary-layer cells.

Figures 10 and 11 show the improvements brought
about by adding the Jacobi block to the Euler and

.Re-dependent forms of the Van Leer-Lee-Roe matrix.
Finally, Figure 12 shows the condition number for just
the Tie-dependent Van Leer matrix: it is O(l) over the
entire (M, Re) domain.

5 Numerical Studies

Below we give three examples of the action of Navier-
Stokes preconditioners, including a case with turbu-
lence modeling.

First, consider initial values consisting of a uni-
form field with a pressure perturbation in one cen-
tral cell. The Mach number of the background flow
is low (0.1, 0.01); the flow angle is 0°. Table 6 shows
the number of iterations needed for 5 orders of mag-
nitude of residual reduction; the scheme is first-order
upwind Euler with centrally differenced viscous terms,
and single-stage time-stepping. The grid consists of
10x10 square cells. It is seen that the convergence
by the preconditioned schemes is hardly influenced by
Mach or cell-Reynolds number, in contrast to the non-
preconditioned scheme.

The Van Leer/Jacobi and Chorin/.Re precondi-
tioner perform comparably, with some interesting dif-
ferences. In the Euler limit the Van Leer matrix
yields a lower condition number than the Chorin ma-
trix (1 versus 2.6), explaining the somewhat faster
convergence using the former. In the low-Re limit
the situation is reversed, as the condition number for
Van Leer/Jacobi is now a factor 5 larger than for
Chorm/Re. For medium Reynolds number, Re fa 1,
the Chorin/Re matrix unexpectedly slows down con-
vergence; this probably is the result of an inadequate
choice of the switching function that connects the three
branches of Eq. (11. It is clear that improvement is
still possible here.

The second example is the computation of the de-
velopment of a boundary layer on a flat plate (Moo =
0.1, RCL = 4 x 104). The cells right on the wall have
an aspect ratio « 1700. The scheme is the same as in
the first test. Figure 13 shows the steady flow field.
As seen from the convergence histories in Figure 14,
convergence without preconditioning is slow to begin
with and keeps slowing down, while the preconditioned
scheme has no convergence problem at all.

The third numerical test is the computation of
the development of a turbulent boundary layer on the
flat plate (Moo = 0.1, ReL = 3 x 105). The Spalart-
Allmaras one-equation model is used for the turbulent
transport. The convergence histories in Figure 15 show
that the Van Leer/Jacobi preconditioner of Eq. (9) in-
deed achieves convergence, overcoming the double stiff-
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Preconditioning

None

Chorin/Euler

Van Leer/Euler

Turkel/Euler

Van Leer + Jacobi

Van Leer/Re + Jacobi

Van Leer/Re

inviscid

Af + l
min(M,|l-M|)

0(1)
I
I
I
1
1

viscosity-

dominated

^L
Re
1

~Rl?
1

M2fle2

1
M2fle2

/ 1
^ M2Re2

0(1)
0(1)

acoustic

dominated
M + l p

M Ke

1
fle7

1
Re?

1
Re*

<T&

<«W

0(1)

Table 5: Condition number produced by various 1-D Navier-Stokes preconditioners in different asymptotic
regimes, based on PDE dispersion analysis. For a description of regimes and preconditioners see the main text.
"Van Leer/Re" means: Van Leer-Lee-Roe preconditioner with .Re-dependent (1,1) element. The notation "<
..." means: "lower than ...; analytic form hard to obtain."

ness due to the huge cell-aspect ratio (^K, w 105) and
the large source term. Without preconditioning con-
vergence is slow and eventually stalls.
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1

io-2
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Table 6: Number of iterations required for reduction of the density residual by a factor 10 5, (unless a smaller
exponent is indicated in parentheses), in calculating the decay of a 10M2 % pressure perturbation in the
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Figure 1: Design graph of optimal four-stage
scheme for the K = 0 preconditioned Euler op-
erator; M = 0.1, </> = 0°.

Figure 2: Design graph of optimal four-stage
scheme for the first-order preconditioned Euler
operator with explicit residual smoothing; M =
0.!,(/> = 45°, e = 0.1.
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Figure 3: Flow field of half-plane stagnation flow,
computed with the "stagnation preconditioner."
The upper half is for 60 = 0, the lower half for
60 = 1.5

Figure 4: Residual history for half-plane
stagnation-flow calculation; UnPC = Unpre-
conditioned; SPC = Stagnation preconditioner;
VIPC = Van Leer preconditioner.
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Figure 5: Fourier footprint for unprecondi-
tioned Navier-Stokes scheme (first-order up-
wind/central) with turbulende modeling. M =
0.1, Reh = 106, U^11 = 5 x 108, M = 10.

Figure 6: Same as in Figure 5, but after Van
Leer/Jacobi preconditioning.

Logio(Rau)
Logio(M)

Figure 7: Condition number for 1-D Navier-
Stokes equations without preconditioning.

Figure 8: Same as Figure 7, using Van Leer's
Euler preconditioner.
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Figure 9: Same as Figure 7, using with Turkel's
Euler preconditioner.

Figure 10: Same as Figure 7, using Van
Leer/Jacobi preconditioning.
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Figure 11: Same as Figure 7, using Van
Leer's preconditioner modified to include Re-
dependence, plus the viscous Jacobi block.

Figure 12: Same as Figure 7, using Van
Leer's preconditioner modified to include Re-
dependence.
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Figure 13: Velocity field for boundary-layer development on a flat plate. M = 0.1, ReL = 4 x 104, 25 x 20 grid.
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Figure 14: Convergence histories for the flat-
plate boundary-layer calculations. M = 0.1,
ReL = 4 x 104, 25 x 20 grid. UPC = unprecon-
ditioned, PC = Van Leer/Jacobi preconditioner.
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Figure 15: Convergence histories for the flat-
plate boundary-layer calculations with turbu-
lence modeling. M = 0.1, ReL = 3 x 105, 25 x 50
grid. UnPC = unpreconditioned; T PC = Van
Leer/Jacobi preconditioner including turbulent
source-term Jacobian.

855


