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A Virtual Rover Interface for Collaborative Human-Robot 
Exploration Teams 

Catharine L. R. McGhan1 and Ella M. Atkins2 
University of Michigan, Ann Arbor, Michigan, 48109 

Future planetary exploration missions will employ teams of rovers as astronaut assistants 
and independent scouts.  Individual and cooperative tasks must be accurately modeled.  
Mission controllers and astronauts must maintain situational awareness through global and 
local perspectives of the exploration team members and their environment.  This paper 
describes the development and integration of a mixed-reality graphical interface that 
provides a series of real-time three-dimensional views of the team.  Astronaut and rover 
activities are rendered on an environment map with a variety of negotiable global views and 
local perspective views corresponding to onboard video acquired by each rover.  The virtual 
reality (VR) graphics system described in this paper is integrated within a 
planner/scheduling framework that also supports real astronauts and rovers, enabling the 
overall team to be composed of real and virtual entities.  VR graphics are combined with a 
set of menu interfaces that facilitate the specification of goals, commands, and constraints 
through the same environment in which the graphics are presented.  Update rates 
(computational overhead) for the VR software are evaluated as a function of model fidelity 
and kinematics computations, providing a measure of practicality for this system as a tool 
for mission controllers and for suited astronauts with limited perceptual capabilities. 

I. Introduction 
uture planetary exploration missions will require collaborative teams of rovers and astronauts for scientific 
exploration and habitat construction/maintenance activities.  Rovers may act as astronaut assistants, independent 

scouts, or “equal” collaborators with each other and their astronaut companions.  Maintaining situational awareness 
is challenging in an extraterrestrial environment.  No infrastructure exists beyond what has been constructed or left 
behind from precursor missions, implying resources (power, fuel, oxygen) are highly constrained.  It is imperative 
that missions be highly efficient (optimized) to minimize resource usage but missions also must be highly adaptable 
since the environment and human/robot performance may be uncertain particularly for early missions.  Maintaining 
situational awareness throughout a planetary surface extraterrestrial vehicular activity is challenging but necessary 
from both productivity and safety perspectives.  This paper describes the development and integration of a mixed-
reality graphical interface that provides an operator a series of three-dimensional views of the team.  By default a 
full overhead map of the exploration region is provided, with the option for an operator to graphically negotiate their 
3-D viewpoint and perspective to a set of fixed or dynamically-negotiated coordinates.  Simulated views from each 
rover also enable assessment of the rover’s ability to visually detect and navigate around/over obstacles.  Our virtual 
reality (VR) graphics system is integrated with an automated planner/executive system developed in previous 
work,1,2 enabling the overall system to build, execute, visualize, and update plans for large-scale simulated and 
physical astronaut-rover teams.  The current rover entities are based on a six-wheel physical rover with rocker-bogie 
suspension that will fuse sensor feedback and kinematically-generated entity positions into the VR display and 
planner/executive world models.   

To facilitate rapid prototyping, maximize extensibility, and ensure portability, the VR system has been 
implemented in a Java/Xj3D environment using the VRML scripting language.3  Virtual rover passive and active 
joint motions are modeled with a simplified kinematics model adequate for visualization and efficient for replication 
and real-time display by the graphics engine.  This VR interface connects to the planner/executor through standard 
sockets, providing virtual entity state estimates and operator commands while receiving ‘real’ state data from the 
environment and task execution directives/status across all agents.  VRML simplifies the environment and mobile 
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entities within this environment through a flowdown model that translates kinematics to entity positions/orientations 
on the graphics display(s). 

The creation of a VR interface to facilitate research and rapid development is not a new concept, but the use of 
standard VR languages to facilitate creation of VR environments is not yet commonplace.  One aerospace-related 
VR example is VEVI.4  In this environment, a human teleoperated a remote rover using a virtual environment 
including kinematic and dynamic models of the rover system.  Subsequent development split along two tracks.  One 
produced a next-generation system, Viz,5 that focuses on VR architecture in the context of coverage planning and 
map building tools to control multiple physical rovers in a Mars testbed environment.6 The second track7 explores 
human-robot interface standards, with teleoperation of robotic platforms as a target application.  Our paper focuses 
on scalability and portability of an analogous VR graphics environment, but with emphasis on a “plug-and-play” 
structure that enables a mix of physical and virtual robotic and astronaut “agents” to coexist in a single execution 
cycle.  An automated planning/scheduling system interfaces with the VR system to allocate individual and 
collaborative tasks across the astronaut and rover agents according to their abilities and resources.  Although use of 
such an automated tool for scheduling astronaut tasks remains controversial due to the perceived rigidity of such 
tools, this strategy has the potential to better enable astronauts and missions controllers to focus on science activities 
as well as to identify anomalies (potential problems/dangers) and opportunities. 

This paper describes a Virtual Rover Interface (VRI) facilitates real-time collaboration between one or more 
human agents and one or more rover systems.  The VRI is coupled with the planner/scheduler, agent simulation 
software, and physical hardware (when available) to provide graphics-based situational awareness and a multi-
functional command interface.  This VRI system has both simplified and high-fidelity entity models appropriate for 
in situ astronaut and remote mission controller use, respectively.  Rovers are classified as either “real” physical 
agents that maneuver in indoor and outdoor test environments, or virtual rover agents that exist solely in simulation 
and have no physical impact on the world.  “Astronaut” entities can also be physical or virtual agents.  At runtime, 
the VRI creates a set of virtual rovers and astronauts.  The subset of physical rovers and astronauts are linked to a 
corresponding subset of VRI rovers/astronauts.  For physical entities, the VRI defaults to displaying rover state 
based on state feedback from the physical rover, effectively “slaving” the virtual rover to mimic the corresponding 
physical rover.  If an astronaut assumes direct control of the physical rover, however, the virtual rover becomes the 
master, issuing motion commands to the physical rover.  In this sense, the VRI acts as a “switch” to direct data 
between physical and virtual rover entities, controlling operating modes based on user (or planner/scheduler) 
directives.   

Figure 1 shows the VRI architecture.  The planner and coordination executive communicate with the VR 
environment to distribute schedules across the team that accomplish as many tasks as possible given resource 
constraints.  Once specified, an initial (potentially optimized) plan is communicated to all agents and real-time 
operations begin.  In the event of an anomaly or opportunity that prompts replanning, the VR world environment 
communicates with the executive to expediently respond.  The planner, coordination executive, and associated 
physical rover code base have been developed in parallel work.1,2  This paper focuses on the development of a real-
time reactive VR environment, visually-accurate rover and environmental models, and a communications protocol 
that acts as “middleware” between the coordination executive and rover agents.  This paper begins with an overview 
of VR and classification of this research within traditional VR application paradigms.  Next, the VRI software 
architecture is discussed in detail, focusing on the world model as well as the rover and environment submodels.  
Results VRI software benchmark tests are presented along with ongoing efforts to expand the current VRI 
implementation and deploy the VRI in realistic large-scale test scenarios. 

II. VR Background 
Virtual reality (VR) is most generally defined as a three-dimensional (3D) computer-simulated environment.  

Some definitions also mandate full immersion for “true VR”, where senses beyond only sight are stimulated with 
virtual cues.  Realism is achieved through detailed sensory models and entity motions as well as physically-accurate 
real-time response to user input.  Originally, the idea of virtual reality research was to find a way to simulate the 
physical world as closely as possible, in such a manner to trick a human’s brain into being unable to tell the 
difference between reality and the virtual world.  This tends to raise ethical questions and dramatizations of possible 
misuse of such technology (e.g., movies such as “The Matrix”).  Researchers have developed 3D viewing 
technologies such as head-mounted displays (HMDs), head-coupled displays (HCDs), CAVE (Cave Automatic 
Virtual Environment), and table projection systems, along with their associated input devices and other methods of 
interaction with the user in a virtual environment.8  However, as research has progressed, the actual application of 
VR in areas ranging from architecture and computer-aided design (CAD) to medicine, gaming, and training 
simulations, has prompted the question of whether full immersion is necessary, or even wanted, in all applications. 



 
American Institute of Aeronautics and Astronautics 

 

3

 
In many cases, display on a large overhead screen or even a personal computer is sufficient, such as in low-mid 

range flight simulators.  Because of this, current research tends to fall into one of two categories – one involving the 
development of hardware for immersion in virtual environments, and the other more focused on the software that 
supplies the virtual environments to be displayed.  On the software side, the growing demand for a universal way of 
representing VR environments has led to the creation of the older VRML97 and current X3D scripting language ISO 
standards.3,9  Many open source players and development kits support them.  One example is Xj3D,10 a Java toolkit 
and browser that allows direct internal access to virtual scenes in VRML and X3D. 

Since space missions are costly and most ground testing and training is a simulation of conditions in space, using 
VR to supplement ground testing had been a natural extension of normal operational development.  Although 
limited hardware testing is essential to develop skills such as path planning, navigation, and physical task execution 
capabilities (e.g., sampling), developing a VR simulation for early mission prototyping is faster, easier, and cheaper 
than developing hardware test platforms, especially when the mission design criteria are in still in flux.  This is 
particularly the case when extending the research to study many rovers working with multiple astronauts.  Also, 
from an operations standpoint, a well-designed VR interface can also communicate information more intuitively and 
flexibly than static indicator panels and simple text displays.  VR applications typically fall under one or more of the 
following classifications. 

 
1. Simulation 
Simulation is the most basic VR, where the user passively views a preselected image or sequence of images, and 

the environment does not react.  This is most commonly used for entertainment or educational purposes.  Computer-
animated movies (e.g., IMAX) are one example.  Another example with user interaction is NASA JPL’s Solar 
System Simulator, which creates static images of heavenly bodies for which the user may specify targets, 
viewpoints, and viewing times before running the simulator.11  The VRI system described in this paper includes the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Astronaut-Rover Collaboration Architecture 
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capability for playback of a saved scenario, which is done by creating solely virtual rover and virtual astronaut 
agents and supplying them explicitly with the data from a previous execution cycle. 

 
2. Teleoperation/Telepresence 
Teleoperation and telepresence allow a human to control a robotic system remotely but supply additional 

information such as overlaid or enhanced video, explicit tasks (commands), or simulated over-the-shoulder views.  
The addition of haptic controllers can also allow direct tactile force-feedback that is processed by the human more 
quickly and accurately than is possible through visual displays alone.  Teleoperation (with VR) can allow astronauts 
to control systems like Robonaut from inside a safer pressurized environment or other remote location rather than 
complete tasks on a higher-risk extravehicular activity (EVA).  The addition of graphics-based VR augments visual 
awareness thus by extension improves control of the robotic system.12  Another good example of a flexible VR 
system for teleoperation is VEVI, which has been utilized on multiple robotic systems, including the underwater 
robot TROV, the 8-legged Dante II crawler, the 6-wheeled Marsokhod rover, and the Ranger robotic arm.5  
Teleoperation is the lowest level of reactive operation available in the VRI.  In this mode, an astronaut or mission 
operator directly drives a virtual rover and the corresponding physical rover is slaved to it, provided such a physical 
rover exists. 

 
3. Human/Astronaut Training 
VR for training purposes typically utilizes a mix of both simulation and teleop/resence.  The user interacts with 

an active simulation that changes in real time according to the user’s input.  Flight simulation in fully immersive 
environments helps train pilots/astronauts how to handle any number of worst-case scenarios they might face on-
orbit while still on the ground under safe conditions.  Also, since the VR environment is virtual, the computer 
system can log each user’s response times and choices, enabling assessment of overall performance as well as 
quantitative identification of the user’s specific strengths and weaknesses.  Training programs can be adapted 
according based on individual needs, or the programs can be repeatedly executed with no or minimal (tailored) 
changes.  VR was used during astronaut training for the Hubble servicing missions as early as 1994.13  Another 
Aerospace example involved parachute mission planning, where multiple users trained together in the same virtual 
environment under varying scenarios, including differences in altitude, landing site, and wind speeds.14  Our VRI 
could be adapted to user training as well as supporting situational awareness enhancement and multi-agent mission 
simulations. 

 
4. Force Multiplier 
As a hybrid training simulation and system performance evaluation tool, “force multiplier” VR programs 

enhance human oversight capabilities, real-time or delayed, for one or more robotic systems.  The typical goal is to 
enable a single operator act more capably through sensory augmentation than would be possible otherwise.  This 
human oversight could take the form of command and control, or it could involve interaction or collaboration with 
the robotic systems, virtual or physical.  One example of this application class is an offline planner supplemented 
with VR that helps NASA scientists plan daily robotic missions for the Mars rovers, where time-delay is high and 
the environment and rover system’s dynamics are well-known.6  In its fully-operational mode, the VRI connects to 
both virtual and physical astronaut and rover agents.  Under nominal conditions direct teleoperation is not used by 
the astronaut(s) – the rover agents are able to create trajectories and execute simple tasks without astronaut 
intervention.  The primary distinction of our VRI from previous work is its bias toward “force multiplication” in 
multiple dimensions.  Certainly, the VRI can enhance situational awareness for the user.  It more literally can 
“multiply forces” through virtual entity (astronaut and rover) replication to supplement the set of available physical 
entities.  This enables both the VRI interface and our automated planning/scheduling system to be evaluated through 
real-time coordination of commands and activities across a relatively large team. 

VR languages and protocols are common across all the above application classes.  Given real-time constraints, 
there is also typically a split between simplified and high fidelity models.  Many applications can benefit from 
inclusion of both types.  For instance, a rover mission using the VRI could utilize a highly simplified model to 
provide an onsite operator/astronaut real-time data, while a high-fidelity model would be used to enable mission 
controllers/scientists to accurately perceive detailed activities and the environment either in online or offline 
scenarios. 
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III. VR Architecture 
 Our VRI software was developed using the VRML97 and X3D industry standards.3,9  The virtual rover and 

environment models were created in 3DStudioMax and exported in VRML format.  Early versions of the VRI were 
designed entirely in VRML and vrmlscript (the VRML-standard version of Javascript), primarily due to the low 
learning curve for development, the availability of freeware VRML players, and the ease of separating code 
(modularity) and “cloning” models and subsystems (object-oriented design) using the Inline and EXTERNPROTO 
nodes.15  The newest version of the VRI is being ported to the X3D standard, since it has better support of externals 
(the VRML EAI was not well-implemented in any standard VRML player/browser, while the X3D SAI is generally 
both better developed and better supported).  Xj3D is being used as the toolkit of choice due to the need for 
platform-independent development and support for socket layer communications which Java handles well.  Xj3D 
was also chosen because it is currently one of the most advanced open source X3D toolkits and is being developed 
in parallel with the evolving X3D standard.10  Figure 2 provides an overview of the components and communication 
links present within our VRI software. 

  
The Figure 2 VRI software system has four main components.  A symbolic (AI) task planner and coordination 

executive, coded in C++, were developed in previous work.1,2  The four components developed in this work include:  
(1) the virtual rover, environment, and astronaut geometric models coded in VRML, (2) kinematics models of the 
virtual agents (rover and astronaut), (3) dynamic environmental factors that determine the various virtual agent 
reactions and other changes in the environment, coded in Java, and (4) the socket communications thread, also 
coded in Java.  The Java code is compiled with the necessary Xj3D and VRML libraries using the free Borland 
JBuilder 2005 Foundation software development kit.  The VRML geometric models, as well as the compiled Java 
code, are subfiles referenced by one VRML global world file.  This global world file, when run in a capable X3D 
browser, initializes the environment and rover models and starts the Java executable, which then initializes a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. VR Software Modules and Data Flow 
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connection to the global world model and runs parallel to it.  The Java executable evaluates the kinematics of the 
various models and communicates updates to the VRML global world model in soft real time, while keeping track 
of the current state of those models internally.  The individual instantiations of the kinematics models – the Java 
classes – interact with as necessary and communicate with the coordination executive software via the socket 
communications thread.  The Graphical Astronaut Interface (the user’s current view of the global world model, 
which includes all virtual agent and virtual environment models, plus additional VRML code to support various 
operational modes) is displayed in the Xj3D player/browser, and updates accordingly.  Under nominal conditions, 
the planner transmits a plan to the coordination executive, and the coordination executive tells the physical and 
virtual agents what tasks to accomplish and when.  The physical agents return state information to the coordination 
executive, which relays this information through the communications thread to update the corresponding virtual 
agents.  The purely simulated virtual agents send state data to the coordination executive through the socket thread, 
and update the VRI world model automatically.  During off-nominal execution periods, entity states still evolve as 
normal, but the planner/scheduler (autonomously or with human controller assistance through the VRI) updates the 
task specifics (e.g., waypoints) and schedules over all virtual and physical entities.  In the event that an astronaut 
elects to teleoperate a rover manually, the astronaut communicates this intent via the GAI, which forwards the 
request to the coordination executive.  The coordination executive then handles the mode change between the virtual 
rover being slaved to the physical rover’s movements and the physical rover being slaved to the state of the virtual 
rover, now to be commanded via the GAI. 

With this paradigm, the planner treats all agents – physical and virtual astronauts and rovers – similarly when 
designing and evaluating plans for task completion:  they are modeled as “resources” with differing abilities.  Some 
overriding operational requirements, such as safety of the astronauts coming first, are given in the planning software, 
but these requirements could be specified for any particular agent.  Astronauts are thus able to redirect 
goals/activities but can also be “directed” by the planner/scheduler such that their attention can be focused on task 
execution rather than team management. 

A. VR World Model 
Figure 3 shows a snapshot of the default view of the current GAI interface, running under Firefox 2.0.0.3 with 

the Cosmo Player 2.1.1 (VRML) plugin.  This example global model file includes both static and mobile 
environmental objects, a console for basic teleoperation by an astronaut operator (one mode of operation), and two 
virtual rover agents.  The virtual rover agent shown in the center of the screen is configured to be teleoperated using 
the console buttons and sliders along the edges of the screen; the second rover agent (shown near the ramp on the 
right) has pre-scripted motions that run when the rover is left-clicked. 

 
The illustrated environmental objects include static objects such as red spheres representing obstacles that the 

virtual rover agent must traverse, green traversal “boundaries”, and “Martians” (modified from a preexisting file, see 
Ref. 16) in the center of the field.  Mobile objects are environmental objects that may change over time.  The 

 
Figure 3.  Default View of the VR Graphical Astronaut Interface 
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interface displays objects of this class with designators such as Roman-numerated circles, called waycircles, that 
respond to the rover by changing color when the rover passes over them.  The numbered pink waypoints are mobile 
objects that can influence the rover agent.  Collision detection occurs in the rover kinematics model, and if a 
collision event occurs, this information is passed to the colliding entity’s corresponding physics model.  Thus, 
mobile environmental objects are treated in the same way as “active” virtual agents, although their movement is 
only prescribed by simple physical models, rather than by sensor data or path planner directives received by the 
coordination executive. 

All of the models in the world file are currently made from simple geometric primitives placed in the scene via 
multiple, consecutive transformations of the local coordinate frames fixed to the objects.  In the default view in the 
GAI, the right-handed (world) inertial (N) coordinate frame’s x-,y-, and z-axes point to the right, up, and out of the 
display, respectively.  Each rover is assigned a “centroid” frame (R), the position and orientation of which are 
defined with respect to N.  Figure 4 shows an overhead view of the rover before and after a local traversal. 

 
When a rover moves, the kinematics for that rover system is computed in Java, and the corresponding virtual 

rover model in the VRML global world model is updated.  This information is inserted into the world model by way 
of updating the location of the local R frame, and all of the dependent virtual rover model components are then 
automatically re-rendered and displayed to screen by the X3D player software.  Figure 5 illustrates the VRML script 
representational hierarchy. 

 

    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Inertial and Local Coordinate System Example, Overhead View 

   
Figure 5. VRML Hierarchy Examples (from Ref. 17 and 18) 
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There are four basic types of VRML model components.  Nodes describe objects (such as Shape in Figure 5), 
actions, and locations, while fields describe node functionality (such as geometry, appearance).  Events support 
information access to and from “active” nodes (such as timers or proximity sensors).  Routes are the pipelines 
created to shunt data between events.  Transform nodes are wrapped around subsets of VRML nodes, and hold 
translation and rotation fields that apply a transformation to every subnode.  children fields allow several object 
nodes to be grouped into a “super-object” node.  An example would be assembling several snowballs in a specific 
configuration – say, on top of each other – to create a snowman.  To do this in VRML, as shown in Figure 5, both 
Shape nodes would be set as Spheres, with certain radii and white coloring picked.  The children fields would neatly 
separate the Shapes from one another (and allow more shapes, such as black spherical buttons or an orange cone 
nose, to be added later), and the Transformation nodes directly above them would hold the offset vectors necessary 
to stack the “snowballs” one on top of each other.  The higher children field would allow the two branches of nodes 
to be grouped together, and the Transformation at the top of the tree would arbitrarily move and rotate the entire 
snowman however we wanted in the world environment, relative to the inertial frame.  This flowdown model of 
updating allows us to only update the one highest-level transformation to move an entire object, reducing 
computational overhead in Java, since this is handled automatically by the VRML player when the geometric 
models have been correctly constructed.  For instance, if a robotic arm model was created from the base to the 
tooltip, top-down in the tree, changing the location of or rotating the base at the top of the tree would automatically 
propagate down the tree, enabling the VRML simulator to perform forward kinematics automatically.  However, 
specific translation of a manipulator tooltip still requires solution of the inverse kinematics problem then explicitly 
specifying all joint motions for VRML. 

Collision detection between objects (such as the rover and a spherical obstacle) must be done in the kinematics 
models rather than VRML.  In order to reduce computational overhead, the idea of a flowdown model is applied to 
collision detection for our VRI, in the form of tiers of increasingly computationally intensive collision checks before 
completing a full object collision analysis.  Figure 6 shows pseudocode for the testing procedure;  it is assumed that 
only one object intersects the wheels at a time. 

 

end
end     

end          
frame   to and rover   thecalculate               

lsrover whee  theof 1 with intersects  if          
footprintrover  within is  if     

  to1for 

Roffsetroll angle
obstacle i

obstacle i
obstaclesnumber of i

+

=

  

Figure 6:  Collision Detection Algorithm. 
 

At the first level, computations are done to check whether the obstacle is sufficiently close to the rover that it 
might intersect with one of the rover wheels.  If intersection is a possibility, then more computationally-intensive 
checks are done to determine whether one or more rover wheels intersect the specified obstacle.  If an intersection is 
found, then the kinematics reactions of the rover to the obstacle are computed.  By creating this hierarchy of system 
checks, many unnecessary calculations are avoided that would otherwise be computationally expensive. 

B. Rover Model 
Entity models were defined to maintain adequate computational efficiency while providing realistic component 

motions.  The rover geometric model, coded in VRML, was created in 3DStudioMax using measurements of the 
physical rover system.  Whenever possible, model components were made with the simplest primitives, so that the 
computations necessary to display the 3D model in VRML would be minimized.  Figure 7 shows a picture of the 
physical rover system along with the virtual rover model.  The virtual rover geometric model has local coordinate 
frames corresponding to joints of the physical rover to facilitate quantification of the VRI system with “real” versus 
strictly simulated virtual rover agents. 
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The rover kinematics model, coded in Java, provides simulated motion data to the coordination executive and 

updates all entity coordinate frame locations and orientations for the VRML-generated graphics.  Due to the object-
oriented architecture, any kinematics model can straightforwardly be replaced with any other kinematics model.  
The current rover model is the focus of this section; astronaut and mobile environment entities (e.g., rocks) are 
defined analogously. 

Rover kinematics is represented through two equation sets.  The first describes motion in terms of the 2D bicycle 
equations, adequate for macro-level runtime scenarios since further fidelity would not alter component motion 
perceptibly in the VR graphics.  Note that this approximation also has minimal impact on energy/fuel use 
computations, particularly given relatively smooth and consistent terrain.  Illustrated in Figure 8, this model assumes 
the back (bicycle) tire is the instantaneous center of rotation at all times and that no sliding occurs at the rear tire 
location.  This allows straightforward estimates of front and back/rear wheel velocities, Fvv  and Bvv , respectively: 
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The simple 2D lateral plane equations of motion are then specified as follows in the discrete form that directly 
translates to the Java implementation: 
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A second set of equations manages the rover’s traversal over an obstacle.  The treatment in our implementation 
presumes small roll angle rollθ and ignores pitch, since the pan-tilt unit (PTU) on which the rover camera(s) are 
mounted can compensate for pitch given near-forward-looking cameras.  Such simplifications enable minimum-
overhead updates for multiple rovers and can be straightforwardly expanded for large obstacles.  Figure 9 provides 
overhead view and rear rover views that illustrate rover component coordinate frames.  Component positions are 
given by:   

 

   
Figure 7. Physical Rover and Virtual Rover 
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where RW

R
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R
R

N
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N pppp →→
vvvv ,,,  represent the position of the obstacle/traversal feature (Obs) with respect to the 

inertial (N) frame, the rover center-of-geometry (R) frame with respect to N, the obstacle location with respect to R, 
and the traversing wheel location (W) with respect to R.  Once all positions have been transformed to common frame 
R, relative positions are evaluated to determine whether the rover wheel intersects the obstacle (i.e., HObs from Eqn. 
(4) is real).  In this case, roll (tilt) angle rollθ  is evaluated as shown in Eqn. (4). 
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Roll/tilt occurs in opposite directions for left versus right wheel obstacle traversal.  Both are handled 
straightforwardly through characterization of rover axis rotation.  Per the VRML standard, rotations of the full rover 
model are carried out at the center-of-geometry frame (R in Figures 3 and 4).  As shown in Eqn. (5), roll about R is 
represented as a rotation angle and offset adequate for single-wheel traversal of any small obstacle encountered.  
This offset is added to nominal rover frame position R

N pv , then the heading ψ  and roll rotations are performed to 
appropriately orient the R frame. 
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C. Environment Model 
The environment model consists of both static and mobile objects.  While some of the object entities were 

discussed earlier as related to the kinematics models in the Javascript code in some way (static objects at least had 
their coordinates “known” by the code for computational purposes), there are other environmental objects that are 
just as important.  The environmental objects are classified as terrain, lighting, cameras, and console controls. 

Terrain objects include obstacles and waycircles described previously, as well as the ground plane and sky scene 
that was modified from a pre-existing environment file.16  These were placed in the environment as static objects. 

Lighting in the scene is important, since the user must see objects clearly to determine the state of the 
environment.  Too much light can lead to distracting “glare”, while not enough lighting can distort the images so 
that edges and object details cannot be seen.  By default a point light “sun” is specified overhead that illuminates the 
entire scene, as if the example rover mission occurs midday. 

Camera views are extremely important for situational awareness.  Although the operator can use the controls in a 
general VRML/X3D player interface to change the view manually, it is often more efficient and realistic to provide 
present viewpoints.  Some of these views are static, but some are mobile objects that move in conjunction with the 
selected virtual rover agent, thereby representing onboard views.  Figure 10 shows the dropdown menu list of 
selectable views, and Figure 11 shows examples of several primary views. 

 

 
 

 
Figure 10. Menu of Preset Viewpoints 
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The console buttons and sliders along the edges of the screen currently allow an astronaut to teleoperate a rover 

agent using the GAI interface (see Figure 3 and/or Figure 11 view 6).  There are three modes of teleoperation 
available to the operator.  The first mode uses the waypoints (numbered pink dots) shown in the middle left of the 
terrain plane in Figure 11, view 6.  When the “Controls/Waypoints” button is selected, the rover system will 
automatically attempt to navigate between the waypoints.  The user may move the waypoints to different locations 
by clicking and dragging them around the screen along the 2D ground plane.  This movement is handled by the 
rover kinematics model.  When this button is not depressed, the rover can be teleoperated by the other controls.  One 
mode – “realistic” teleoperation – uses the slider on the left (up-down), which controls the travel speed of the rover, 
and the slider on the bottom (left-right), which controls the steering of the rover.  Clicking either of the red arrows 
on the left (pointing up and down) commands the rover to move forward or in reverse.  Clicking the 
“Continuous/Discrete Mode” button sets the rover to move constantly, or only a small distance, every time a red 
arrow is clicked.  This “driving” movement is handled by the rover kinematics model.  The other teleoperation mode 
can only occur when the “Continuous/Discrete Mode” button is not depressed (discrete mode).  This mode uses the 
“Rover Angle” and “X” “Z” sliders (top and right of the interface, respectively) as “hand-of-god” controls, which 
can be used to directly change rover position and orientation.  This movement occurs without any restriction by the 
rover kinematics model.  It is useful when initializing rover state, but is unrealistic as a mode of teleoperation.  Note 
that, as apparent in Figure 11, the console tools are configured through the use of proximity sensors and simple 
routing to follow the user’s point-of-view, regardless of where the current camera viewpoint is located. 

IV. Benchmark Testing – Impact of Model Complexity on VRI Frame rate 
Performance of our VRI implementation has been evaluated in terms of computational overhead for a variety of 

modes and scenarios.  The evaluated VRI includes the rover kinematics model described above, a reactive virtual 
environment, and a GAI with a basic interface for direct teleoperation.  This version was evaluated without the 
planner/coordination executive to isolate performance results to the VRI entities.  Note that, although an upgrade is 

 
Figure 11. Example Views, Selections 3 (Side View), 11 (Ramp Rover View), 5 (Low Overhead View), 6 
(High Overhead View), 10 (Rover Left Eye), 9 (Rover Right Eye) 
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underway, the current benchmarks were computed with uncompiled vrmlscript run within the VRML/X3D parser 
rather than compiled Java code. 

Benchmarks were recorded with this “VRI version 0.9” running under Firefox 2.0.0.3 with the Cosmo Player 
2.1.1 (VRML) plugin on a 2GHz laptop with 1GB RAM and a NVIDIA GeForce Go 6200 TE video card with 64 
MB RAM at a screen resolution of 1400x1050 in 32 bit color.  Table 1 lists execution speeds (complexity) 
represented by VRI frame rate in frames-per-second (fps). 

 
The impact of environmental fidelity was evaluated through use of the most complex background model (high) 

or flat-plane terrain with a simple sky (low).  “Martian” fidelity was tested with either the “realistic”-looking 
Martian (high) (Figure 12) or a simple red cylinder of equivalent radius (low).  On average, with simplifications of 
the geometric model, the frame rate jumped to three times the original speed.  The simplification of the environment 
had less impact than simplification of the Martian model due to model construction techniques.  Both the 
environment model and Martian model were modified from pre-existing 3DStudioMax files16 then exported as 
VRML models.  Originally, these files were large and slowed the VRI substantially.  To alleviate this, model 

Table 1. Benchmark Tests of Version 0.9 of the VRI 
Test 
Case 

Environment 
fidelity 

Martian 
Fidelity 

# of 
Martians 

# of 
Obstacles 

Collision Checks (obstacles) Frame rate 
(in fps) 

 high low high low   No check Full check 
(all obstacles 
every time) 

Flowdown 
(region-based) 

Range Average 

1 X  X  10 12   X 11-30 ~13 
2  X X  10 12   X 11-30 ~20 
3 X   X 10 12   X 29-30 ~30 
4  X  X 10 12   X 30-50 ~30 
5 X  X  10 12  X  9-20 ~13 
6  X X  10 12  X  10-23 ~17 
7 X   X 10 12  X  19-30 ~24 
8  X  X 10 12  X  17-25 ~20 
9 X  X  10 12 X   10-25 ~15 
10  X X  10 12 X   11-30 ~20 
11 X   X 10 12 X   29-30 ~30 
12  X  X 10 12 X   30-60 ~30 
13 X  X  30 12   X 4-20 ~10 
14  X X  30 12   X 4-35 ~14 
15 X   X 30 12   X 25-30 ~25 
16  X  X 30 12   X 30-45 ~30 
17 X  X  4 12   X 16-30 ~20 
18  X X  4 12   X 25-58 ~30 
19 X   X 4 12   X 29-30 ~30 
20  X  X 4 12   X 30-58 ~30 
21 X  X  10 30   X 11-30 ~20 
22  X X  10 30   X 11-30 ~20 
23 X   X 10 30   X 27-30 ~29 
24  X  X 10 30   X 30-58 ~30 
25 X  X  10 30  X  7-16 ~10 
26  X X  10 30  X  9-17 ~13 
27 X   X 10 30  X  12-19 ~14 
28  X  X 10 30  X  11-20 ~12 
29 X  X  10 30 X   11-30 ~20 
30  X X  10 30 X   10-30 ~20 
31 X   X 10 30 X   29-30 ~30 
32  X  X 10 30 X   30-58 ~30 
33 X  X  10 4   X 10-30 ~20 
34  X X  10 4   X 10-30 ~20 
35 X   X 10 4   X 29-30 ~29 
36  X  X 10 4   X 30-58 ~30 
37 X  X  10 4  X  10-30 ~20 
38  X X  10 4  X  10-35 ~20 
39 X   X 10 4  X  26-30 ~27 
40  X  X 10 4  X  27-42 ~30 
41 X  X  10 4 X   10-30 ~20 
42  X X  10 4 X   10-30 ~20 
43 X   X 10 4 X   29-30 ~30 
44  X  X 10 4 X   30-58 ~30 
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optimization was performed inside 3DStudioMax to 
reduce complexity of the exported scene.  More complex 
reduction was possible with the environment model 
without losing the general impact of the scene than the 
Martian, thus replacing Martians with cylinders had a 
greater impact on the frame rate.  The reason why both 
these models are more complicated than any of the others 
is because their primitive shapes are complex, built of 3D 
splines, surfaces created from the intersection of multiple 
splines, or detailed lists of grid points.  Note that when 
there are fewer Martians in the field of view displayed by 
the GAI, the frame rate does increase dramatically, with 
rate increases of 10 fps or more.  This is also tied to the 
fact that the average rates for a particular viewpoint can 
vary 10-20 fps between differing viewpoints in the same 
world model file. 

Alteration to the collision-checking procedure did not have nearly as drastic an impact on performance as the 
geometric model changes, which is expected since the simple algebraic computations in the vrmlscript are orders of 
magnitude less computationally intense than displaying even a simple 3D model.  The difference in frame rate when 
the rover agents were moving versus stationary (not shown) was negligible.  This suggests that certain sets of world 
model files as a whole will have similar performance when initialized with certain versions (high-fidelity vs. low-
fidelity) of components (geometric models, kinematics models) at startup, regardless of transient actions that occur 
during runtime. 

Additionally, since nominally one wants the update rate to be at least 10fps at all times, and nominally at 30fps 
or higher if possible, the “realistic” environments (of complexity test case 1 or less) are all within acceptable 
operating parameters.  It is notable that in all of these tested world models, only the environment models and 
collision checks on obstacles were changed.  All other operations and agents were of the same complexity.  This 
implies that even if the vrmlscript computational overhead is increased, a high frame rate can be recovered by 
simplifying model complexity. 

V. Conclusions and Future Work 
This paper has described a Virtual Reality Interface (VRI) that supports mixed physical and virtual agent teams 

in a common graphical interface environment.  Straightforward kinematics models minimize computational 
overhead but provide adequate resolution for simple traversals.  The use of VR software promotes portable agent 
entity definition and management and facilitates specification of the environment with multiple levels of graphics 
fidelity. 

Continued development of the VRI will enable full test scenarios with many rovers and astronauts, all managed 
by a combination of autonomous planner/scheduler and human-initiated directives.  Quantitative and qualitative 
evaluation of the interface through human operator testing and performance evaluation with quantitative metrics 
(e.g., for planning/scheduling and resource consumption) is the next step to demonstrating the utility of this 
somewhat alternative design of collaborative robot-astronaut mission simulations. With respect to software 
development, models will be developed on both “micro” and “macro” level scales.  Macro level enhancement will 
focus more on the energy/time cost computed by the VR simulation, which is important when characterizing high-
level situational awareness and the ability of the planner/scheduler to direct activities.  Uncertainty must be injected 
into the test scenarios and managed appropriately at all levels, resulting in anomalies and opportunities to which the 
system must appropriately react.  Micro level development will focus on the details of task completion in VR 
graphics (e.g. high-fidelity rover and terrain kinematics and dynamics to accurately represent the motion) and 
expected resource utilization for complex traversals (e.g., traversing a bed of rocks or a steep incline).  In this 
respect, characterization of environmental and rover state changes is critical to maximize efficiency.  From the 
graphics perspective, multiple levels of model fidelity should be available to enable the human operator to 
accurately perceive the agents and environmental states.   Without a specific and well-mapped target lunar or 
Martian environment, virtual terrain for the simulations must be generated through at least partially randomized 
functions to provide variety for missions and traversals.  These extensions, along with a significant suite of tests, 
will provide additional data to evaluate the performance of our VRI over a variety of conditions, models, and with a 
variety of users and interfaces. 

 
Figure 12. Close-up of Martian Geometric Model 
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