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The paper discusses results obtained with a finite-volume code that simulates viscous, turbulent flows for 3-D,

adaptive, unstructured meshes. The implementation uses a cell-centered, face-based data structure. A fully explicit,

second-order accurate, five-stage, Runge–Kutta time stepping scheme is used to perform the time marching of the

flow equations. Spatial discretization of the Reynolds-averaged Navier–Stokes equations can be performed with

second-order centered or upwind schemes. Automatic grid refinement routines are considered to adapt the original

mesh. A sensor based on density gradients selects the volumes to be refined. The code is able to handle tetrahedra,

hexahedra, wedges, and pyramids. A full multigrid scheme is available to accelerate convergence to steady state.

Coarse grid levels are constructed through an agglomeration procedure. One- and two-equation turbulence models

are implemented to include the turbulent effects into the numerical formulation. The mentioned features integrated

in one single code allow the Brazilian aerospace program to simulate complex flow conditions for sounding rockets

and satellite launch vehicles with accuracy and reasonable computational resources. Good agreement with

theoretical or experimental results is obtained with the present numerical tool.

Nomenclature

a = speed of sound
C = convective operator
Cp = pressure coefficient
D = artificial dissipation operator
d = minimum distance to the wall
e = total energy per unit volume
ei = internal energy
f = source term of the multigrid method
k = specific turbulent kinetic energy
p = static pressure
Pe = inviscid flux vector
Pv = viscous flux vector
Q = vector of conserved properties
q = heat flux vector
RHS = right-hand side operator
S = absolute value of the mean strain-rate tensor
S = area vector
Sij = mean strain-rate tensor component
T = static temperature
u, v, w = Cartesian velocity components
V = viscous operator
v = Cartesian velocity vector
x, y, z = Cartesian coordinates
� = angle of attack
�1 . . .�5 = Runge–Kutta control parameters

� = ratio of specific heats
�t = time step
� = von Karman constant
� = dynamic viscosity coefficient
� = kinematic viscosity coefficient
~� = modified Spalart–Allmaras eddy-viscosity

coefficient
� = density
� = viscous stress tensor
� = gradient ratio for limiter computation
 = control volume limiter
! = turbulent dissipation
� = absolute value of the mean rotation tensor
�ij = mean rotation tensor component

Subscripts

f, k = face index
i, m = grid control volume indices
‘ = laminar property
L, R = interface left and right properties
t = turbulent property
1 = freestream property

Superscripts

(m) = current grid of the multigrid method
n = time instant
* = dimensional property

I. Introduction

T HE paper discusses results obtained using a finite-volume
method on 3-D unstructured meshes to simulate turbulent

viscous flows over typical aerospace configurations. The numerical
tool was developed by the CFD group at Instituto de Aeronáutica e
Espaço (IAE) to aid the design of aerospace vehicles. One such
aerospace configuration of interest to IAE is the first Brazilian
Satellite Launch Vehicle (VLS). The VLS launcher is composed of a
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central body and four strap-on boosters [1]. An illustrative sketch of
the vehicle is presented in Fig. 1. This is the first time that such
thorough analyses of the VLS aerodynamics at representative
transonic and supersonic flight conditions are performed using a
viscous, turbulent CFD tool.

The finite-volume computational code solves the compressible
Reynolds-averaged Navier–Stokes (RANS) equations. A fully
explicit, second-order accurate, five-stage, Runge–Kutta time-
stepping scheme is used to perform the time march of the flow
equations. For flux calculations on the volume faces, a Jameson
centered scheme [2] plus explicitly added artificial dissipation terms
[3], or a Roe flux-difference splitting scheme [4] can be used. In the
latter case, second-order accuracy is achieved through a
multidimensional limited [5] MUSCL-type [6] reconstruction
scheme. An extension of the original multidimensional limiter
formulation of [5] is proposed to keep high accuracy at generic cell
types and to guarantee convergence. Furthermore, computationally
faster implementation of theRoe scheme and its associated limiters is
also proposed. The current methodology allows for large
computational resource savings while maintaining the expected
level of accuracy. The implementation uses a cell-centered, face-
based data structure, and the code can use meshes with any
combination of tetrahedra, hexahedra, wedges, and pyramids.
Boundary conditions are set through the use of ghost cells attached to
the boundary faces.

A 3-D automatic mesh adaptation technology is also available.
The CFD group at IAE already has experience with 2-D mesh
refinement techniques [7–9]. Some of these ideas are currently
extended for the 3-D case. Basically, the refinement technique
divides the original element in new ones by splitting its constitutive
faces. This splitting operation, however, allows for the presence of
hanging nodes, which clearly creates some additional complexity for
the coding. This additional complexity, nevertheless, is considered a
worthy tradeoff for increasing the overall mesh quality. The
implemented routines handle meshes composed of the previously
described cell element types.

Advanced eddy-viscosity turbulence models are available to
include the turbulence effects into the RANS equations. Viscous
simulations at high Reynolds numbers are typical for aerospace
applications, such as the ones of interest to IAE. Numerical
simulations of such flight conditions which do not consider
turbulence effects may have limited practical application. To obtain
useful viscous simulations results, the Spalart–Allmaras one-
equation [10] and the SST two-equation [11] turbulence models are
chosen. These models are suitable for external aerodynamics
applications and they can predict flow separation with acceptable
levels of accuracy. The CFD group at IAE has some previous
experience with such closures for turbulent aerospace flow
simulations [12–14].

A full multigrid (FMG) scheme is included to achieve better
convergence rates for the simulations. To build the mesh sequence
for the multigrid procedure, an agglomeration scheme based on cell
or node seeds is used. The CFD group of IAE has experience with
such technique [12] in other 2-D numerical codes. A robust and
consistentmethod for 3-D turbulentflow simulations is proposed and
included into the present numerical formulation. This methodology
allows for successful simulations of high-Reynolds number
turbulent flows for highly stretched grids at very acceptable costs.

Extensive validation of this code has already been initiated, and
one is referred to [9,14,15] for a careful analysis of some validation
results. The mentioned features integrated in one single code allow
the Brazilian aerospace program to simulate complex flow
conditions for sounding rockets and satellite launch vehicles with

accuracy at reasonable computational resource expenses [9,14,15]
without resorting to the high costs associated with investments in
commercial flow solvers. In other words, this is a unique simulation
tool developed within the Brazilian aerospace research program,
which is comparable to few other commercial tool options.
Furthermore, an in-house development of such a tool also adds
flexibility to the assessment of the aerospace configurations of
interest to IAE. To demonstrate the mentioned capabilities in an
actual application context, simulation results obtained for the VLS
configuration, as well as other typical aerospace test cases using the
present code, are discussed in this paper. Turbulent viscous transonic
and supersonic flows are considered. The numerical results obtained
show good agreement with the experimental data and they represent
all the relevant aerodynamic features observed in experimental tests.

II. Theoretical Formulation

The objective of the CFD group at IAE is to develop the capability
of simulating 3-D, viscous turbulent flows over general launch
vehicle configurations. An account of the theoretical formulation of
the current 3-D unstructured grid flow solver is presented in the
forthcoming discussions.

A. RANS Equations

The flows of interest in the present context are modeled by the 3-D
compressibleReynolds-averagedNavier–Stokes (RANS) equations.
These equations can be written in dimensionless form, assuming a
perfect gas, as

@Q

@t
�r � �Pe � Pv� � 0 (1)

with the following definitions

Q �

8>>>><
>>>>:

�
�u
�v
�w
e

9>>>>=
>>>>;
; Pe�

8>>>><
>>>>:

�v
�uv�p�̂x
�vv�p�̂y
�wv�p�̂z
�e�p�v

9>>>>=
>>>>;
; Pv�

1

Re

8>>>><
>>>>:

0

�xi�̂i
�yi�̂i
�zi�̂i
	i�̂i

9>>>>=
>>>>;

(2)

where i� x, y, or z are the indices used within the Einstein indexing
notation; and �̂� f�̂x; �̂y; �̂zg is the Cartesian coordinate unit vector.
The other relations can be given as
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and	i � �ijuj � qi, where ui is the Cartesian velocity component, xi
is the Cartesian coordinate, and 
ij is the Kronecker delta. In the
previous definitions, �‘ is the molecular dynamic viscosity
coefficient, computed by the Sutherland’s law [14], and �t is the
eddy-viscosity coefficient, computed by the chosen turbulence
model. The dimensionless pressure, p, can be calculated from the
perfect gas equation of state as

p� �� � 1�
�
e � 1

2
��u2 � v2 � w2�

�
(4)

In this work, all properties are made dimensionless according to a
set of dimensional reference variables provided by the user. The
necessary dimensional reference variables are composed of a
reference length D�ref , a reference speed V�ref , a reference dynamic
viscosity coefficient ��‘ref , a reference temperature T�ref , and a
reference density, ��ref . The dimensionless properties are defined
according to [16]. The user must also provide the gas properties,
namely, the constant of the gas R�, the specific heat at constant
volume Cv�, the specific heat at constant pressure Cp�; the Prandtl
number Pr, and the turbulent Prandtl number Prt. The gas R�, Cp�,
and Cv� properties are also made dimensionless with the providedFig. 1 VLS geometry overview.
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reference variables. Furthermore, the Reynolds number is defined as
Re� ��refV�refD�ref=��‘ref . One should observe that the Euler equations
are obtained from the RANS equations as the Reynolds number
approaches infinity.

B. Turbulence Modeling

The present work is mainly interested in high Reynolds number
simulations offlows over complex aerodynamic configurations. Two
turbulence closures are chosen in the present context, namely, the
Spalart–Allmaras [10] (SA) one-equationmodel and theMenter SST
[11] two-equation model. Both closures are particularly suited for
aerodynamic flow simulations and separation prediction [11].
Furthermore, they are also less restrictive in relation to the grid
refinement near the wall than other two-equation models such as the
k–� family of models [11].

Both models are solved according to the finite-volume approach.
The convective term is discretized using a simplified first-order
upwind scheme, and the diffusion term is discretized using a second-
order centered scheme. The time march is performed using the
implicit Euler scheme. One should observe that the use of an implicit
scheme for the timemarch, in an unstructured mesh, leads to a sparse
linear system. The solution for this system of equations is obtained
using the biconjugate gradient method [17]. More implementation
details on the time integration of the turbulence modeling equations
can be found in [9].

Finally, because a measure of the turbulent kinetic energy is used
in the SST model, that turbulence quantity should be included in the
viscous terms of the RANS equations. Thus, some terms are
redefined as

�newij � �ij �
2

3
Re�k
ij; 	new

i � 	i � ��‘ � �k�t�
@k

@xi
(5)

and the static pressure is redefined as pnew � p � �� � 1��k. The
inclusion of the turbulent kinetic energy as previously shown is
unusual in the CFD community. However, these operations augment
the physical accuracy of turbulent viscous flow simulations because
some turbulent terms extracted from the Reynolds averaging
procedure are brought back to the formulation not only via the eddy-
viscosity coefficient. This is specially important when higher Mach
number flow conditions are considered, in which the turbulent
kinetic energy can be comparable to the local mean-flow kinetic
energy [18].

III. Numerical Formulation

The forthcoming subsections describe the currently adoptedfinite-
volume method and the temporal discretization of the governing
equations.

A. Finite-Volume Discretization

The finite-volume method is used to obtain the solution of the
RANS equations. The formulation of the method is obtained by an
integration of the flow equations in a finite volume. The application
of Gauss’ theorem for each finite volume yields

Z
Vi

@Q
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Si

�Pe � Pv� � dS� 0 (6)

where the outward-oriented area vector is defined as
S� fSx; Sy; Szg. The discrete value of the vector of conserved
variables for the ith control volume is defined as the mean value of
the conserved variables in the volume as

Q i �
1

Vi

Z
Vi

Q dVi (7)

Hence, the final form of the finite-volume formulation for the RANS
equations can be written for an elementary volume and assuming a
stationary mesh as

@Qi

@t
�� 1

Vi

Xnf
k�1
�Pek � Pvk� � Sk (8)

where nf is the number of faces which form the control volume. The
code is able to handle grids composed of tetrahedra, hexahedra,
wedges, pyramids, or a mix of these types of elements. The previous
equation also indicates that the integral is discretized assuming the
fluxes to be constant on the faces.

B. Time Integration

The integration in time of Eq. (8) is performed using a five-stage
Runge–Kutta-type scheme [2,19] such as

Q �0�i �Qn
i ; Q�‘�i �Q�0�i � �‘

�ti
Vi

RHS
�‘�1�
i ; Qn�1

i �Q�5�i

(9)

where ‘� 1 � � � 5, and the residue, RHS, is defined as

RHS i � Ci � Vi �Di (10)

Here, Ci, Vi and Di are, respectively, the convective operator, the
viscous operator, and the artificial dissipation operator calculated for
the ith control volume. These operators are calculated according to
the spatial discretization scheme and they are detailed in the
forthcoming sections. The�‘ coefficients are 1=4, 1=6, 3=8, 1=2, and
1 for ‘� 1; � � � ; 5, respectively. The viscous operator is calculated
only on the first stage of the Runge–Kutta scheme to save
computational resources.

The time step for each volume, �ti, is calculated assuming a
constant Courant–Friedrichs–Lewy (CFL) number throughout the
computational domain. Hence,

�ti � CFL
‘i

jvij � ai
(11)

where ai is the speed of sound, jvij is the magnitude of the local flow
velocity, and ‘i is the characteristic length, in the ith cell. The
characteristic length is set as the smallest distance between the
control volume centroid and the centroids of each face that forms the
cell.

C. Spatial Discretization

Both centered and upwind schemes are available in the present
numerical method for the computation of the convective fluxes.

1. Centered Scheme

Centered schemes require the explicit addition of artificial
dissipation terms to control nonlinear instabilities that may arise in
the flow simulation. The centered spatial discretization of the
convective fluxes, Ci, in this scheme is proposed in [2]. The
convective operator is calculated as the sum of the inviscid fluxes on
the faces of the ith volume as

C i �
Xnf
k�1

Pe�Qk� � Sk; Qk �
1

2
�Qi �Qm� (12)

where Qi and Qm are the conserved properties in the ith and mth
cells, respectively, that share the kth face.

The artificial dissipation operator is built by a blend of undivided
Laplacian and biharmonic operators. In regions of high-pressure
gradients, the biharmonic operator is turned off to avoid oscillations.
In smooth regions, the undivided Laplacian operator is turned off to
maintain second-order accuracy. A numerical pressure sensor is
responsible for this switching between the operators. The expression
for the artificial dissipation operator is given by
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D i �
Xnb
k�1

�
1

2
�Am �Ai���2�Qm �Qi� � �4�r2Qm � r2Qi�	

�
(13)

where m represents the neighbor of the ith element, attached to the kth face, and nb is the total number of neighbors of the ith control volume.
Furthermore, the quantities in Eq. (13) are defined as

�2 � K2 max��i; �m�; �4 �max�0; K4 � �2�; �i �
P

nb
m�1 jpm � pijP
nb
m�1�pm � pi	

(14)

with the Laplacian term approximated by an undivided Laplacian computation, such as

r2Qi �
Xnb
k�1
�Qm �Qi	 (15)

In this work,K2 andK4 are assumed equal to 1=4 and 3=256, respectively. TheAi matrix coefficient in Eq. (13) is replaced by a scalar coefficient
[3,20] such as

Ai �
Xnf
k�1
�jvk � Skj � akjSkj	 (16)

This formulation is constructed in an attempt to obtain steady-state solutions which are independent of the time step [21].
In themultistage Runge–Kutta time integration previously described, the artificial dissipation operator is calculated only on the first, third, and

fifth stages. For the inviscid calculations, the artificial dissipation operator is calculated in the first and second stages only. This approach
guarantees the accuracy for the numerical solution while reducing computational costs per iteration [2]. Furthermore, the artificial dissipation
model has also been integrated into the multigrid framework. To achieve lower computational costs for the multigrid cycles, only the first-order
artificial dissipationmodel is used in the coarser-mesh levels. This operation is achieved by not computing the biharmonic term inEq. (13), and by
setting �2  �2 � �4 in these coarser levels.

2. Upwind Scheme

The upwind discretization in the present context is performed according to the Roe flux-difference splitting scheme [4]. In this scheme, the
inviscid numerical flux in the kth face can be written as

P ek �
1

2
�PeL � PeR � �

1

2
j ~Akj�QR �QL� (17)

where j ~Akj is the Roe matrix associated with the kth face normal direction, defined as

j ~Aj�QR �QL� �
X5
j�1
j
jj
jrj (18)

In this formulation, j
jj represents the magnitude of the eigenvalues associated with the Euler equations, given as

j�j � diag�jvnj; jvnj; jvnj; jvn � aj; jvn � aj� (19)

Similarly, ri represents the associated eigenvectors, given by

r1 � �nx nxu nxv� nza nxw � nya nx�1 � a�nzv � nyw� 	T;
r2 � �ny nyu � nza nyv nyw� nxa ny�1 � a�nxw � nzu� 	T;
r3 � �nz nzu� nya nzv � nxa nzw nz�1 � a�nyu � nxv� 	T;
r4 � � 1 u� nxa v� nya w� nza H � qna 	T;
r5 � � 1 u � nxa v � nya w� nza H � qna 	T (20)

where �1 � 0:5v � v. The 
i terms represent the projections of the property jumps at the interface over the system eigenvectors, defined as the
elements of

� �L��� ���u� ���v� ���w� �e 	T (21)

where the left eigenvectors are the rows of the L matrix, which are defined as
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with �2 � �� � 1�=a2, �3 ��2=2, and �4 ��1�2. In the
constant definitions, the kth subscript, which indicates a variable
computed in the face, is eliminated to avoid overloading the
equationswith symbols. Properties in the volume faces are computed
using the Roe average procedure, as detailed in [4].

In the classical form inwhich the Roe scheme is presented, such as
in Eq. (17), the underlining argument is the numerical flux concept,
as also found in other upwind scheme examples [22,23]. Therefore,
each time the numerical flux is built, the inherent numerical
dissipation is also evaluated. In an explicit Runge–Kutta-type
multistage scheme, this fact means that the Roe matrix defined in
Eq. (18) is computed in all stages. The present authors rather interpret
the Roe scheme as the sum of a centered convective flux, defined by

C i �
Xnf
k�1

Pek � Sk; Pek �
1

2
�PeL � PeR � (23)

and an upwind-biased numerical dissipation contribution, that is
given by

D i �
Xnf
k�1

1

2
j ~Akj�QR �QL�jSkj (24)

Therefore, the attractive, cheaper, alternate computation of the
numerical dissipation in the multistage scheme, as already used for
the switched artificial dissipation schemes, is also extended to the
upwind flux computation. To the authors’ knowledge, this is a novel
proposal and a unique feature of the present numerical tool.

To achieve second-order accuracy in space for the Roe scheme,
linear distributions of properties are assumed at each cell to compute
the left and right states in the face. Such states are represented by the
L andR subscripts, respectively, in the previous Roe definitions. The
linear reconstruction of properties is achieved through aMUSCL [6]
scheme, in which the property at the interface is obtained through a
limited extrapolation using the cell properties and their gradients. To
perform such reconstruction at any point inside the control volume,
the following expression is used for a generic element, q, of the
conserved variable vector, Q, in Eq. (1):

q�x; y; z� � qi �rq � r (25)

where �x; y; z� is a generic point in the ith cell; qi is the discrete value
of the generic property q in the ith cell, which is attributed to the cell
centroid;rq is the gradient of property q; and r is the distance of the
cell centroid to that generic point. Gradients are computed with the
aid of the gradient theorem [24], in which derivatives are converted
into line integrals over the cell faces. In the present work, the control
volume, Vi, in which to perform the gradient computation is chosen
to be the ith cell itself [22]. The expressions for the reconstructed
properties in the kth face can be written as

�qL�k � qi �  irqi � rki; �qR�k � qm �  mrqm � rkm (26)

whererqi andrqm are the gradients computed for the ith cell and its
neighboring mth cell, respectively;  i and  m represent the limiters
in these cells; and rki and rkm are the distance vectors from the ith and
mth cell centroids, respectively, to the kth face centroid.

The first-order Roe scheme can be readily obtained by setting the
limiter value to zero in Eq. (26). This operation is equivalent to
writing QL �Qi and QR �Qm in the previous formulation. The
integration of MUSCL-reconstructed schemes with the multigrid
framework is simply accomplished by computing the second-order
scheme in the finest grid level and the first-order one in the other
coarser levels. This approach guarantees lower computational costs
for the multigrid cycles while maintaining the adequate accuracy for
the solution at the finest mesh level.

The limiter options that are available in the present context are the
minmod, superbee, and van Albada limiters [25]. The respective 1-D
definitions for these limiters are

 ��� �
8<
:
min��; 1�;
max�min�2�; 1�;min��; 2�	;
��2 ���=��2 � 1�

(27)

The total variation diminishing (TVD) [5,6] region is limited
between the minmod and the superbee curves. In the previous
equations,� is defined as the ratio between the gradients of adjacent
control volumes at the interface. One should observe that the
minmod and superbee limiters require the evaluation of maximum
and minimum functions, which characterizes these limiters as
nondifferentiable. The van Albada limiter, on the other hand, is
continuous. This aspect is discussed further in the current section.

In a similar sense as discussed for the Roe upwind scheme, the
usual way of computing limiters is to perform such calculation every
time the new numerical flux should be updated. The limiter
computation work, though, is a very expensive task, amounting to
more than half of an iteration computational effort, in the present
context. Therefore, the idea of freezing the limiter along with the
dissipation operator at some stages of the multistage time-stepping
scheme is attractive in terms of computational resource savings.
Hence, this approach is adopted in the current code framework.

The current extension of the 1-D limiters to the multidimensional
case is based on the work of Barth and Jespersen [5]. Azevedo et al.
[22] also present some insights into this effort to the 2-D case. The
present work, however, presents a further extension of the
methodology discussed in [22]. This extension is aimed at allowing
for the user the choice of any desired limiter formulation, aswell as to
solve some Barth and Jespersen [5] limiter drawbacks. One of such
disadvantages is that it is not a continuous limiter; other aspects are
discussed later.

The difficulty in implementing a TVD method in a multidimen-
sional unstructured scheme is related to how to define the gradient
ratio,�. A generalization of� for an unstructured grid is proposed in
[15]. The proposedmultidimensional gradient ratio for the kth face of
the ith control volume is obtained as

�k �
8<
:
num�=den; if den> 0;
num�=den; if den< 0;
1; if den� 0

(28)

where

den � �qi�k � qi; num� � q�i � qi; num� � q�i � qi
(29)

Here, the extrapolated property in the face, �qi�k, is given by
�qi�k � qi �rqi � rki (30)

and the q
i variables can be mathematically defined as

q�i �max
f
�qi; qf�; q�i �min

f
�qi; qf� (31)

The property in the fth face, qf, is the arithmetic average of the
properties in the neighboring cells, as in Eq. (12), resulting in
qf � �qi � qm�=2, where themth cell shares the fth face with the ith
cell. The advantage of the gradient ratio definition in Eq. (28) is that it
can be directly used in any other limiter definition, such as the ones
presented in Eq. (27). It can also be used to recast the original Barth
and Jespersen [5] limiter formulation with a slight modification
though. More details of this formulation can be found in [15].

The complete definition for the current multidimensional limiter is
finally presented. The following algorithm is implemented for the
computation of the limiter in the ith control volume:

1) The computation of the limiter in the ith cell is initiated by
collecting the minimum, q�i , and the maximum, q�i , values for the
generic q variable, in the sense of Eq. (31).

2) For each centroid of the kth face of the ith cell, the following
steps are performed:

a) The property �qi�k � q�xk; yk; zk� in the kth face centroid is
extrapolated, as in Eq. (30).
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b) The gradient ratio in the face, �k, necessary to compute the
limiter, is obtained through Eq. (28).

c) A limiter value is computed at each face of the ith control
volume.

3) The limiter value for the ith control volume isfinally obtained as
the minimum value of the limiters computed for the faces.

The nondifferentiable aspect of the minmod, superbee, and Barth
and Jespersen [5] limiters poses some numerical difficulties in their
use for practical numerical simulations. Their discontinuous
formulation allows for limit cycles that hamper the convergence of
upwind inviscid and viscous flow simulations to steady state [26].
One option to work around this problem is to freeze the limiter after
some code iterations or residue drop, but this technique seems to not
always work and to be highly problem dependent [26]. Such
characteristics may also inhibit its application in actual production
environment due to the need for user input in setting the limiter
freezing operation for the simulation of interest. Another option is to
use differentiable (or continuous) limiters instead of the ones which
require maximum and minimum functions. Some examples can be
found in [26], for instance. The limiter formulation in that work,
however, seems to somehow pose a tradeoff between convergence
and obtaining monotone (oscillation-free) steady-state solutions.
The van Albada limiter, modified to include a smoothness
augmentation threshold constant, is given by

 �num
; den� � num
�num
 � den� � �LIM
num
2 � den2 � �LIM

(32)

where num� or num� are employed in the same sense specified in
Eq. (28). Furthermore, �LIM is the constant limiter control, chosen as
�LIM � 10�4 in the present work. This option seems to be appropriate
for all aerospace cases considered by the present and other [27]
development groups, always allowing machine-zero steady-state
convergence for monotone numerical solutions.

3. Viscous Flux Computation

The viscous operator in the ith control volume is calculated as the
sum of the viscous fluxes on the faces which constitute the volume

V i �
Xnf
k�1

Pv�Qk� � Sk (33)

In this case, both the conserved variable vector and its derivatives, on
the face, are calculated as arithmetic averages between their
corresponding values in the two volumes which contain the face.
Derivatives of flow variables, for each control volume, are calculated
in the standard finite-volume approach in which these derivatives are
transformed, by the gradient theorem, into surface integrals around
the control volume [24,28].

D. Boundary Conditions

“Ghost” volumes are used to enforce the boundary conditions. The
boundary conditions for external flows implemented in the 3-D
finite-volume code are solid wall conditions for viscous and inviscid
flows, nonreflecting farfield, inlet and outlet, symmetry, and
extrapolation conditions. Detailed discussions of the boundary
conditions for the RANS equations can be found in [9]. Furthermore,
detailed discussions on the boundary conditions for the turbulence
model equations are found in [14].

IV. Multigrid Technique

A technique that may allow an excellent convergence acceleration
for numerical methods is the multigrid procedure [29]. The
mathematical concept in which the multigrid technique is based
consists basically in eliminating the low-frequency errors of the
finest grid by solving the problem in coarser grids. This is based on
the knowledge that the time-integration methods available today can
only rapidly eliminate high-frequency errors of a computational grid
[30], and that the high frequencies associated with the coarse grids

are approximately of the same order of magnitude of the low
frequencies associated with the finest mesh.

A. Multigrid Methodology

The multigrid algorithm chosen for the present work is of the full
approximation storage (FAS) type, which is the recommended
method for nonlinear problems [30]. This method is based on
exchanging both solution and residue values between different grid
levels. It also relies on a good time marching procedure to be
effective, such as the current Runge–Kutta time-stepping scheme.

The current multigrid method has been successfully validated
within the present 3-D unstructured computational code for inviscid
to turbulent viscous simulations, as shown in [31]. To improve the
multigrid algorithm as well as the computational method, the
simulations start at the coarsest grid level. Some iterations with the
Runge–Kutta scheme are performed at this grid, and a high-order
interpolation is performed to the next finer grid. Some multigrid
cycles are then performed to improve the solution at this grid. This
procedure is successively repeated until the finest grid is reached,
with a good initial guess to the solution. Multigrid cycles are then
performed on the finest mesh until convergence is reached. This
technique is usually referred to as a full multigrid (FMG) scheme.

For the problem being solved, written in an operatorlike form,
L�0�q�0� � f�0�, the algorithm for a “V” cycle of the multigrid solver
works as follows:

1) Presmoothing: execute n1 iterations of the time marching
procedure in the finest mesh level, L�0�q�0� � f�0�.

2) For grid levels g� 0 toM � 1:
a) Residue computation: r�g� � f�g� � L�g�q�g�
b) Residue restriction: r�g�1� � R�r�g��
c) Solution restriction: q0�g�1� � R�q�g��
d) RHS computation: f�g�1� � r�g�1� � L�g�1�q0�g�1�
e) Presmoothing: execute n1 iterations of the time marching

procedure in level g� 1, L�g�1�q�g�1� � f�g�1�.
3) Solve the problem for the coarsest grid level, L�M�q�M� � f�M�,

executing nM iterations of the time marching procedure.
4) For grid levels g�M to 1:
a) Solution correction: q�g�1� � q�g�1� � P�q�g� � q0�g��
b) Postsmoothing: execute n2 iterations of the time marching

procedure in level g � 1, L�g�1�q�g�1� � f�g�1�.
In this algorithm, r represents the RHS operator at the nth time

instant, defined as the negative of the RHS operator in Eq. (10). The
multigrid RHS operator, r, is also augmented by a multigrid source
term, f, which represents the residue information exchange between
adjacent grid levels. Moreover, q and q0 represent the conserved
variables at the same time instant, n, obtained from two different
ways, as described in the previous algorithm. The g superscript
denotes the operation for the gth grid level. The number of grid levels
of this process isM� 1, whereM is associated with the coarsest grid
level and 0 with the finest one.

In the previous algorithm, exchange operators are used for the
connection between two consecutive grid levels. The restriction
operator exchanges information from a grid level to the next coarser
mesh. The prolongation operator interpolates from a grid level to the
next finer one. The operator used in the present work for the
conserved property restriction is the volume weighted average. The
restricted conserved properties of a coarse mesh volume are equal to
the sumof the conserved properties of all thefinemesh cells that form
this coarse mesh volume, weighted by their volumes. Mathemati-
cally, this operation can be written as

q�g�1�i � 1

Vi

Xncv�i�
m�1

Vmq
�g�
m (34)

where the property in the ith volume of the �g� 1�th coarser-mesh
level is a summation of the property times the volume of the ncv�i�
volumes of the nextfinergthmesh level that belong to the ith coarser-
mesh cell. This nomenclature is detailed in Fig. 2. On the other hand,
the restriction of the residuals is accomplished by simple addition of
the finer-mesh residuals. Thus, the residual of a coarse mesh volume
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is equal to the sum of the residuals of all the finer mesh volumes that
are contained in this coarse mesh volume, such as

r�g�1�i �
Xncv�i�
m�1

r�g�m (35)

and the residue, r, is defined in the previousmultigrid algorithm. The
restriction operator for the residuals is different from the restriction
operator for the conserved properties because the residuals can be
interpreted as surface integrals in finite-volume schemes.

The prolongation operator is only applied to conserved property
transfers. For each kth face of the mth finer-grid cell, the volume-
averaged corrections corresponding to the coarser-mesh neighbors, i
and nb, are multiplied by the kth face area and summed. The result is
divided by the total area of the boundary surface of the mth control
volume. This operation, in the �g� 1�th mesh level, is
mathematically described as

P��q�g�m � � 1

Tm

Xnf�m�
k�1

�
�q�g�i Vi ��q�g�nb Vnb

Vi � Vnb

�
jSkj;

�q�g� � q�g� � q0�g�
(36)

Them subscript represents themth volume of the �g � 1�th finer grid
level, nf�m� represents the total number of faces of thismth cell, and i
and nb are the neighboring volumes of the coarser gth mesh level to
the kth face. Property q0 is defined in the previously described
multigrid algorithm. Furthermore, V is the cell volume and T is the
total area of a given cell, given by

Ti �
Xnf�i�
k�1
jSkj (37)

The nomenclature for this operation is detailed in Fig. 2. This
procedure is implemented in a certain way that, if the kth face is
internal to the coarser grid-level cell, as the k1th face in Fig. 2, then
automatically nb�k1� � i�k1�.

B. Nonflux-Term Associated Issues

During the development of the multigrid scheme in the present
context, problems in the calculation of nonflux terms, such as the
artificial dissipation operator, have been observed. These problems
are associated with the fact that two neighboring cells may share
more than one face in a given agglomerated mesh level. To simplify
the explanation of such issue, the following nomenclature is used
hereafter: a face represents a real triangular or quadrilateral planar
element, whereas an interface represents the complete surface that
separates two neighboring volumes. These two definitions are
presented in Fig. 3. For thefinest grid level, a face and an interface are
identical to each other, because two neighboring cells are exclusively
separated by a unique face. For the agglomerated grid levels, this is
not true anymore and an interface between two cells may contain
more than one face, as depicted in Fig. 3. In this figure, the interface
between the two given cells is formed by three faces.

For flux-associated terms, this fact does not represent any
inconsistency because fluxes are computed through faces and they
are multiplied by their surface area. This fact results in a summation
of the total area of the given interface, yielding the correct flux
computation for that interface. For nonflux terms, such as the
artificial dissipation of the centered scheme, the computations do not
take into account the face area and they must only be performed for
each interface. In the present face-based code structure, one has
information about faces and not about interfaces. Furthermore,
storing interface information would excessively increase the
memory usage of the multigrid solver. The approach in the present
context to deal with this issue is to store a smaller array with the
number of faces that compose a given interface between two cells.
Each face receives this value, then, to be used whenever necessary.
For instance, in Fig. 3, faces 1, 2, and 3 would receive the value 3 in
the proper array position.

As an example, it is interesting to observe how the computation of
the undivided Laplacian term, necessary for the artificial dissipation
method, is performed. As already discussed, the Laplacian term is
computed as

r2Qi �
Xnf
k�1
�Qk �Qi	 (38)

where Qi is the property in the ith volume and nf is the number of
faces of the same element. What happens in the agglomerated cell
computation is that, at a given interface, say the interface in Fig. 3, the
[Qk �Qi] difference is computed three times, one for each face of the
interface. Nevertheless, one can clearly observe that this term is not
associated with flux and, thus, this difference is added three times
instead of once, which would be the correct procedure. Hence, the
correct way to calculate this termwould be to replace nf by nn, where
nn would represent the number of neighboring cells, or interfaces, of
the ith cell. Unfortunately, this information, along with other
associated information, is not available in the code and it would be
extremely costly to generate and store such data. The approach in the
present context is to compute this term as indicated in Eq. (38) and
divide the difference in the kth face by the number of faces that
comprise the interface with the corresponding control volume. This
would read, for the nm-th mesh level,

r2Qi �
Xnf
k�1

�
Qk �Qi

ineface�k; nm�
�

(39)

where ineface�k; nm� stores the number of similar faces for the kth
face in the nm-th grid level and it is generated once in the code
startup.

In the initial versions of the code which did not consider the
preceding correction on the nonflux terms, strong unphysical
property buildup has been observed in all simulations performed.
Successful numerical resultswith the presentmultigridmethod could
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Fig. 2 Sketch of transfer operations in the multigrid scheme.
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Fig. 3 Sketch of face and interface definitions.
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only be obtained with the previously described nonflux correction.
This methodology is sufficient to control the unphysical property
buildup generated by the unbalance of the artificial dissipation terms
due to the inconsistency of the implementation of nonflux related
terms for an agglomerated mesh cell.

C. Agglomeration Technique

The coarse mesh levels used by the multigrid scheme are
generated by an agglomeration technique. Similar technique has
been successfully implemented into a 2-D version of the present 3-D
numerical formulation [12]. In the current agglomeration algorithm,
a seed volume is chosen in thefinemesh and all the volumes that have
at least one node in common with this seed volume are grouped to
form the coarse mesh cell. Another seed volume is then selected and
the agglomeration procedure continues grouping all the fine mesh
volumes. It should be noted that during the agglomeration procedure,
only the volumes that are not already agglomerated may be grouped
to form a coarse mesh cell. This is a necessary condition to guarantee
that there is no volume overlapping in the coarse mesh.

To avoid largemesh growth between successivemesh levels, there
is also an option to use seed nodes instead of seed volumes for
agglomeration. For meshes composed of tetrahedra, for instance, the
mesh growth based on the seed-volume option may result in
coarsening ratios of about 20; that is, 20 volumes of the finer mesh
level are agglomerated to compose the coarser control volume. This
behavior adds excessive interpolation errors for the present
applications of interest. The seed-node option proved to be effective
in avoiding such numerical problems, because less stringent
coarsening ratios of about 8 can be obtained with its use.

Better coarse mesh quality can also be obtained if the selection of
the seed volumes is not random. Therefore, a list containing all the
fine mesh volumes is generated before the agglomeration procedure.
For this work, the list is formed such that the first volumes are the
volumes next to a solid surface, then other boundaries, and,
afterward, the interior volumes. This approach is very simple to
implement and adds very low additional computational cost.
Although it does not necessarily provide the best agglomeration of
the interior volumes, it results in good quality coarse mesh volumes
close to the boundaries.

V. Adaptive Mesh Refinement

As is widely known, the quality of discrete numerical simulations
is extremely dependent on the discretization mesh [32]. For high-
quality numerical solutions, points concentrated in regions where the
flow presents sudden variations are required. Such regions may be
determined by both geometrical or aerodynamic factors. The concept
of the adaptive mesh refinement is to leave to the numerical code,
through flow indicatives, the responsibility of concentrating
computational points by using automatic routines to modify the
mesh. The adaptation can concentrate points in the identified regions
by many forms. One way is to move points from flow zones that do
not need them to the zones where they are needed. Another way is to
create more points in these flow regions. In this work, the option of
adding points is chosen because of its ease of implementation in an
unstructured grid context.

The coarse mesh indicator sensor uses an undivided density
gradient [7] normalized by the largest difference in density verified in
the flow. This sensor can be written as

�sensor�i �
� jr�j
�max � �min

�
i

(40)

The sensor automatically refers to control volumes. If it is greater
than a threshold value, the volume is indicated for refinement. The
types of elements handled by this code are composed of either
triangular or quadrilateral faces. To allow their refinement, each face
type is split into similar elements, that is, triangular faces yields child
triangular faces, and the same is true with quadrilateral ones, as
shown in Fig. 4a. It is interesting to point out here that the
neighboring unrefined cell of a cell that is marked to be refined a

second time, is marked to be refined too. This approach is currently
employed to allow a smooth decrease in element size throughout the
adapted mesh, as shown in Fig. 4b. The control volume is internally
divided compatibly with the face division. The interested reader can
find details of the division of all types of elements in [9].

It is interesting to observe the presence of hanging nodes in the
split element, as depicted in Fig. 4a. The treatment of hanging nodes
is an important aspect, but with a simple implementation. The data
structure of the code is face-based; therefore, it is irrelevant for the
code if the node is hanging or not. The important aspect is that control
volumes in this approach are no longer treated just as tetrahedra,
hexahedra, wedges, or pyramids. In fact, each control volume may
have the number of faces ranging from 4 (tetrahedron) to 24 (a
hexahedrawith all its faces divided).Moreover, one is only limited to
24 faces in the present case due to the size decrease criterion.
Furthermore, because the data structure is face-based and each face
stores the elements that contain it, this means that no memory is
wasted. All loops are face-based and this approach makes the flux
and dissipation term calculations independent of the element type.

VI. Verification Results

Aerodynamic flows over various aerospace configurations are
simulated with the present computational tool. Results are compared
to available theoretical or experimental data to assess the quality of
the results that can be obtainedwith the numerical tool. A 1-D shock-
tube problem is used to evaluate flux computation scheme results. A
flat-plate flow is considered to address the turbulent flow simulation
capability. The multigrid scheme is used in the simulations to
accelerate convergence to steady state.

A. 1-D Shock Tube

Computations of 1-D shock-tube inviscid flow cases are
considered. Numerical results are compared to the analytical solution
for this problem. For the numerical simulations, an equivalent 3-D
grid composed of a line of 500 hexahedra is used. The initial
dimensionless density condition for the left half part of the shock tube
is �Lini � 1, whereas on the right half, �Rini � 20. The reference
conditions are taken in the initial state of the low-pressure side of the
shock tube. Equal temperatures are assumed at both sides of the
shock tube. Several other simulations with different density ratios
have also been performed and the results are essentially similar to the
ones presented in the forthcoming analyses. A constant
dimensionless time step of �t� 10�5 is used for this transient
solution, and the forthcoming plots are taken at dimensionless time
t� 0:1.

The proposed Roe flux scheme implementation, which uses the
concept of centered convective flux plus upwind artificial dissipation
terms computed in alternate stages of the Runge–Kutta time
marching procedure, is used. The vanAlbada limiter is chosen for the
reconstruction process within the currently proposed multidimen-
sional limiter implementation. The limiter computation is also
performed at alternate stages of the Runge–Kutta time step.
Numerical results for this formulation are compared to the ones
obtained with the centered scheme.

Pressure and density distributions for the upwind and centered
schemes are presented in Fig. 5. It can be observed that numerical
solutions compare very well with the analytical one. No oscillations

a) Refinement by sensor criterion b) Refinement by size decrease 
criterion

Fig. 4 Cell refinement by different criteria. Highlighted elements are

marked for refinement.
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near discontinuities can be found in the upwind numerical results,
whereas oscillatory behavior is found for the centered scheme
solution. Further detailed analyses of the numerical scheme and
limiter formulations can be found in [15]. In that work, other
numerical schemes and test cases are carefully studied, including
thorough mesh refinement and topology dependency study of the
current numerical scheme. Successful results are obtained for
shocked and boundary layer flows with various combinations of
numerical schemes and mesh refinement levels. It is also interesting
to remark here that the proposed alternate computation of the Roe
fluxes and limiters within the Runge–Kutta scheme guarantees
exactly the same solution as if computing them at all stages.
However, such procedure yields a numerical scheme which is 60%
faster [15].

B. Flat-Plate Turbulent Flow

A zero-pressure-gradient flat-plate flow at Re� 7:62 � 106 and
low freestream Mach number M1 � 0:2 is considered. This is an
important test case because a theoretical solution is provided for the
turbulent boundary layer that builds up over the flat-plate surface
[33], known as the log-law solution. Simulations with both SA and
SST turbulence models are included to provide a comparison of the
numerical results for both closures. The hexahedra mesh about the
flat plate is clustered near the flat-plate surface to guarantee the
condition of y��1 close to the solid boundary, which is required
for integration of turbulence models to the wall. The mesh is also
clustered near the flat-plate leading edge to account for the larger
velocity gradients that are expected in that region. The resulting grid
is composed of 60 cells within the boundary layer, and 80 cells
streamwise the flat-plate length. Simulations are carried out with a
standard multigrid setting of three grid levels, “V” cycles, and one
Runge–Kutta smoother pass at each grid level.

Figure 6 shows the numerical boundary layers obtained for both
turbulencemodels compared to the theoretical solution in [33] and to
the experimental data in [34]. The definition of the dimensionless u�
and y� variables in this figure can be found in [33]. One can clearly
observe in Fig. 6 a striking coherence with the theoretical curve for

both turbulencemodels. This is an indication of the correctness of the
implementation of the turbulence models in the present code.

VII. VLS Results

Inviscid flows over the VLS in its first-stage (takeoff) and second-
stage flight configurations are simulated for various Mach numbers
using the adaptive mesh refinement routines. Turbulent viscous
transonic and supersonic flows about the VLS second-stage flight
configuration at various angles of attack are also considered. Because
of reasonable numerical results and lower computational costs, the
SA model is chosen for the forthcoming turbulent flow simulations.
These flight conditions are chosen considering the dominant
supersonic characteristic of the vehicle flight, and the numerical
difficulties that arise at transonic simulations. Experimental data
obtained through extensive high-Reynolds-number transonic and
supersonic wind tunnel tests are available for this configuration [1].
Detailed description on the test setup and the experimental results for
the VLS configuration can be found in [1]. Numerical results are
compared to them such that the code effectiveness in the solution of
realistic aerospace configuration flows can be assessed.

A. Inviscid Supersonic Flow over the First-Stage Flight

Configuration

An inviscid flow at M1 � 2:0 and �� 0 deg over the VLS is
addressed. A view of the rocket nose and booster nose cap regions
can be observed in Fig. 8. The mesh has approximately 106,000
nodes, and 581,000 tetrahedral volumes. In the geometry, the engine
nozzles are not considered as this component is not adequately
simulated with an inviscid formulation [35]. Furthermore, the
currently available computational resources do not allow turbulent
viscous flow simulations for the entire configuration. Despite the
large number of control volumes, themesh is not refined enough near
the body, as can be observed in Fig. 8.

Figure 7 shows density contour results for the current flow case.
Detached shockwaves in front of the rocket nose and booster regions
can be observed in this figure. The flow in the vehicle forebody
presents a detached shock wave and a stagnation region in the rocket
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Fig. 5 Property distributions along the shock tube obtained for different flux schemes.
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nose region. An expansion occurring along the conical part and over
the corners of the payload fairing, and a shock wave at the end of the
boattail, can also be observed. Another interesting feature in the
flowfield is the high-pressure zone between the boosters, created by
shock wave reflection mechanisms. The low-pressure region
downstream this high-pressure zone is originated by the outward
flow deflection caused by the presence of the high-pressure zone. It
should be pointed out that the discussions here are presented in terms
of pressure, as pressure and density are directly related by the state
equation for ideal gases.

The computational mesh used in the previous results is less than
adequately refined for such flight condition. The results show the
need for mesh refinement in the booster nose cap and vehicle
forebody regions, to adequately solve the complex shock wave
structures in those regions. The adaptive mesh refinement technique
is applied to the previous flow case to enhance the solution quality.
Because of RAM memory restrictions, the authors limit the
adaptation to only two refinement passes, although the routines are
able to perform as many refinement passes as required. For the
current case, the refinement threshold is set to 0.003. The first mesh
refinement occurs at 5000 iterations in the original mesh, and the
second one at 10,000 iterations in the refined mesh. The final mesh,
after two refinement passes, has 362,740 nodes and 1,618,558
volumes, that is, about three times larger than the original coarser
one. Detailed views of the adapted mesh over the vehicle forebody
and booster nose cap regions are presented in Fig. 8. Clearly, the
adaptation routines detect the presence of shock waves and

expansions, and the mesh is consecutively refined mainly over these
regions. The authors observe that this is a fully tetrahedral mesh.

Comparisons of pressure coefficient distributions on the VLS
pitching plane for the nonadapted and adapted meshes, are presented
in Fig. 9. It can be observed in this figure that the adaptive refinement
technique increases the solution quality. This can be seen as thinner
shock waves and expansions on the vehicle forebody corners.
However, two mesh refinement passes are still not enough to
significantly enhance the solution near the booster nose cap zone.
This part of the flow is characterized by the intense interactions
between the detached shock waves from the boosters. The value of
the pressure coefficient in this region is overpredicted by all
numerical solutions and the authors believe that only a turbulent
viscous simulation could obtain better results for that region.

B. Inviscid Transonic Flow over the First-Stage Flight Configuration

Density contours over the VLS at M1 � 0:9 and �� 0 deg are
presented in Fig. 10. Interesting features of the flow are the shock
waves over the payload fairing and boosters. Besides the payload-
fairing shock wave, expansions in the corners of the payload fairing
and a weak shock wave over the boattail can also be observed. One
can also see that the flow rapidly accelerates between the boosters up
to the formation of a shock wave. It should be noted that, for this
transonic case, there is no high-pressure region downstream the
shock wave as clearly marked as in the supersonic case. In that
condition, the high-pressure region is formed by intense shock wave
reflections in the region between the boosters. A previouswork in the
group with this test case using the same mesh, presented several
problems related to solution oscillations in the domain [36]. A more
refinedmeshwas necessary to yield results with similar quality to the
present ones, which indicates the robustness of the current finite-
volume code.

The adaptive mesh refinement routines are applied to the current
flowcase.Only onemesh refinement pass is performed, and themesh
refinement sensor threshold is set to 0.0007. The same grid used in
the previous VLS first-stage supersonic simulations, as presented in
Fig. 8, is also currently employed. As already discussed, this mesh is
composed of 106,000 nodes and 581,000 tetrahedral cells. The
adapted mesh after one refinement pass has 242,801 nodes and
768,177 elements. The mesh refinement is applied at 30,000
iterations in the original mesh. Detailed views of the adapted mesh
over the vehicle forebody and booster nose cap regions are presented
in Fig. 11. The mesh refinement routines detect the relevant regions
of the flow, namely, stagnation in the central body and booster nose
regions, the transonic shock wave over the payload-fairing

Fig. 7 Density contours over the VLS for inviscid flow simulations at
M1 � 2:0 and zero angle of attack.

Fig. 8 Original and adapted meshes for inviscid flow simulations atM1 � 2:0 and zero angle of attack.
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component, and the expansion zone between the boosters. Mesh
density is subsequently increased in the selected regions.

Comparisons of pressure coefficient distributions in the vehicle
pitching plane for the nonadapted and adaptedmeshes is presented in
Fig. 12. The improvement in the solution quality in this case is not as
good as in the supersonic case. There are only minor improvements,
such as a slightly better position of the shock wave in the payload-
fairing cylinder. The inviscid solution presents higher pressure peaks
than the experimental data. This behavior is already expected
because large boundary layer interaction, mainly for the payload-
fairing shock wave, is expected. This difference is diminished using
turbulence models, as depicted in the next sections.

C. Turbulent Transonic Flow over the Second-Stage Flight
Configuration

Turbulent viscous flows over the VLS at M1 � 0:9, Re� 25 �
106 and zero angle of attack are considered. The mesh used in this

case has 100,815 nodes and 89,280 hexahedra. The hexahedra are
clustered near solid walls to guarantee y��1 for the interior
volumes attached to the solid surface. Furthermore, about 40
hexahedra are placed within the boundary layer, to guarantee
sufficient grid resolution in that region.

Figure 13 presents Mach number contours over the vehicle
forebody. This figure evidences the presence of the boundary layer
over the vehicle. A stagnation point occurs in front of the vehicle.
There is a supersonic expansion over the end of the conical forebody.
This causes the formation of a supersonic region on the payload
cylinder which is ended by a shock wave. Because of the boundary
layer, this shock wave does not reach the body. The region over the
end of the boattail presents very small velocities, but the boundary
layer does not separate because of the turbulent characteristics of the
flow. In fact, laminar simulations of this flow condition indicate
boundary layer separation.

A comparison between pressure coefficient distributions over the
VLS surface for inviscid and turbulent numerical solutions, aswell as
experimental data, is also shown in Fig. 13. The simulation with
turbulent effects present more adequate results if compared to the
Euler simulation, as already expected. A more consistent solution is
obtained, which better captures the strong shock wave over the
payload fairing and the weak one slightly downstream of the boattail
expansion corner.

D. Turbulent Supersonic Flow over the Second-Stage Flight
Configuration

A turbulent flow at M1 � 2:0, Re� 30 � 106 and zero angle of
attack over the VLS second-stage flight configuration is simulated.
The mesh used in this case has 201,565 nodes and 188,480
hexahedra. The hexahedra are clustered near the solid surface to
guarantee y��1, and approximately 40 cells are placed within the
boundary layer, for consistent resolution of the turbulent effects in
that region.

Figure 14 presents Mach number contours over the vehicle
forebody. This flow case is characterized by a detached shock wave
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Fig. 9 Pressure coefficient distributions for inviscid flow simulations at

M1 � 2:0 and zero angle of attack.

Fig. 10 Pressure contours over the VLS for inviscid flow simulations at

M1 � 0:9 and zero angle of attack.

Fig. 11 Adapted mesh near the vehicle forebody for inviscid flow simulations at M1 � 0:9 and zero angle of attack.
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Fig. 12 Pressure coefficient distributions for inviscid flow simulations

atM1 � 0:9 and zero angle of attack.
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in the vehicle nose, an expansion on the first and second corners of
the payload fairing, and a shock wave at the end of the boattail. A
comparison between pressure coefficient distributions over the VLS
surface for the turbulent numerical solution and the experimental
data is also shown in Fig. 14. There are no relevant differences
between the solutions for this case, as expected.

One of the objectives of the CFD group at IAE is to determine the
stability derivatives of launch vehicles for many flow conditions.
This is usually performed by the determination of the pressure
coefficient on the vehiclewall for different angles of attack at theflow
conditions of interest. Therefore, a simulation of the VLS flying at
angle of attack different from zero is a relevant condition to be tested.
As launch vehiclesfly at very small angles of attack, the flow over the
VLS second-stage flight configuration at M1 � 2:0, �� 2:0 deg,
andRe� 30 � 106, is considered. The same computational mesh for
the zero angle-of-attack case is used in this computation. Figure 15
presents Mach number contours over the VLS forebody in the
pitching plane. The detached shock wave is no longer symmetrical.

The shock wave on the windside is stronger than on the leeside
because of the larger deflection of the flow in that region.
Furthermore, the boundary layer on the leeside is thicker than on the
windside. A comparison between numerical and experimental
pressure coefficient distributions over the vehicle forebody in the
pitch plane is also presented in Fig. 15. As one can observe in this
figure, the numerical solution once again presents good agreement
with the experimental data.

VIII. Conclusions

The paper presents results obtained with a unique, 3-D, finite-
volume code developed within the Brazilian aerospace program to
solve the RANS equations over typical aerospace configurations.
The code uses a Runge–Kutta-type scheme to perform the time
march of theflowequations. The code is designed to use unstructured
meshes composed of any combination of tetrahedra, hexahedra,
wedges, and pyramids. The agglomeration multigrid scheme

Fig. 13 Numerical and experimental [1] results for the VLS atM1 � 0:9, Re� 25 � 106 and zero angle of attack.

Fig. 14 Numerical and experimental [1] results for the VLS atM1 � 2:0, Re� 30 � 106 and zero angle of attack.

Fig. 15 Numerical and experimental [1] results for the VLS at M1 � 2:0, Re� 30 � 106 and �� 2:0 deg.
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provides large convergence acceleration for the numerical
simulations. In a generalmanner, numerical solutions of complicated
flows such as transonic turbulent flows about a typical aerospace
configurations can be obtained in half the time used by the single-grid
simulation.

The fluxes on the volume faces are computed by either a centered
scheme plus explicitly added artificial dissipation to control
nonlinear instabilities, or a second-order flux-difference-splitting
upwind scheme. Application of the upwind scheme in simulations of
typical aerospace configurations shows that consistent results can be
obtained with this formulation. The upwind scheme presents better
results in solving laminar boundary layers due to its more physically
coherent artificial dissipation formulation [15]. Therefore, it
guarantees further accuracy for the numerical tool with which
successful aerospace application results can already be obtained.

Turbulence effects are added to the formulation by eddy-viscosity-
based one- and two-equation turbulence models. The Spalart–
Allmaras one-equation and the SST two-equation turbulence
closures are chosen to include the turbulence effects into the RANS
equations. Comparison of numerical boundary layers over a zero-
pressure gradient flat-plate flow with the corresponding theoretical
log-law solution shows the level of accuracy that can be obtained
with the present formulation. Furthermore, the code is also able to
correctly solve for more complex flows, such as transonic or
supersonic turbulent flows about typical aerospace configurations.
Again, good approximation between experimental and numerical
results are obtained for such cases.

The integration of all discussed features within a single
computational code allow robust and accurate numerical solutions
for complex turbulent transonic to supersonic flows with reasonable
computational resource usage. This capability is demonstrated with
simulations of various typical aerospace configurations. Therefore,
the main contributions of the present work are a detailed description
of an accurate and robust numerical tool for high-Reynolds-number
aerospace applications, a novel formulation and implementation of a
MUSCL-type upwind scheme, and a thorough analysis of the VLS
launch vehicle aerodynamics. The quality of the numerical solutions
that can be obtained with the present computational code are
demonstrated. Successful results are presented with good
comparison to experimental or theoretical data. VLS flow
simulations provide consistent numerical results of acceptable
quality for typical transonic and supersonic flight conditions.
Simulation results show good approximation to wind tunnel data.
The results presented here are a good indication of the capability of
simulating turbulent flows about realistic aerospace configurations
that has been developed by the CFD group at IAE. These results also
show the maturity of the code to be inserted in the design phase of
aerospace vehicles as a reliable and accurate numerical tool.
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