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ABSTRACT 

Group phenomena for droplets in a spray have 
often been analyzed on the basis of the quasi-steady 
assumption even though this assumption has not 
been completely justified. In this paper the 
applicability of the quasi-steady assumption to the 
vaporization of spherical droplet clouds is first 
analyzed qualitatively by considering the magnitudes 
of appropriate characteristic scales. Then the govern- 
ing equations for the unsteady vaporization of a 
droplet cloud are formulated and solved by numerical 
methods. The numerical results indicate that cloud 
vaporization is inherently unsteady and consistent 
with the analysis of characteristic scales. The unsteady 
cloud vaporization nearly follows a "D-law" rather 
than the well "D2-law" which governs the vapori- 
zation and conibustion of liquid fuel droplets. Further 
it ' is found saturation conditions within the cloud 
cannot be uniquely determined as shown by the quasi- 
steady theory. However, the quasi-steady theory still 
provides a good prediction of cloud lifetime if the 
following two conditions are satisfied (1) PO 2 I, and (2) 
the existence of a thin vaporization layer or wave at 
the cloud edge. 

--i 

Introduct ion 

The collective behavior of liquid droplets in a 
practical spray usually results in a relatively cool, fuel- 
rich and air-deficient region in the spray interior, so 
that the behavior of droplets in a spray is significantly 
different from that of isolated droplets',2. This group 
phenomenon is frequently analyzed by invoking the 
quasi-steady assumption for the regions within and 
outside the cloud, even though this assumption has 
not been justified r i g o r o ~ s l y ~ , ~ .  The unsteady calcu- 
lations of the group combustion of a very dilute 
droplet cloud recently carried out by Zhuang et a]'. 
have shown results different from the previous quasi- 
steady analyses. It is known that the success of the 
quasi-steady approximation in the single droplet 
theory is due to the large liquid-gas density ratio 
(Pd/fig). However, the average density of the droplet 
cloud with a mass loading ratio Po - O(1) is of the same 
order of magnitude as that of the ambient gas. The 
question of whether the quasi-steady assumption is 
valid for the vaporization of R spherical droplet cloud 
provides the subject of this study. 

The unsteady vaporization in the interior of a 
saturated droplet cloud was first studied by Correa and 
Sichel',' using asymptotic methods. The small param- 
eter E used in this asyinptotic analysis is given by 

~ _ *  

E=(271fi"i)dOI?"2)-1 = ($/k+)' (1) 

where 6 = (2 II iio &)-I was shown to be the thickness 
of a vaporization front at the outer surface of the spray 
cloud. (All symbols are defined in the nomenclature 
with overbars used for dimensional variables). The 
p a r a m e t e r  E result ing from the nondi-  
mensionalization of the governing equations is in fact 
the inverse of the group combustion number G which 
was proposed earlier by Chiu and his coworkers3,* as a 
parameter governing the group combustion 
phenomena. Practical sprays usually fall into the high 
G group combustion regime which is typified by a 
sheath or vaporization layer at the edge of the cloud. 
The relevance of the parameter G to practical sprays 
becomes apparent when G or E is expressed in terms of 
the droplet mass Ioadinx ratio Pn: 

(2) 

For typical sprays with Po - OU), P d / P g  = lo3, 
Ro/bdo = 0(103 ), then G = 0(104) and E = O(10-4). 
Correa and Siche@? have shown that in a saturated 
spherical cloud under these conditions vaporization 
occurs within a laminar vaporization layer or wave at 
the edge of the cloud propagating into the cloud, and 
that the cloud can be shown to behave as a large single 
droplet (see Fig. 1). The propagation speed of this 
vaporization front is a function of the cloud edge 
temperature and is given by'i7 

(3) 

where Ti  represents the O?e'/*) term of an expansion of 

the dimensionless temperature at the cloud edge, ;.e., 
T'= E1/2 T: + E T:, + . . . . . . . 

The wave speed and hence cloud life time are 
tlyrefore determined by th', cloud edge temperature 
Tg. The edge temperature T needs to be determined 
by matching the solutions'within and outside the 
cloud. In their analysis Correa and Si~hel' ,~ applied the 
quasi-steady approximation to the ambient region 
located in the vicinity of the cloud and obtained a "D2 - 
law" for cloud vaporization analogous to that for 
single liquid droplets. The quasi-steady approx- 
imation is justified by the existence of the low-speed 



vaporization wave which separates the the cloud into 
an inner quasi-steady and an outer, essentially 
unsteady region. As already indicated above,the quasi 
steady analysis works extremely well for single 
droplets, mainly because of the large value of pd/p  
the ratio of the liquid to the gas density; however, t f fe  
ratio of the spray to the gas density is more likely of 
O(1). Hence, i t  is important to determine to what 
extent the quasi-steady assumption outside the cloud 
can be applied safely 

In the following the characteristic scales for 
evaluating the quasi-steady behavior outside the cloud 
are first discussed, and some important result< 
obtained by Correa and Sichel are briefly reviewed. 
The fully unsteady governing equations for vaporizing 
spherical clouds are then formulated and solved by 
numerical methods. The comparison of the numerical 
results with the quasi-steady results is consistent with 
the analysis based on characteristic scales. It is shown 
that the quasi-steady analysis may over-predict the 
cloud edge temperature and under-predict the cloud 
lifetime unless Po t O(1). 

Characteristic Scales and Quasi-Steady Resulh 

In the single droplet theory, the success of the 
quasi-steady assumption is due to the fact that the gas 
diffusion time across a distance of the order of the 
droplet diameter is small compared to the droplet 
lifetime. In analogy, it is of interest to compare the gas 
diffusion time across the cloud with the characteristic 
cloud lifetime determined by the quasi-steady theory 
6,7, and the ratio of these times is given by: 

gas diffusion time across the cloud -__ RI?/% 
- Ro/TJ, characteristic cloud life time 

From Eq. (4)  it appears that the quasi-steady 
assumption for the regioncoutside the cloud will only 
be valid for Po >> I since Tg = O(1). However, should 
not be too large (e.g. Po < 10) since the interaction 
between droplets has not been considered in Correa 
and Sichel's studies and will not be considered here. 
Therefore preliminary results which follow from Eq. 
(4) are: 

If Po S 0(1), then diffusion velocity < wave 
velocity; 
Ambient region is unsteady. 
Po 2 001, then diffusion velocity > wave If 
velocity; 
Ambient region needs to be investigated. (5) 

As already noted, the quasi-steady analysis was 
used by Correa and Sichelh to determine the cloud 
edge temperature which in turn determines the 
prapagation speed of the vaporization layer. T1.r 
quasi-steady analysis was assumed valid due to the 
low-speed and small thickness 6 of the vaporization 
layer which hinders the penetration of the heat from 

the ambient into the saturated cloud. The thickness 8 
of the vaporization layer would thus appear to be the 
appropriate length scale in the quasi-steady analysis. 
Since 8/& = O(E'/~), the quasi-steady analysis therefore 
should only be valid in the region R < r < R + O(E''~). 
The ratio of the gas diffusion time to the wave 
propagation time across the wave thickness can be 
written as 

\ 

From Eqs. (4) and (6)  it  follows that the quasi-steady 
assumption will be valid both within the vaporization 
wave and in the gaseous region outside the cloud if 
P o  >> I .  However if P o =  0(1), the quasi-steady 
assumption will be strictly valid only within the 
vaporization front. 

The qua2i-steady analysis of Correa and Sichel 
showed that Tg, and hence the wave speed, increases 
with the regression of the cloud edge in such a way 
that the cloud vaporization follows the "D2 -law", and 
the cloud life time is given by6 

(7) 

For a given initial cloud radius and ambient 
temperature, the cloud lifetime is therefore linearly 

steady analysis also leads to a unique saturation 
condition within the cloud depending on ambient 
conditions and determined by the relation: 

proportional to the mass loading ratio Po. The quasi- L 

This saturation condition is analogous to the wet-bulb 
state of the corresponding isolated droplet. 

On the other hand, for the unsteady case or Po s 
00) it is shown below that the the cloud edge 
temperature does not increase as rapidly as indicated by 
the quasi-steady solution. Therefore the "D2 -law" and 
the unique saturation condition may no longer remain 
valid for the droplet cloud. Moreover, if the cloud 
edge temperature becomes constant, the regression rate 
of the cloud edge becomes constant too. 

The unsteady governing equations for spherical 
clouds are now formulated below and solved using 
numerical methods. The unsteady results will then be 
compared with the above quasi-steady results 

Governing- 

The physical model considered here is a 
saturated or a dry or "clean" spherical cloud under- 
going pure vaporization in an infinite, initially 
stationary atmosphere. Even though gas motion may 
be induced by the vaporization, the droplets within the 
cloud are considered to be stationary. The other major 
assumptions made to simplify the analysis are: ( I )  t h ~  

v 



droplet interior temperature is uniform, (2)  the 
droplets are initially mono-sized and uniformly dis- 
persed, (3 )  the droplet surface is in thermodynamic 
equilibrium with the local ambient, (4) the vapori- 
zation and gas motion around individual droplets is 
quk-steady, (5) physical properties are constant, (6)  Le 
= 1, (7)  the pressure is uniform and constant 
throughout. The dimensionless governing equations 
can then he obtained as below using the diffusion time 
Ra/ko, cloud radius &, and dilfusion velocity ko/ko as 
refercnce scales. 

Gas-Phase (four variables pg, Y,, Tv V,) 

which is greater than one for spray problems using 
local conditions for individual droplets. However, this 
correction factor is neglected to simplify the com- 
putations and facilitate concentration on the subject of 
the group vaporization. 

The quantity L,fr is in fact f,ff/f. and Lf, is an 
effective latent heat of vaporization which accounts for 
the heat conducted into the liquid droplet. Lcff is 
generally grcatcr than oiic a n d  eoml to onp at the wet- 
bulb state, and can also be represented by B,/By" as 
shown in Eq. (17). The saturated fuel concentration Yf, 
in Eq. (17) is provided by the Clausius-Clapeyron 
relation as given below. 

Droulet-Phase (two variables Dd, Td) d 

(15) 

where f(Re) = 1 + 0.276Re1/* S C ' ' ~ ,  and Re is the 
Reynolds number based on the droplet diameter and 
the relative velocity between the droplet and the gas. 
The dimensionless vaporization rate m in the source 
terms of the gas equations is given by 

rii = - In(1 + By) f(Re) inside cloud Dd 
E 

= o  outside cloud (16) 

in which the mass transfer number By and the 
dimensionless variable Lcff in Eqs. (11) and (15) are 
defined as 

where Tg and Yf are the local gas temperature and fuel 
concentration so that the droplet vaporization is 
computed using the local conditions in the gas 
surrounding the droplets rather than the far field 
ambient conditions as used in isolated single droplet 
vaporization. Tishkoff proposed a correction factor 

The radial velocity V, in the governing 
equations cannot be determined directly since the 
radial momentum equation as shown in Eq. (12) is 
simply p = 1. The relationship between V,, Yr and Tg at 
a given time is formulated below using the continuity 
equation and the equation of state making it possible to 
determine V, using numerical integration. This 
procedure follows Polymeropoulos and Peskin" who 
studied the combustion of a stationary vapor cloud. By 
differentiating the equation of state (12) and using Eq. 
(131, it follows that 

where Tdgo = Tdo/Tgo, L = ij(CpgTgo). Writing Eq. (19) 
in differential form, substituting Eqs. (10) and (11) into 
Eq. (19) and eliminating the convective terms using 
the continuity Eq. (9), the resulting equation repre- 
senting the relationship between V,, Yf and Tg at a 
given time is then given by 

In actual computations Eq. (20) is used to replace the 
continuity Eq. (9) a5 one of the governing equations. 
Equation (20) contains no derivative with respect to 
time. As a result, if pp, Y,, Tg are known at a given 
time, the corresponding radial velocity V, can he 
obtained by the numerical integration of Eq. (20). 

The values of various fixed parameters 
corresponding to an octane fuel and the ambient gas 
used in the calculations are given in Table 1 below. 

Two kinds of initial conditions corresponding to 
saturated clouds as considered in the quasi-steady 
analysis 6 7 ,  and to clear or dry clouds with, initially 
zero fuel vapor concentration are considered below. 
The initial conditions for initially dry clouds are Tg-= 
Tg(, = 1000 K, t,, = !u,p 7 0, T d o  s 300 K or 350 K. For 
saturated clouds the initial conditions are Tg- = 1000 K, 

7 



Table 1 Values of various parameters used in computations 

L Fuel : Octane 

Pressure 
Liquid droplet density 
Droplet boiling temperature 
Latent heat of vaporization 
Droplet specific heat 
Vapor specific heat 
Fuel molecular weight 
Air molecular weight 

1 atm 
707 kg/m3 

398 K 
71.7 kcal/kg 

0.52 kcal(kg - K).' 
0.28 kcal (kg - KY' 

114.2 kg (kg - mol)-' 
28.9 kg (kg - mol)-' 

Y,, = 0, TgO = 364 K, Y,, = 0.707 which corresponds to 
the quasi-steady saturated state within the cloud. The 
base case treated in the numerical computations is that 
E = Po = 1. The boundary conditions are zero 
gradients at the center of the cloud and in the far field. 

The dimensionless governing equations were 
solved subject to the above mentioned initial and 
boundary conditions using an explicit numerical 
method with a time marching procedure. Similar 
governing equations have also been solved by 
Polymeropoulos and Peskin", and by Seth et al.I2 At 
each time step the computational cycle is initiated by 
solving for Yc and Tp from the gas equations while rg is 
determined from the equation of state. At the same 
time the droplet properties are determined by solving 
the droplet equations, and the new values of P,, Yf, Tg, 
Td, Dd are then substituted into Eq. (20) to obtain the 
updated V,. The computational cycle is repeated until 
the droplets in the cloud are completely vaporized or 
some other specified conditions are met. 

The spatial region was discretized into annular 
cells of uniform width Ar and a centered-difference 
scheme was applied to the gas equations. The time step 
size At  = lo" - and the spatial cell size Ar = 0.02 
were used for simplicity despite the fact that additional 
computer time may be required when constant step 
sizes are used. The computational domain is r 5 5 
when bo = 1 and r S 10 when bo = 5 in order to provide 
complete coverage of the region where gas diffusion 
occurs during cloud vaporization. 

Numerical Results and Comvarisons 

Figure 2 shows the variation of dimensionless 
droplet size with radius at various times for saturated 
clouds with Po = 1 and E = IO-" The droplet size withii; 
"le cloud r l m  >ins essentially unchanged. The drop\i,I 
size drops steeply at the cloud edge so that the 
thickness of the vaporization layer can be clearly 
identified. This thickness seems to remain constant 
during the cloud lifetime. It can be seen that the 
vaporization wave moves into the cloud rapidly 
during a transient period, then appears to move at a 
constant speed during an intermediate period, and 
then accelerates during a final period just before 
vaporization is complete. 

Figures 3 and 4 show the profiles of the 
dimensionless temperature Tg and fuel concentration 
l'f at various times. It can be seen that while the high 

temperature region diffuses toward the cloud, and the 
fuel diffuses outward, the conditions within the cloud, 
i.e., inside the vaporization wave remain unchanged. 

Figure 5 shows the profiles of the gas radial 
velocity V, at various times. Within the vaporization 
layer, which can be seen clearly in the figure, V, 
increases from zero to a peak which is taken as the 
location of the cloud edge. Beyond the cloud edge V,, 
either increases or decreases, first reaches a local 
maximum or minimum value, and then decreases lo a 
negative minimum value, and then gradually ap- 
proaches the value of zero. It can also be seen that the 
position of V, = 0 moves away from the cloud as time 
increases. 

The above profiles of the radial velocity depend 
on the specific liquid fuel properties and are also a 

cloud interior is initially a region of low-temperature 
and high fuel concentration. The outward diffusion of 
fuel vapor tends to decrease the pressure within the 
cloud, while the inward diffusion of heat from the 
ambience tends to increase the pressure within the 
cloud. Due to its high molecular weight wf, the out- 
ward diffusion of fuel vapor dominates and hence 
induces a flow toward the cloud in the ambient gas. 
However, near the cloud edge droplet vaporization 
still favors a positive radial velocity. V, is therefore 
positive near the cloud edge and becomes negative in 
the region away from the cloud. As the cloud con- 
tinues to vaporize the fuel vapor continues to diffuse 
away from the cloud and heat continues to diffuse 
inward causing the region of positive V, to expand so 
that the position of V, = 0 moves away from the cloud. 

Figures 6 and 7 show the variation of the 
dimensionless cloud radius R and the square of cloud 
radius RZ with timr for Po = 0.1, 1, 5 .  The zigzns 
contours in these figures are due to the spatial dis- 
cretization of the finite difference scheme. It can be 
seen that unsteady cloud vaporization more closely 
follows a "D - law" rather than a "D2 - law" unless Pa >> 
1, while the uasi steady analysis as adopted by Correa 
and S i c h e d  wili only lead to the "D2 - law". It can 
also be seen that the regression speed of the 
vaporization wave is a function of so that the cloud 
life time is also a function of Po since it is determined 

Figure 8 shows the variation of the dimen- 
sionless cloud lifetime q with the droplet loading ratio 

consequence the imposed initial jump conditions. The L-, 

by the regression of the wave. W 



Po. The results of the quasi-steady theory of Correa and 
Sichelh as given by Eq. (7) match well with the unsteady 
numerical solutions for Po > 1 due to the presence of 
the thin vaporization wave, but under-estimate the 
cloud lifetime for Bo < 1 due to the over-estimate of the 
cloud edge temperature. 

Firures 9 - 11 are the results for the initiallv drv 
I ,  

droplet clouds with Po = 5 .  It can be seen from Fig. 9 
that the cloud interior reaches the saturated state in a 
very short time compared to the cloud lifetime. Figure 
10 shows the induced gas radial velocity which 
assumes very large negative values as soon as t > 0. 
The immediate appearance of the large V, is due to the 
use of the "D2 - law" for droplet vaporization, and may 
be modified by using the "diffusion-limit model" (Le., 
non-uniform droplet interior temperature) for single 
droplet vaporization as used by Aggarwal et 
According to the "D2 -law" vaporization starts instan- 
taneously at t = 0 in the dry cloud and thus accounts for 
the sudden and physically unrealistic appearance of a 
radial velocity component. The actual magnitude of 
V, will not be very large and will decrease significantly 
after an initial transient period. The negative value of 
V, is due to the dominance of evaporative cooling and 
the specific liquid fuel properties. This effect can be 
seen from Eq. (20) where it is evident that a high latent 
heat of vaporization Land a high molecular weight Wf 
cause the third term on the right hand side to be 
negative. The local maxima around the position r = 1 
are due to the fact that the droplct vaporization rate at 
the cloud edge is higher than that within the cloud. 

Figure 11 shows the variation of the saturation 
temppratiire within the cloud for various values of the 
initial nmhimt trmpcrature. For the initiallv drv do1.d 
there is no sheath layer at the cloud edge to justify the 
quasi-steady analysis. The saturation temperature is 
then not uniquely determined by Eq. (8) but depends 
on both Tgo and Td". The quasi-steady saturation tem- 
perature generally cannot be achieved within the cloud 
unless TdO is initially greater than the wet-bulb 
temperature of the corresponding isolated droplet. 
The quasi-steady saturation temperature within the 
cloud is in fact the wet-bulb temperature for the 
corresponding isolated droplet. It should also be noted 
that there is a sharp increase in the saturation tem- 
perature when the initial gas temperature is very high. 
The temperature on this portion of the curve is 
actually not the saturation temperature but the 
temperature at which the cloud vaporizes completely. 

Discussion and Conclusions 

The quasi-steady and unsteady vaporization of 
spherical fuel droplet clouds has been discussed in this 
study. Previous theoretical have shown ? 
that the vaporization of a liquid droplet near the 1 

ature is then the thickness of the vaporization layer 
rather the cloud radius. The cloud edge temperature 
in turn determines the propagation speed of the 
vaporization layer, and hence the cloud lifetime. 

The quasi-steady analysis of cloud vaporization 
is justified if the following conditions are met: (i) Po 2 
O(1), (ii) the existence of the thin vaporization layer at 
the cloud edge. If the first condition P o 2  O(1) is not 
satisfied, then even though a vaporization layer at the 
cloud edge may exist, the quasi-steady approximation 
becomes invalid due to the fact that the diffusion 
velocity is no greater than the vaporization wave 
velocity. As a result of this the cloud vaporization is 
found to follow a "D - law" rather than the classical "D2 
-law" for single droplet vaporization. The quasi-steady 
theorv then under-estimates the cloud life time due to 
the over-estimate of the temperature at the cloud edge. 
The second condition, that there is a Vaporization 
layer, is not met when the droplets start to vaporize in 
an initially dry cloud. As a result, the saturation tem- 
perature within the cloud is no longer uniquely 
determined but depends on both Tg.. and i h o .  The 
saturation temperature, which is found in the quasi 
steady analysis is actually the wet-bulb temperature for 
a corresponding isolated droplet. If conditions (i) and 
(ii) above are satisfied, the quasi-steady theory is valid 
in a narrow region R < i < l? + O(6) and provides an 
excellent prediction of the cloud lifetime implying that 
the overall heat transfer to the cloud surface is the 
same for both the quasi-steady and unsteady analyses. 
The processes in the ambient gas greater than a dis- 
tance of O(8) from the cloud remain unsteady. This 
situation is analogous to single droplet vaporization 
where the processes involved arc unsteady in the far 
field. 

WMENCLATURE 

Dimensional Variables 

m d  
i, 
l? 
ii, 

specific heat 
droplet diameter 
latent heat of vaporization 

effective latent heat 
single droplet mass 
droplet number density 
vaporization rate per droplet 
pressure 
cloud radius 
universal gas constant 
radial coordinate 
time 

= L + rndQd 

critical state (or at high press;res) is inherently un- temperature 
steady in nature due to the like order of magnitude of vaporization wave velocity the densities of the droplet and the surrounding gas. It 
is therefore not surprising that the vaporization of gas radial velocity 
droplet clouds should also be unsteadv. However, the molecular weight 

T 
UW . 
v r  

vaporization of saturated clouds (for E << 1) has a 
distinctive nature in that a vaporization layer existing 
at the cloud edge will block the transfer of heat from 
the ambient into the cloud interior. The characteristic 
length scale which determines the cloud edge temper- 

a 
S 
x 
0 

thermal diffugvity 
thickness of the vaporization layer 
thermal conductivity 
density 

- 
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i cloud life time 
'd single droplet life time 

w o n l e s s  V d b l f s  

BT 
BY 

Dd 
G 

L 
LEff 
Le 
m 

P 
R 
Re 

T 
r 

TdgO 
t 

v, 

P 
Y 

E 

pg 
' e  

Subscripts 

0 
a 
b 

d 
f 
g 
r 

C 

S 
W 
m 

Sllaerscriuts 

e 
(-) 

1. Chigier, 
of Droo 

= Tg - T, , 
= (Yfs - Yf) / ( l  - Y,,), 
number 

= 2 p ii, Ddo Rr?, 
number 

heat transfer number 
mass transfer 

= D,&" 

= iACp,Tga) 

group combustion 

= f.eff/c (= B,./By) 
Lewis number 
= hd (&*/&X,) /pg, 

= p/p, = 1 

= R/& 

= i/R, 
= C:p,(=r - TdO)/C 

= ?/CT2/? iO)  

= Vr/%/&) 

Reynolds number 

= TdO/T@ 

fuel concentration 

~ 

3. 

4. 

5. 

6.  

7. 

8. 

9. 

10. 

1 ._ - 
= i~ II n pd Dd / P P I  
ratio 

droplet mass loading 
11 

= (2 lI ?io Dd0 R,2)-' 

12 

initial condition inside the cloud 13 
air 
boiling condition 
cloud 
droplet 
fuel 
gas 
radial direction 
saturated condition 
vaporization wave 
ambient condition 

cloud edge 
dimensional quantity 
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Figure 1 Physical picture of group vaporization of a 
droplet cloud in a stationary atmosphere 
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Figure 2 Profiles of dimensionless droplet size at 
various lime5 for saturated clouds 
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Figure 3 Profiles of dimensionless gas temperature at  
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Figure 4 Profiles of fuel concentration at various 
times tor saturated clouds 
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Figure 8 Comparisons between quasi-steady and 
numerical solutions of 7' versus P O  for 
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Pigure 9 Profiles of fuel concentration at various 
times for initially clean clouds 
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