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Abstract

We consider a cyclic inventory system in which replenishment and selling capacities may be
uncertain. Moreover, in the system, selling revenues, inventory costs and demand distributions
are assumed to vary seasonally. The objective is to decide optimal selling and replenishment
strategy maximizing the expected revenue of the system. The structure of the optimal policy
is shown to have a single critical number in any period. We also show the relationship between

the critical numbers in two consecutive periods.

1 Introduction

In many inventory systems, prices, costs and demands vary seasonally. With this seasonal variation
major problems arise, such as how to replenish commodities, how to manage stocks and how to
meet demands. Moreover, in recent years, these problems become more and more complicated in
involving uncertain replenishment and selling capacities due to increasingly sophisticated market
requirements. These uncertainties are influenced by many factors such as machine breakdowns,

insufficiency of labor, limitations of transportation capabilities, etc.



In this paper we restrict our attention to the systems dealing with a single commodity. Karlin
(1960a,b) treats this problem with a number of periods of equal duration. In his model, demands
are allowed to vary periodically, but with identical costs. At the beginning of each period, an
ordering decision is made before observing the demand. The ordering capacity is always “perfect”,
i.e., the ordering output quantity is always equal to ordering request. Then, the demand is satisfied
as long as stock is available, i.e., there is no control on stock after ordering. This implies that the
selling capacity is also perfect, i.e., selling a stock to satisfy an existing demand is always possible.
He shows that the optimal ordering policy has a single critical number. Zipkin (1989) extends
Karlin’s results to the case of cyclic costs as well as demands.

Karlin’s and Zipkin’s models are very useful for managing many inventory systems; however, the
ordering (or producing) capability of some products, such as corn, is only available once in certain
periods, e.g., 12 months. Moreover, the producing and selling capacities in some systems are not
certain. For example, the uncertainties in pumped-storage hydroelectric systems may appear in
both pumping (producing) and generating (selling) modes due to leaking tunnels, pump/turbine
breakdowns, shortage of water resource,..., and so on. In this paper, we consider such a system
involving uncertain capacities and seasonal demands as well as costs. In our model, there is only
one chance to replenish the inventory in certain periods instead of every period in Karlin’s and
in Zipkin’s models. Moreover, under uncertain producing and selling capacities, two decisions are
made after observing demand: @) how much to order in certain periods, b) how much demand to
meet, i.e., how much stock to be leftover, in every period. In the next section we will describe and
formulate this problem in an infinite horizon case with certain capacities. Then, we also show that
the form of the optimal decision(s) is based on a single critical number in each period. In Section
3 we discuss the model dealing with uncertain capacities and show that a single-critical-number

policy is still optimal for both multi-cycle and infinite horizon cases.

2 Perfect Capacities

Here, we discuss an inventory system in which demands, selling prices and holding costs of a
certain type of commodity repeat every n periods. We consider any consecutive n periods as a
cycle. Within a cycle, period 7 is the first period and period 1 is the last. In each cycle there is

only one chance to replenish the inventory through an ordering process. The ordering and selling



capacities are assumed to be perfect. Without loss of generality, let the purchasing period be the
first period in a cycle.

Under the cyclic behavior of demand, price and cost structures, we may define all system
parameters within a cycle assuming the optimal strategy also repeats every cycle. Later in this
section we will verify this assumption. Now, let I be the inventory level at the beginning of period
k. In periodrk, let 0 < ax < 1 be the discount factor and let Qx(éx) be the demand distribution
with p.d.f. gx(£x). The demand distributions in different periods are mutually independent.

At the beginning of period k, a planned initial inventory level, u, for the next period has to
be decided upon based on the observation of £t and I;. In other words, at period k # 7, uy is
the planned leftover stocks, and at period n, (u, — &, — I,)* is the purchasing quantity where
(d)* = max{0,d} for any real value d. Notice that the quantity of the actual leftover stock is
max{uk, Ix — €x}. Let u} denote the optimal value of uy.

Several costs and revenues are incurred during each cycle: a) a selling revenue, 7, is associated
with each unit of the satisfied demand in period k (all the unsatisfied demands are presupposed to
be lost), b) a purchasing cost, w (= 7o), is associated with each unit of the replenished inventory
in period n, and c) a holding cost, h, is related to each unsold unit of the stock at the period k.
All the costs and revenues are assumed to be non-negative. Naturally, the purchasing cost w must
be smaller than any selling revenue 7;. Let A represent the marginal revenue within a cycle if we
always can sell a product in period k instead of in the next period, i.e., Ax = mx + hx — agmk— for
k#nand Ay =w+hy, —apmp_g.

Now, we should recursively define the revenue functions within a cycle. (For convenience, we
shall neglect the demand in the purchasing period. Then, let &, = 0 with probability 1. Later
in this section, we will discuss how to incorporate this demand.) Let Ry(I,&k) be the expected
revenue of selling I items optimally from period k through period 1, based on the observation
of the current demand & and the inventory level Iy at period k. Then, Rn(In,&n) represents the
maximum expected revenue to operate a cycle, given initial inventory I, at the beginning of the
cycle. Therefore, I, < u, in period n and (It — &)t < ug < Ii in period k # n. Therefore,
Ry (I, fk)‘ satisfies the functional equations:

= k
Rillo &) = | max Te(Zky uk), #n



Rn(Imfn) = Im<ax 7ﬂ(Inaun)y

where
y1(l,u1) = m(h—w) - hw + oy,
YTk, uk) = me(Tk — uk) — hrur + ek Ee,_ [Re-1(uk, Ek-1)], k=2,.,n-1, (1)
7n(In;un) = —w(up = Ip) = hptun + anEg,_ [Rn-1(ttn, 1)) (2)

Now, we shall prove that there exists a sequence of critical numbers Sy, S3, ..., Sp such that the
system is operating optimally. Furthermare, the form of the optimal policy is stock-up-to at period
k # n (see Figure 1):

I if I < Sk
k Sk if Sk < Ix < &k + Sk 3)
I =& i I > & + Sk,

3
L
!

and order-up-to at period n:

Sn if I, < 8,

I, otherwise.

S+ &y

"

Figure 1: Optimal Policy at Period &

The optimal policy in ordering period says that if the inventory level drops below the critical

number Sy, then the inventory level should be filled up to the number; otherwise, no order should
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be placed. The optimal policy in the other periods says that a) if the inventory level Iy drops
below the critical number Sk, then keep all the stock to the next period, i.e., do not satisfy any
demand, b) if Iy is in between Sy and Sk plus observed demand &, then keep exact Si units of
inventory to the next period, i.e., satisfy Iy — Sx units of demand, and c) if stock on hand is more
than the critical number plus observed demand, then satisfy all the demand, i.e., keep I} — &k units

of inventory to the next period.

In order to show the optimal policies with the form (3) and (4), we shall prove that all the
revenue functions are concave by induction. Hence, consider the last period in a cycle. Taking the

first derivative of v;(I;,u;) with respect to u;, we have

071(11, 1)

= -A; <0.
6u1 !

Since marginal revenue is decreasing in holding any extra stock, we can define §; = 0, i.e., we are
not trying to leave over anything to the next cycle. Therefore, the optimal policy is (3). As a

result, we have

v1(11, 1) fSH<h<&G+5
n(h,h-&) ifLL>&+ 5.

Ri(h,&6) =

Hence, differentiating R;(I3,€;) with respect to I;, we have

ORi(I, &) _|m fSHi<h <&+ 5
oL —hi+aw if I > &+ S1.

Clearly, Ry([1,£;) is concave in Iy.

Trying to show the concavity of revenue function yx(Ik,ux) in decision variable and optimal
revenue function Ry(I,&k) in inventory for all periods, let us recall a useful lemma from Iglehart

(1965):

LEMMA 1 Let

N(z) = gg? ){M(x,y)} = M(z,yo(z)] vo(z) € D(z) and z € C,
y T
where z and y are k-dimensional vectors, N(-) and M(-,-) are real-valued functions, and D(z) is

some domain in k-dimensional space which depends on z. If M(z,y) is a convez function of the



2k-dimensional vector z = (z,y), C is convez, and the set {(z,y): y € D(z)} is convez, then N(z)

s conver inz € C.

THEOREM 2 For all periods,
1. Yk(Ix, ug) is concave in ug.

2. Ri(Ii, &) is concave in Ii.

Proof: We have shown that v;(I;, ;) is concave in uy and Ry([1,£) is concave in I;. Notice that
the first two terms in the right-hand-sides of (1) and (2) are linear in u;. By induction, suppose
that Ry_1(Ix-1,&k-1) is concave in Ix_;. Then, yx(Jk,uk) is concave in ux. Hence, Ri(Ix,&x) is

concave in Ix by Lemma 1. Similarly, R,([,,§,) is also concave in I,. n

By concavity, define Sk such that M&aﬂ_:&l =0 for k = 2 to n, i.e., for given Iy, vk(Ik, uk)
has the maximum at ux = Sk. Then, we shall show that the critical number Sk is independent of

inventory level.
THEOREM 3 The critical number Sy is independent of I, for all k.

Proof: We know that $; = 0 for all I;. For k = 2 to n, it is clear from (1) and (2) that Qﬂ’},%kﬁl
is not a function of Ix. QED. u
Since cost function 4k (/k, ux) is concave in decision variable with maximum at uy = Sk, the optimal
policy can be described by the maximal S. Moreover, in considering the restriction of the decision

variable, the form of the optimal policy is (3) and (4) since Sk is independent of the inventory level.

The optimal policy in ordering period indicates that we will never order if and only if §, < I.
Suppose that I, > S,. Then, within a finite number of cycles, I, will be less than §, by satisfying
cyclic demand streams. Consequently, in an infinite horizon problem, the initial inventory I, at
the beginning of period n — 1 is always equal to S, and represents a renew point in the long run.
Now, recall the case where a demand £, occurs in period n. Because the purchasing capacity is
unlimited, the inventory level still can be raised up to S, after satisfying the demand, i.e., £, does

not affect the optimal decision.



3 Uncertain Capacities

In the previous section we have shown that the optimal policy for the problem with perfect capacities
has a single critical number in each period. First of all, in this section we shall discuss and formulate
the problem dealing with uncertain production and selling capacities in a multi-cycle case. Then, in
section 3.1 we will prove that the optimal policy is also described by a single critical number in this
multi-cycle uncertain capacity problem. Moreover, we have illustrated the relationship between the
critical numbers in two consecutive periods. Finally, in section 3.2 we will show that the optimal
policy in an infinite horizon case has a cyclic sequence of critical numbers.

Now, consider an N-cycle problem. Cycle N is the first cycle and cycle 1 is the last. Let
Gi(z) represent the selling capacity distribution with p.d.f. gi(zx) and let F(y) be the ordering
(or producing) capacity distribution with p.d.f. F(y). All distributions are assumed to be mutu-
ally independent. Two issues allow us to neglect the demands occurring in ordering periods: a)
producing and selling processes can not be executed at the same time, for example, pump/turbines
in hydroelectric plants allow either pumping or generating phase at a moment, b) the leadtime,
the time between placing and receiving an order, is negligible. For convenience, let §, = 0 with
probability 1 and let k — 1 = n when k = 1. Due to uncertain capacities, it is not for sure that in
ordering periods, the inventory level can be always raised up to a certain level (which is the critical
number S, in the previous perfect capacity problem). Therefore, we should formulate this uncertain
capacity problem over whole planning horizon instead of over a single cycle in the perfect capacity
problem. Then let the notations Ik, u;k, u}; and S; represent respectively, Iy, u, uj and S% in
cycle j. Now, we are in a position to define recursively the discounted revenue functions which form
the basis of the analysis. Let R;x(I;,&) be the expected revenue of selling I;; items optimally
from period k in cycle j through period 1 in cycle 1, based on the observation of the demand i
and the inventory level I;; at period k. Rnn(INn,&n) represents the maximum total revenue to
operate N cycles, given initial inventory Iy, at the beginning of cycle N. Then, the constraints
of decision variables during cycle j become I;, < uj, in period n and (Ijx — &)t < ujx < Lk
in period & # n. Therefore, R;x(I;k,€x) with a boundary condition Ron(Jo,n,€n) = 0 satisfies the
functional equations:

(L = G(Lig,uik), k
R; (L ey €k) (Ij,k‘fkr)&asjij,kslj,k ik (L k Ui k) #n,



Rj,n(I',mfn) = Ima‘x 7j,ﬂ(Ij.ﬂ’ujy")’

JnS¥5n

where
YialLinuin) = Gi(Lin = win){m(Tin — uj1) — hujy + a1 Eg, [Riz1 (i1, €n)]}
Ij,l —uj,l
+/0 {mz1 = h(Ij1 = 1) + @1 Eg, [Rj-1,n(Li1 — 21,65)]} dG1(21), (5)
Yikliktik) = Ge(Lik = wip){me(Lik — wik) = etk + kB [Rjk-1(wj 5, Ek=1)]}
Ij,k—uj_k
+/0 {mzk — he(Lik — k) + ek B¢, [Rjk-1(1j k — Tk, Ek-1)]} dGi(2k),

k=2,..,n-1, (6)
Vin(Ljns ) = F(“J',n -La){- w("j,n = L;n) = hattjn + anEg,_ [Rjn-1(tjn, €n-1)]}
Ujn=Ijn
#[77 (= vy = by 4 L) + nBep R0+ L ba 4P ()

3.1 The Multi-Cycle Problem

Here, we shall show that there exists a sequence of critical numbers {5} for all j, k such that

the system is operating optimally. Similar to the perfect capacity problem, the form of the optimal

policy is
Lk if ik < Sjk
Wk = | Sik if Six <Lk <&+ Sp  k#EM (8)
Lie =& i Lig>&+ Sik
and

u;’n - Sjlﬂ if Ijv" < Sj-n (9)

I;» otherwise.
However, in the following discussion, we have found that the revenue function v; k(T , %;x) is no
longer a concave function of decision variable ;. The non-concave property essentially complicates

in analyzing the problem. But, we are able to show that the optimal revenue function R; (L, éx)

is still concave in inventory level through induction.

In order to characterize the behavior of the revenue functions, let us consider the revenue
function in the last period of the last cycle. Taking the first and the second derivatives of the
revenue function with respect to decision variable, we have respectively

0v1,1(11,1,u1,1)

o = =Gi(l1g = u)(m+ M) <0,



and

0%y11(I1,1,u1,1)
E)uf’l

= —qi(hy-u,1)(m+h) <0

Since the revenue function is decreasing in decision variable, we can define §1; = 0, i.e., we are
not trying to leave over any stock. Then, the form of the optimal policy is (8) since 71,1(J1,1,%1,1)

is also concave in u; ;. As a result, the optimal revenue function becomes

Y1,1(I1,1,51,1) fS1<ha <&+ 51
a(hhap-6) ifhp>&6+ 51

Rl,l(Il,l,El) =

Hence, taking the first and the second derivatives of Ry 1(I3,1,&1) with respect to I, we have

respectively
ORi (1, 61) ) MGl =$y) i Su<ha<bi+Sn
311,1 -h if 11,1 > fl + 51,17
and
0?Ria(h,&6) ) —maha-51) if$H1<hy<b+51,
01{{1 0 if Li> b+ Sl,l-

Clearly, Ry 1(I1,1,£1) is concave in Iy ;.

Now, we have proved the concave property of Ry 1([1,1,&1) in I1;. Then, we need to show that
if the optimal revenue function in a period is concave in inventory level, then the optimal policy in

the previous period is described by a single critical number.

THEOREM 4 Assume that R;k—1(I;k-1,&-1) is concave in I;x_1. Then, the form of the optimal

policy in period k of cycle j is (8) when k # n and (9) when k = n.
Proof: For k # n, we have the first and the second derivatives of +;(I;,u;k) Wwith respect to
u;k as follows,

67 'vk I'.k1 u ‘,k =
] (311j,k i GrlLik = uj)Psk(Lik),
and

0%: k(L k, _
7”k§u’z’k k) Gr(Iik — i )0k (wi) + ge(Tik = wik)Ps(25,k)s
ik




where

OR; k—1(%;kyEk-1)
Oujk
32Rj,k-1(uj,k,fk-1)]
Bu?,k ’

B

pik(uik) = —mk—hi+arEe,_,|

Pix(uin) = arEe |

Define S« such that p;(S;x) = 0. Clearly, S;x is independent of I;x. Since R;k—1(%;k-1,&k-1)
is concave in uj k-1, p;jk(-) is decreasing. Therefore, v; k(I;,u;k) is decreasing in u;x > S, and
is increasing and concave in u;x < S;k. Hence, the minimum at u;x = S is the global minimum.
Therefore, the form of the optimal policy is (8).

For k = n, taking the first and the second derivatives of v; n([;n, %jn) With respect to u;,, we

have respectively,

0Yin(Lin, jn) _
: 3111',7; : = F(uj'n—Ij'")pjv"(uj.n),
and
0% n(Lin, Uin -
= égu]?' ) - (%in = Ln)Pj(¥5,0) = f(¥50 = Liin)Psin(n),
nn
where
aR.vn_ U', QETI-—
Pin(Ujn) = —w—hn+anEe, | . B(UJJ: 1)]a
0*Rjn-1(tjn, €n1)
bt = e Bt

Define S;, such that p;n(S;n) = 0. Clearly, S;, is independent of I . Since Rjn-1(jn,&én-1) is
concave in ujn, pja(-) is decreasing. Therefore, ¥ (I}, %) is decreasing in u;n > Sja, and is
increasing and concave in u;, < §;,. Hence, the minimum at uj, = §;n is the global minimum.

As a result, the form of the optimal policy is (9). [

In order to perform the proof by induction, it is necessary to show the following theorem before

hand.

THEOREM 5 If R;k—1(I;k-1,€k-1) is concave in I k1, then R;k(L;k, &) is also concave in I .

10



Proof: For k # n, since R;x-1(Jjk-1,€k-1) is concave in I;x_1, the form of the optimal policy for

period k in cycle j is (8) by Theorem 4. Therefore, we have
‘7j,k(Ij,k,Ij'k) if Ij'k < Sj,k
Rik(Lik: &) = vi6(Tjk, Sik) if Sk <Lk <&+ Sk
Vik(Ligey ik = &) i ik > €k + Sike

Taking the first derivative of R;k(I;k,&) with respect to I, we have

OR;k(Lik: €k) _
0l k
( —h + aiE [33'1:-1(['1;,61:-1) if I S.
b+ ar By, [—RAmpplast=t] if Ik < Sjk

Y E&_l[aRj’k_l(g’}:,:xk'ek—’)] dGi(zk)

. +mkGr(Lik = Sik) = hkGi(Ix = Sik) if Sjk <Lk <&+ Sik (10)

OR; k—1(1j k=Tk k-
o f§* Eg,,[=24 l(ali:kzk t l)]de(a:lc)

—hy + akék({i’k)E&_l[3Rj,k-1(;jif,:fk-fk—l)] if Lk > & + Sk

Taking the second derivative of R;k(I;k,&k) with respect to Ik, we have
O* Rk €k) _
or,

(

%R, k1 (I k €k~ .
akE&-x[ Lt 311(121* < 1)] if Iix < Sjk

Ii-S; R, 1 (L k=T bk
ak fot* Ee,_ [ l(a};zkk zkbe=1)] 4Gy (z4)

=(mk + he)gk(Lik — Sik) if Sik < Lik <&+ Sik

A

2R, 1 (l; k=Zk k-
ok J§* Ee,_, [~ 1(;,}”2_"* zebioi)] 4G (2)

+akék(€j,k)Eek_,[asz"‘"g}"z"k-e'"t"")] if Tik > & + Sk
2y

Since Rjx—1(Ij,&k-1) is concave in I;x, R;x(I;x, &) is concave in I;x belonging to three intervals,
(0,8;k)s (Sj ks &+ S; k) and (€k+ Sk, o) respectively. Moreover, by using the first order condition
P k(Sjk) = 0, it is easily to show that the limitations of %g—(l?;ﬁ at I; x equal to S;x and equal

to & + S;x respectively, exist. This guarantees the concavity of R;x(L;x, &) in all k.

11



For k = n, since R;(Ijn-1,€n-1) is concave in I ,_1, the form of the optimal policy for period

n in cycle j is (9) by Theorem 4. Then,

.n I'n’s-n ifIn<Sn
Rjrn(Ij,"H fﬂ) = 7]’ ( h N ) 'R 7,
7jv"(Ij.n’ Ij,n) otherwise.

Taking the first derivative of R;.(I;,&n), we have

( S; ﬂ_I'n OR; - Ijnén—
Clan 4 Eén—l[ = ‘(ay};:‘ ¢ l)]dF(y)

ORjn(Iim, &) _ +wF(Sjn = I;n) if Iin < Sin i
0l

anEe,_, {%‘%:(f?‘f'&——l)] hn otherwise.

Taking the second derivative of R;n(Ijn,&n) and then by p;n(S;.) = 0, we have

a, fS] n=Iin "_l[32Ri.,._1éy1';:jlmfn—l)] dF(y) if Ij,n < Sj,n
ort,

otherwise.

aﬂEcﬂ_1 [3 R] n-—l(I] men-l)]

Since R;n-1(Ijn-1,&n-1) is concave in I;n_1, Rj',,(Ij,,,,E,,) is concave in I;, € (0,5;,,) and I;, €
(Sjn,00). Again, we can show that the limitation of 9&%%’:‘@ at Ijn = S exists. Therefore,

Rin(Iin,€n) is concave in in L. n
By induction, the following corollary is ready to perceive.

COROLLARY 6 The form of the optimal policy for period k in cycle j is (8) when k # n or (9) when
k=n.

So far, we have shown the structure of the optimal policy described by a sequence of critical

numbers. Now, we shall show several properties of these critical numbers.
THEOREM 7 §;1 =0 for all 5.

Proof: From (10) and (11), we have

3RJ»k_l(uJ'k = Sj—l,n, Ek—l)

pia(0) < -m-hi+ ek | e, ]
Iy

= -7r1-h1+a1w < 0.

12



The proof is done by decreasing property of p;1(-). QED. | ]
Theorem 7 indicates that to sell a product in the last period of a cycle is always more beneficial

than to carry it over the next cycle.

In the following theorem and corollaries, we characterize the behavior of the critical numbers
influenced by the marginal revenue Ag. If it is profitable to sell a product in period k instead of in
the next period, then we try to keep less inventory in period & than in the coming period. On the
other hand, if it is less beneficial to sell a product in period k instead of in period k¥ — 1, then we

try to keep more inventory over the next period.

THEOREM 8 If Ax <0, then Sk > §; k-1, otherwise, S;x < Sjk-1.

Proof: From (10), we have ORjh=1(liko1=Sin1 bemt) Tk=1, by Pjk-1(Sjk-1) = 0 for all j, k.

EJ o
Hence, p;k(Sjk-1) = —A for all k. Notice that p;k(-) is decreasing. Therefore, if A < 0, then
Sik 2 8jk-1;1f Ag 20, then §;x < §; k-1 otherwise. u

Theorem 8 is very useful for searching critical numbers in reducing unnecessary computational
burden. For example, if the marginal revenues in all periods are greater than zero, then all critical
numbers are zero. Therefore, it is not a profitable problem since S;, = 0, i.e., it is not a benefit to
order any product. On the other hand, if the marginal revenues in all periods are less than zero,

then S;n > Sjn-1 2 ... 2 81 forall j.

3.2 The Infinite Horizon Problem

Let us consider an infinite horizon version of the uncertain capacity problem. It is clear from (5),

(6) and (7) that in any cycle, the one period revenue is

Gik(Likswik) = [me(Lik = wik) = hawjklG(Lik — ujn)

Ik =ux
+4/(; [rezk — h(Ljx — zk)]) dGi(2k), k #n,

and

$in(Limstjn) = —(wjn = wlin + hnttjn)F (%50 = Ijn)
U ‘,n‘I',n
_ /0 M (wy + by + halin) dF(y).

13



Then, the function to be minimized is given by
N n n
JulINn) = lim Z (H )’ Z ®5m(ujm)ls
N—oo 4
j=1 I=1 m=1
where J,(IN») denotes the revenue associated with an initial inventory Iy, and a policy u =
{’UN’", veey UNJ, ceny ul',,, ceny ul,l}°

Indeed, consider a stationary policy g = {4, ,...}, where @ is defined by
W(Lix) = Ik, Vi,k.
It follows that the inventory stock I;« is'always equal to Iy, when fi policy is used. Now, differ-

entiating @; k(I k,u; k) With respect to u;x, we have

0% k(L ks uj k)

Tuir = —(me+ hk)ék(Ij,k -ujx) < 0, k #n,
'

and

a¢j,n(Ij,m uj.n)

Gl = ~(wt k) (s~ Lin) <O

i.e., @i k(L;k,u;k) is decreasing in u; for all j, k. Assume that the ordering capacity is bounded

above and E[Y] < co. Furthermore, we have
]'im ¢jln(I')n, ujv“) = _(w + hn)E[Y] - hanvn'
Uj,n—00

Since (I;x — &k)* < ujk < Ik and I, < ujq, we get

—heLik < b5 k(Liks ujk)
< [Tk = e = &)1) = ha(Lik — &) F1GR(Iik = (Lik = &)7)
Lix—(Iix—¢k)t
+/ [rezi — hi(Lik — zk)] dGi(z)
) mLaGe(Lig) + Ja*™* [xex — hi(Iix — o)) dGi(z) Lk <&
~[mkbe + he(Lik = E)IGR(6) + [§*Imear — ha(Lix — 26)] dGi(zr) Lk > &,
and

—(w+ hn)E[Y] - han,n < ¢j,n(Ij,muj,n) < 0.

14



Hence, the revenue per period incurred when ([ x) is used is bounded, and in view of the presence

of the discount factor we have
max JuINn) 2 Ja(INg) > —o0.

Then, from Bertsekas (1987), the optimality equation reduces to the system of n equations:

R Iy, = max Ye( Ik, ug), k#n,
(1 &) (Ix—&x)* Sur<Ii (s ui) 7
Rn(InyEn) = nax "in(Imun),

Insun

where

W(loyur) = Gr(le — we){me(lk — ur) — haur + ok Egy_, [Ri-1(ur, &k-1)]}
+ /0’*‘% {mizk — k(T = o) + @k Bey_, [Rica (T — o, 6-1)]} dGi(ah), K #m,
u(Inyun) = Flun = In){ = 0(tn = I) = hntin + an g, [Rn1(tns €n-1)]}
+ /Ou”_jn {= vy = ha(y + In) + By [Ra-1(y + I, )]} dF (9)-

Furthermore, an optimal periodic policy, p* = {@}(I1), .., Un(In)y -y #3(I1)y ey Un(In)}, is guaran-

cesy Uy

teed to exist. Therefore, the optimal policy u* satisfies the following n first order conditions:

ORk—1(ux = 45(Ik), k1)

Gr(Ix = ax(Te)){ = ™k — hie + arEg, _,[ B

]} =0, k#n, (12)

a

P (1) = F){ = 0 = hu + aq By 2ot =Tallh bty g (13)

Clearly, the function inside the brackets of (12) and (13) are independent of inventory levels.
Therefore, there exists a sequence of numbers {5"1, 5’2, vevy S,,} to satisfy these n first order conditions.

Since R;k(I;k,€k) are concave in inventory level for all k, the limit functions Rk(Ik,fk) is
also concave in inventory level. Therefore, we can show that for all k, §x(I,uk) is increasing
in ux € [0,5%]) and is decreasing in ux € [S,00) through the similar analysis in Section 3.1.
Furthermore, consider the decision variable constraints (Ix — )t < up < Ii for k # n and

I, < u,. As aresult, the structure of the optimal policy is

I if Iy < Sk
i = {8 if Sp < Ir < € + Sk k # n,
L-& ifL>&+5

15



ICHIGAN

i

50239

and

S, ifI, <8,

I, otherwise.
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