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0. ABSTRACT

An investigation of the free dynamics of nearly periodic disordered
truss beams is presented. An exact wave transfer matriz method-
ology is chosen in order to examine the effects of slight disorder
among the bays upon the propagation of waves and the transmis-
sion of vibration through the truss beam. It is shown that both
free harmonic waves and modes of vibration that extend through-
out the entire ordered structure may become localized to a few of
the bays of the disordered truss beam. In order to examine the
interactions among the various waves present in the structure, the
concept of power flow is utilized as a scalar descriptor of localiza-
tion. The mechanism of localization for this multi-coupled system
is much richer and more complex than for mono-coupled systems.
Specifically, the leakage of energy frem the wave pair that is most
subject to localization to wave pairs that are less proune to local-
ization is observed, suggesting that localization is more difficult
to achieve in multi-coupled systems tlan in mono-coupled ones.
Also, localization occurs primarily at higher frequencies, when in-
dividual structural members resonate. It does not occur for global
bending vibration modes. These are believed to be the first results
on localization for multi-coupled nearly periodic structures. The
wave conversion mechanism evidenced here is a novel phenomenon
that is probably characteristic of disorder effects in multi-coupled
structures.

1. INTRODUCTION

The individual bays that make up a spatially periodic engincering
structure, such as a truss beam, are never exactly identical, because
perfect periodicity is prevented by unavoidable manufacturing tol-
crances and other defects. These periodicity-destroying irregulari-
ties are referred to as mistuning, or disorder. It is now well-known
that, under certain conditions of weak internal coupling, or equiv-
alently, of high modal density, small disorder among the bays of a
periodic structure leads to the qualitative alteration of its dynam-
ics, by localizing the mode shapes of vibration to small geometric
regions and by trapping the free harmonic waves near the energy
source. We refer the reader to the work of Pierre,! Hodges,? and
Bendiksen® for fundamental studies of wave and mode localization
phenomena.

The mechanism of mode localization in nearly periodic struc-
tures is well understood, at least for the simple class of mono-
coupled structures (see Pierre,! Hodges,? Bendiksen,® and Kissel?).
Mono-coupled structures are characterized by a single coupling co-
ordinate between two adjacent bays, and thus feature a single pair
of left- and right-traveling waves. When one wave impinges on
a different medium (for example, at the junction of two slightly
different bays), part of it is reflected and part is transmitted. It
is these multiple reflections at the junctions between the random
bays that cause the localization of incident waves. The mecha-
nism for localization is thus oue of energy re-distribution, not one
of energy dissipation, such that the energy remains confined to a
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small geometric region. This results in larger vibration amplitudes
locally and hence in reduced fatigue life, for example for turboma-
chinery rotors. On the other hand, the localization of propagating
disturbances near the excitation source may have useful passive
control applications for space structures such as truss beams.

Periodic truss beams are doubtlessly subject to periodicity-
destroying irregularities, because of discrepancies cither among
the properties (e.g. the length) of individual structural mem-
bers or among the characteristics of the numerous joints that
link structural members (e.g., imperfect fits, clearances, and in-
service degradation). Also, previous studies have shown that truss
beams may possess very closely-spaced modes and thus high modal
densities.” Therefore, it is likely that, at least in the frequency
ranges that feature local vibrations of the truss members, the dy-
namics of truss beams is highly sensitive to such irregularities and
that localization occurs. Truss beams, however, are multi-coupled
periodic structures (i.e., the bays are coupled through more than
one coordinate} and the theory of localization for multi-coupled
structures is not well developed yet. This may explain why there
have not been any studies of the localization phenomenon in truss
beams, except for the localized normal modes reported in the work
of Friedmann et al., who used a finite element approach.

The main reason no general theory of localization is yet avail-
able for multi-coupled disordered structures is that these systems
feature a much more complicated wave propagation mechanism
than mono-coupled ones, due to the existence of more than one
type of characteristic waves in the periodic structure. In particular,
if & wave of a given type impinges on the junction of two random
bays, it produces not only a reflected and a transmitted component
of the same type as the incident wave, but also transmitted and
reflected components of all the other types of characteristic waves
present in the structure. This leakage of energy into other wave
types is what makes the study of localization for multi-coupled
systems more challenging, as well as more interesting, than for
mono-coupled structures, Although there is a dearth of research
on multi-coupled localization, we point out to the promising re-
cent development by Kissel,? who initiated a general theory that
should pave the way for future studies. Also, in a recent study,
Igusa and Tang” presented an integral form that approximates
asymptotically the dynamic response when the modal density is
high. These two developments have potential to yield advances in
the field of multi-coupled localization, with immediate application
to truss beams.

In this paper we examine the occurrence of wave and mode
localization in a disordered truss beam with simple geometry. The
study is a continuation of the research presented in reference 5,
which dealt primarily with the dynamics of ordered truss beams.
Here, we adopt the same wave transfer matrix methodology as in
reference 5, and a key aspect of the formulation is that the dynam-
ics of one bay is represented by a linearly ezact transfer matrix.
Thus the dynamics of the entire truss beam is simply described by
a product of transfer matrices. However, contrary to the casc of a
periodic truss beam, the methodology faces severe numerical prob-
lems for the disordered system when taking the product of random
wave transfer matrices. In order to circumvent this difficulty, we
develop in this paper a new algorithm to calculate accurately the



wave amplitudes at all bays. This allows us to obtain an accurate
depiction of the dynamics even at those (high) frequencies where
individual structural members undergo resonances. As a result, we
are able to tackle the difficult (both analytically and numerically)
problem of localization in truss beams with structural irregularities
and to obtain waves and modes with various degrees of localization
for different frequencies. A key result is that waves that localize
most appear to leak their energy to other waves that feature weaker
localization. Hence, in multi-coupled systems, the propagation of
wave motion can be sustained by one wave, although the incident
wave may become strongly localized. We believe the wave con-
version evidenced here is a new mechanism for localization that is
characteristic of disordered multi-coupled systems.

Another focus of the paper is the use of power flow as a de-
scriptor of wave localization. Power flow is defined as the time-
averaged power (force times velocity) at the junctions between
bays; it describes the amount of power which is transmitted by
waves through the structure. Mead® first introduced the concept
of power flow for multi-coupled periodic structures and he showed
that only passband waves can transmit energy. Signorelli and von
Flotow'? applied these findings to the characteristic waves in pe-
riodic truss beams. However, to date, power flow has only been
utilized to examine wave propagation in perfectly periodic struc-
tures. In this paper we generalize the definition of power flow
to randomly disordered structures and make use of it as a scalar
descriptor to examine the occurrence of wave localization. This
makes sense since when an incident wave is subject to localiza-
tion, its vibrational energy is confined to a small geometric region,
which implies that only a small amount of power is transmitted
along the structure.

The paper is organized as follows. Section 2 describes the ex-
act wave transfer matrix methodology for a general multi-coupled
disordered structure. We first set the problem of harmonic waves
propagating through a disordered segment and propose an algo-
rithm to resolve the numerical difficulties that arise. We then
define the power flow associated with characteristic waves in dis-
ordered systems and obtain general results regarding it. Finally,
we formulate the eigenvalue problem which governs the modes of
vibration of finite structures. In Section 3 we use this formula-
tion to examine the propagation of waves through a disordered
two-dimensional truss beam. Wave localization and conversion
phenomena are evidenced and studied. In Section 4 we obtain
the normal modes of a disordered fixed-fixed truss beam. Finally,
Section 5 concludes the paper.

The primary original contributions of the paper lie (1) in the
evidence of localization for a multi-coupled disordered structure,
(2) in the illustration of the interactions between various wave
types in disordered structures, i.e., in the wave conversion phe-
nomenon, (3) in the use of power flow as a descriptor of localiza-
tion and (4), in the development of an algorithm for predicting the
dynamics of large-scale disordered multi-coupled structures.

2. WAVE TRANSFER MATRIX FORMULATION FOR
DISORDERED MULTI-COUPLED STRUCTURES

In the wave transfer matrix approach the motion of the structure
is regarded as being made of a combination of waves traveling
through the structure. This methodology is described in detail in
reference 5 for ordered multi-coupled structures, in which case the
waves that make up the motion are independent. In this section
the wave approach is extended to the case of disordered bays for a
general multi-coupled periodic structure and the concept of power
flow is introduced. Only the main steps of the formulation are
given in Section 2.1, since much of the derivation is similar to that
in reference 5.

2.1 METHODOLOGY
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Qur goal is to study the propagation of a characteristic wave trav-
eling through disordered bays. To that end, we consider the free
vibrations of the generic, multi-coupled, nearly periodic structure
shown in Fig. 1. This infinite structure consists of a finite segment
of N randomly disordered bays embedded in an otherwise ordered
structure. We index the disordered bays from 1 to N. All bays
forn = —o0,---,0and n = N +1,---,40c are ordered and thus
identical. The bays for n = 1,.--, N are randomly disordered and
hence slightly different. We restrict the internal coupling in the
structure to that between adjacent bays.

Figure 1 depicts one bay, with the independent generalized co-
ordinates through which inter-bay coupling occurs. Let us denote
by m the number of coupling coordinates between two bays and by

(Uy)r and (Fy)L, the vectors (or the columns) of time-dependent
generalized coupling coordinates and generalized forces at the junc-
tion of the nth and (n» — 1)th bay. Similarly, denote by (U, )r and
(Fr)r the time-dependent coupling coordinates and forces at the
right end of the nth bay. In general, these vectors describe linear
and rotational motions, and each has dimension m. Assuming a
single-harmonic motion gives the following equations:

(Fu)r = (£)pe’ (1

(Un)r = unejm = (upr + junl)ejwt (2)

where we define u,, = (u,); and j = v/~1, and where u,r and
u,; are the real and imaginary parts of u,, respectively. Writing
the strain and kinetic energies for a bay in terms of the coupling
coordinates, we can derive a frequency-dependent dynamic matrix
that relates the force and displacement amplitudes at both ends of
a bay. This 2m by 2m matrix is given by (see Chen and Pierre®
for detail).

(fn)L] 2 l: U, ] liAn Bn:' |: Wy, :'

= (K, -w'M, = 3
[(fn)R ( ) Unil C, D, Upp1 ( )
where in general the mass and stiffness matrices are symmetric,
thus A, = AL, D, = DT, and C, = BY.

The first step of the wave methodology is the formulation of
transfer matrices that relate the dynamics at two adjacent bays.
These matrices can be defined because we consider only nearest-
neighbor coupling. The general form of the transfer matrix is de-
rived in Chen and Pierre® for a multi-coupled system and we refer
the reader to it for details. Here we choose to define the state at
the nth bay by the displacement state vector x, = [ug,uz_l]T,
where T denotes a transpose and u, is the vector of coupling co-
ordinate amplitudes at the junction of the (n — 1)th and nth bays.
This yields the general form of the displacement transfer matrix:

Tln T2n
I o } Xon )

Xn41 = Thx, = [
where
-B;Y (A, + Dyy)

{ Tln

Ty, = -B;1C,_,

Since the number of coupling coordinates between bays is m, x,, is
a 2m-vector and Ty, and Ty, are m by m matrices. From Eq. (4),
the transfer matrix T, is determined by the structural properties
of the (n — I)th bay and those of the nth bay. Hence, for the
randomly disordered system shown in Fig. 1, the transfer matrices
T,, forn =1,..., N + 1, are random and generally different from
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the ordered (or nominal) transfer matrix, which we denote by T,.
Note that the transfer matrix of the (IV 4+ 1)th bay is also random,
although that bay is not disordered.

The next step in the wave formulation is to define a coordi-
nate transformation between the displacement and the wave coor-
dinates. To achieve this, we seek characteristic wave motions such
that when a wave travels across the junction between two ordered



bays, the state vector is multiplied by a constant. This complex
constant accounts for the change in wave amplitude or phase, or
both, at the coupling junction. It can be shown easily that char-
acteristic waves are obtained by solving the eigenvalue problem
for the transfer matrix T, of an ordered bay. The constants that
characterize the propagating or attenuating nature of the waves
are given by the cigenvalues of T,, while the characteristic wave
shapes (the deflection pattern of the structure) are given by the
eigenvectors of T,. The eigenvalues of T, occur in reciprocal pairs,
hence there are m pairs of left- and right-traveling waves. We can
form the matrix X whose columns are the eigenvectors of T, such
that the first m columns of X correspond to the left-traveling waves
and the last m columns to right-traveling waves. This allows us to
separate left- and right-traveling waves.

The physical displacement amplitude coordinates are then
transformed into wave amplitude coordinates by a linear transfor-
mation that is defined by the matrix of eigenvectors of the ordered
transfer matrix, X. For the nth bay, we obtain

|: Up }:XI:LTL]:[XII Xl?] |:L7l] (5)
Up—y R, X21 Xa2 R,

wlere the m-vector L, contains the complex amplitudes of the
left-traveling waves and the m-vector R, those of the right-
traveling waves. As shown in Fig. 2, the waves entering the nth
bay are R, and L,;; and those leaving the bay are R,4; and
L,. Each wave coordinate represents the contribution of the cor-
responding wave to the overall motion. Through the coordinate
transformation in Eq. (5), the total motion can be expressed as
a linear combination of the characteristic waves. Note that the
coordinate transformation takes the same form for ordered and
disordered systems. Substituting Eq. (5) into Eq. (4), the wave
amplitudes at two adjacent bays are rclated by

Ln+l _ -1 Ln _ Ln
e R S

where W, is the wave transfer matriz for the nth bay. At this
point it is appropriate to distinguish between ordered and disor-
dered bays.

o For an ordered bay (—oo < n<0and N +1 < n < +0)

Then T,, = T, and W, = W, = X !'T,X. Since X is the ma-
trix of eigenvectors of T,, the wave transfer matrix is the diagonal
matrix of the cigenvalues of T,. It has the form:

A O
WO = l: 0 A—l} (7)
where A is a diagonal matrix representing the left-traveling waves
(its elements have modulus greater than or equal to one) and A~!
corresponds to the reciprocal right-traveling waves. Equations (6)
and (7) tell us that the 2m characteristic components of a wave
inctdent to the junction of two ordered bays are not only fully
transmitted through the junction and not reflected, but also re-
main independent and do not exchange energy with one another.
This means that in an ordered structure characteristic waves travel
independently.

o For a disordered bay (0 < n < N +1)

The wave transfer matrix for the nth disordered bay, W, is
no longer a diagonal matrix, because the transformation defined
by X does not diagonalize the random transfer matrix T,. This
allows for scattering at the junction of two disordered bays as well
as for exchange of energy among the various types of characteristic
waves, through both reflections and transmissions of one wave type
into the other types.

Using the recursive form of Eq. (6), we can relate the wave
amplitudes at both ends of the disordered segment, that is, those
at site 1 to those at site (N + 2), as
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{;ﬁ:ﬁ] = (Wni1..Wy) [IIill} - {? ‘i} [Ililx} )

Since our primary interest lies in the localization of waves trav-
cling through disordered bays, we choose to examine the propaga-
tion of a characteristic wave that is incident from the left to bay
1 and is represented by the wave amplitude vector Ry. If there
were no disordered bays in the infinite structure, this wave would
be fully transmitted without encountering any reflection nor any
alterations. Specifically, the m right-traveling characteristic com-
ponents of the wave (represented by R;) would remain independent
and not exchange energy with other characteristic waves as they
travel through the structure. Mathematically, this means that we
would have Lyys = Ly = 0 and Ry4o = A~VHIR L with A
diagonal. However, when we send the same incident wave through
the disordered segment, there are not only reflections for each type
of waves, but also exchanges of energy between the various types
of (transmitted and reflected) characteristic waves at each junc-
tion between disordered bays. This means that the reflected wave
amplitudes L; through Lyy; are different from zero. Morecover,
we have Lyyo = Lyys = ... = 0, since all bays to the right of the
disordered segment are ordered and thus do not cause reflections.
Using the facts that Ly 4o = 0 and R, is a known vector, we can
solve for Ly in terms of Ry from Eq. (8). We obtain:

L, = -07'$R, (9)

Once L, is determined, we can calculate the wave amplitudes at
all bays from Eq. (6), simply by multiplying by the appropriate
disordered wave transfer matrices. In particular, the vector of
wave amplitudes transmitted through the disordered segment, a
quantity of special interest in localization studies, is given by:

Ryy4e=TL; + ¥R, {10}
Afterwards, the physical displacement vector at cach bay is readily
obtained from Eq. (5).

The above wave formulation faces severe numerical problems
in practice, namely when the displacement transfer matrix has a
large eigenvalue (of the order of 1000) and when the number of
bays is not small (greater than 10). This is because calculating
the amplitudes reflected by the disordered segment, L;, requires
taking the product of the nearly diagonal wave transfer matrices
that characterize the disordered bays. Multiplying these matrices
generates significant errors when some diagonal elements of W,
(corresponding to the large eigenvalues of T,) are large compared
to off-diagonal elements. This occurs because the errors present
in the small off-diagonal terms (which themselves are due to inac-
curacies in X and its inverse) are amplified by the large diagonal
elements at each wave transfer matrix multiplication. It results in
an incorrect wave amplitude L, which means that all other wave
amplitudes cannot be obtained from Eq. (6). In order to overcome
this numerical problem, the following algorithm is developed to
calculate accurately the wave amplitudes at all sites.

2.2 AN ALGORITHM FOR WAVE AMPLITUDES IN
LARGE DISORDERED STRUCTURES

The motivation for this algorithm is the desire to lessen the mag-
nification of numerical inaccuracy caused by the multiplication of
matrices containing large numbers. In order to curb this error, we
make use of the fact that Ly,o = 0 (recall that all bays to the
right of the disordered region are ordered). By expressing Ly o as
a product of wave transfer matrices and the wave amplitude vector
at site 1, and then performing appropriate operations on each side
of the equation, we can reduce the error due to large numbers in
each matrix multiplication.



For convenience, the wave transfer matrix of an arbitrary nth
bay is denoted by

we [ 2]

r o (11)

where all submatrices are m by m and @,, contains large num-
bers on its diagonal (corresponding to left-traveling waves). Using
Fgs. (8) and (11), we can express Ly as

(C] o3 0, ¢ L
LN+2:0:[®N+1 ‘pl\7+1]|:r:/] \I’z][r; ‘I’i:| |:R11]
(12

In order to reduce the possible error amplified by the large num-
bers in ®ny1. we pre-multiply both sides of Eq. (12) by @;,IH.
This yields

- Oy @y O &)L
0=]I @A\rLl‘I’I\'Jrl]l:rV \yl\,]"'[I‘: ‘I’l] [Ri] =

Next, the first product in Eq. (13) is expanded. This yields:

On_1 QN—lj\

0=[@y+Syulny &N+ Svn¥y] \:FN L Un

e & ][L
T @ | Ry

-1
where Sy = G)Nﬂti)NH

(14)

(15)
Again, to reduce the possible error amplified by the large num-
bers in ©pn, we pre-multiply both sides of Eq. (14) by (@n +
Sn41La)7!. Thus,

Oy, Dn_
0=[1 (GN+SNHFN)'l@’N+SN+1‘I’N)][I‘A 1 ‘I/N 1]
N-1 N-1
®1 (bl L]
”'{Fl \I/lHR]] (16)

Similarly, the first product in Eq. (16) is expanded and a matrix
Sy is introduced. We obtain

On_s

0={On_1+SyTn_1 @n_1+SNTN_1] [FN
-2

e & [L
LT ] Ry

where Sy = (On + Sy Dn) " H(@N +Svi1¥w) (18)

If we repeat recursively N times the procedure described above
and at each iteration introduce the proper substitution matrix S,,,

we end up with
@1 ‘Pl L1
6=[1 S,
[ 2][1-‘1 q’l}[Rl]

o=t g

in which the errors in the off-diagonal elements of W, have not
been amplified by the large elements in ®,,. Since Ry is a selected
right traveling wave amplitude, we can calculate Ly in term of Ry
from Eq. (20):

(DN—2:|
Wy_2

(17)

(19)

(20)

L; = -S5:R, (21)

Next, we use Ly and R; to calculate Ly and R,. From Eq. (6)
and (11) we have

Lo 0; ¢ L,
= 22
[Ba] {I‘l ‘1’1} [Rl (22)
Then, Eq. (19) becomes
L,
= 2
o= s:1[p] (23)

We use Eq. {22) to solve for Ry but not for Ly. This is because
large numbers in ®@; will again amplify the error while calculating

L,. This error will be carried over and accumulated in the succes-
sive calculations of wave amplitudes at other sites. To avoid this,
we first use Eq. (22) to solve for Ry and then bring R, into Eq. (23)
to solve for Lq, since Sy has already been calculated. Having de-
termined the wave amplitudes at site 2, we are able to calculate
those at site 3, site 4, and so on by repeating the same process as
for R, and Ly. Therefore, the wave amplitudes at all sites can be
obtained accurately using this algorithm.

2.3 POWER FLOW: A DESCRIPTOR OF WAVE LO-
CALIZATION

We study the power flow associated with waves propagating
through undamped, multi-coupled, disordered periodic structures.
When a wave propagates, it transmits energy along the structure.
Since the internal coupling is restricted to adjacent bays, each bay
receives or transmits energy through its two junctions with the
neighboring bays. The resulting flow of power that travels through
the structure in the direction of the incident wave can be quan-
tified by taking the time-average of the input or output power at
each junction. This average power flow, which accounts for the
interaction between the various transmitted and reflected waves,
indicates how much of the input (incident) power is being conveyed
through the structure. Power flow is a function of frequency and
of the composition of the incident waves and thus it can be used to
define the filtering properties of ordered and disordered periodic
structures. This can be of use for passive control applications.
Moreover, power flow is a convenient scalar that provides physical

insights into the interactions of waves and thus into localization
phenomena.

Power flow in perfectly periodic, undamped structures has been
studied in references 9 and 10, although their definitions of power
differ slightly. Mead was first to show that the power flow as-
sociated with a passband wave is identical at all bay junctions,
and that the power flow associated with a complexband or a stop-
band wave is zero (although complexband waves are propagating,
the net power flow is zero). Thus power can only be transmitted
along periodic structures by passband waves and the power flow is
constant throughout the structure.

In this work we adopt the definition of power of Signorelli and
von Flotow!® and extend the definition of power flow to a disor-
dered multi-coupled structure. Referring to Fig. 1, we define the
instantaneous input power, p,(t), at the left-hand junction of the
nth bay as

pa(t) = Re[(F)TRe[(U,),] (24)

where Re[(F,,)z] is the real part of the coupling force at the junc-
tion and Re[{U,)z] the real part of the nodal velocity vector. Note
that p,(t) is a scalar. The power flow P, is defined as the time
average over one period 7' = 27 /w of the instantaneous power:

1 /7

P, == t 5
e e (25)

The force and velocity amplitudes in Eqs. (1) and (2) are substi-

tuted into Eq. (24). Then Eq. (3) is used to express the forces in

terms of the nodal displacements. This yields:

Re[(Fy)r] =(Bruging + Anung) cos(wi)

~ (Baugpyr + Anuyy)sin(wt) (26)

Re[(U,)1] = —w(Unp sin(wt) + u,; cos(wt)) (27)

Next, we substitute Eqs. (26) and (27) into Eq. (24). Using this
expression for p,(t) and the fact that B = C,, wc obtain the
power flow in Eq. (25) as:

w *
P, = —glm[unilcnun] (28)
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where * denotes a complex conjugate and Im an imaginary part.
The power flow P, is thus determined by the displacement vectors
on each side of the nth bay and by the matrix C,. Irom Eq. (3),
recall that C,, represents the coupling between two adjacent junc-
tions. It is this coupling which allows for energy conversion among
waves and power transmission. Note that the power flow is also
an explicit function of frequency.

Using Eq. (28), we can show that for a perfectly periodic, un-
damped structure the power flow associated with a passband wave
is nonzero and identical at all bays, while power flow for a com-
plexband or a stopband wave is zero. These proofs are given in
Appendix A.

Next, we derive a general result for power flow in disordered
structures. From Eq. (4), we have

Upil = "B;l(An + Dn~1)un - B;lcn—lun—l (29)
Multiplying both sides by —uzTB,, yields
‘“u:lTBnun+l = u:LT(An + Dn—l)un + u;TCn—l Up_1 (30)

Note that the three terms in Eq. (30) are complex scalars and
that (A, + D,_1) is symmetric and real, since both A, and D,,_,
are real symmetric. Therefore, u;‘lT(An + D, _1)u, is equal to its
conjugate transpose and thus it must be real. Then taking the
imaginary part of Eq. (30) yields

~I1n[u;‘lTBnun+1] = Im[u:LTCn_l ,_1] (31)

Using that w2’ B, u,4; equals its transpose and that B! = C,,
we rewrite Eq. (31) as:

—Tm[ul,,C.u}] = Im[uw¥C,_ju,_y] (32)

Tinally, transforming the negative sign on the left-hand side of
Lq. (32) into a complex conjugate gives

Im{uzt,Cou,) = Im[w T Cpyu, ] (33)

or, from Iiq. (28):
P, =P, (34)

We have shown the important property that all bays transmit the
same power to the next bay, i.e., the power flow in an disordered
undamped structure is constant along the structure. This means
that the result obtained by Mead?® for the special case of periodic
structures holds for disordered systems as well. Note that this re-
sult is physically reasonable. Since we consider the free vibration
of an undamped structure, the one-cycle power received by any bay
must be equal to the output power to the adjacent bay. Otherwise,
the energy of a bay could increase until failure occurs, which obvi-
ously is not the casc. Also note that this result permits the usec of
a single scalar to describe wave transmission and interactions in a
compact and global manner. This suggests power flow as a useful
descriptor of wave localization.

Using Eq. (5), we can express P, in Eq. (28) in terms of wave
amplitude coordinates:

n-+1
+ R (X7 CaXar — X35 CLX11) L] (35)

P,=— ‘—;Im[R*T X2 CnXa2)Rnpr — Lt (X3 CE X11) L

This shows that the power flow is composed of three parts: the con-
tribution from transmitted waves, the contribution from reflected
waves, and the joint contribution from the interaction of transmit-
ted and reflected waves. Without formal proof, we contend that
a wave propagating toward the right should result in a positive
power flow. Therefore, a left-traveling wave is expected to trans-

mit negative power flow to the right (i.e. positive power flow to
the left). Using this argument we explain that the first two terms
in the right-hand side of Eq. (35) have opposite signs, which indi-
cates that part of the incident energy is not transmitted through
the structure due to wave reflections.

Next we apply Eq. (35) to a selected wave incident from the
left and traveling through the disordercd structure, as described
in Section 2.2. Since Ly4o = 0, we choose the site n = N + 2 to
calculate the power flow in the structure. The power flow P at any
site can be simply written as:

w * Iy i
P = PN+2 = "51Hl[RJ+2(X1£CAV+1X22)RN+2J (3())

Ilence the knowledge of the transmitted wave amplitudes, Ry 4o,
is sufficient to determine how much of the incident power passes
through the disordered segment. Qualitatively, this power is pro-
portional to the total energy of the waves when they leave the
disordered region. The emergent power flow associated with an
incident passband wave will, in general, decrease as the disorder
level increases, since the scattering of waves becomes large.

It is interesting to note that for a disordered structure, an
incident stopband or complexband wave no longer transmits zero
power flow (as is the case in perfectly periodic structures). This is
because the perjodicity-destroying irregularities cause interactions
between the various waves, such that passband waves appear as
transmitted or reflected waves. This results in a non-zero power
flow in the structure, although it may generally be small.

Finally, another interesting result is that if a passband wave is
incident to the above disordered structure and if the power flow
is calculated at bay n = 1, then the joint contribution term in
Eq. (35) (the third term in the right-hand side) vanishes. This
means that the resultant power flow is simply the difference of
the incident power and the power diverted by the reflected waves
at site 1. Note that this argument is not true for a stopband or
complexband incident wave. The proof is omitted here due to
space limitations.

2.4 NORMAL MODES OF A FINITE DISORDERED
STRUCTURE

In this section we apply the transfer matrix formulation to deter-
mine the normal modes of vibration of finite disordered structures.
In order for a finite (undamped) structure to undergo motion in a
normal mode at a given frequency, the linear combination of the
characteristic waves traveling along the structure at that frequency
must form a standing wave, i.e., all degrees of freedom must vi-
brate in or out of phase.

We consider an N-bay, multi-coupled, disordered structure
with fixed-fixed boundary conditions. The bays are numbered from
n = 1to N. Our aim is to derive the eigenvalue problem whose
solution determines the natural frequencies and associated mode
shapes. This can be achieved easily by writing the relation be-
tween the displacement vectors at three adjacent bays. We have,
from the first block of m equations in Eq. (4):

Topun—1 + Trpu, — Upt+1 = 0 (37)

Letting the bay index n in Eq. (37) go from 2 to N, we obtain the
following matrix equation:

T Ty ~I 0 0 uy
0 T Tis -I 0 0 :
0 0 Toyn-1) Tl(N—l) -1 0
0 0 Ton Ty -1 Uy
(38)

where the matrix has dimension m(N ~ 1) by m(N +1). Next, we

345



apply the boundary conditions to Eq. (38). Since u; = un41 =0
for fixed ends, we eliminate the first and the last m-block columns
in Eq. (38). Thus, the rectangular system of equations (38) reduces
to a square system of dimension m(N — 1) x m(N — 1):

Ty, -I 0
ug
Ty Tz -1 0 0
0 . . . . .
. =0 (39)
: R . . . 0
0 ... 0 Tyn-n Tyw_y -1 u
0 0 Ton Tin N

In order to obtain a non-trivial solution for the structure’s dis-
placement vector [uf, ..., u?(,]T7 the determinant of the matrix in
Eq. (39) must equal zero. Those frequencies that render this deter-
minant zero are the natural frequencies of the fixed-fixed structure.
The associated eigenvectors [u], ..., u}]7 define the mode shapes
that correspond to the natural frequencies.

3. WAVE PROPAGATION IN DISORDERED TRUSS
BEAMS

Here we apply the formulation presented in Section 2 to study
wave propagation through the truss beam shown in Fig. 3. One
bay of the truss beam is shown in Fig. 4. It consists of four pin-
joint, uniform, homogeneous structural members. We refer to the
members labeled 1, 2, and 3 in Fig. 4 as the longeron beams, and
to the structural member labeled 4 as the diagonal beam. Each
bay has two nodal points on each side. Because the members are
pinned at the joints, there are only two degrees of freedom at each
nodal point, two displacements. Hence the number of coupling
coordinates between two adjacent bays is four and the transfer
matrix for a bay has dimension eight by eight.

An ezact bay transfer matrix was derived in Chen and Pierre®

for the truss beam in Fig. 3. Tt is based upon exact linear models of
bending and axial vibrations for each of the four structural mem-
bers making up a bay. This derivation and the transfer matrix are
not given here and we refer the reader to reference 5 for details.

In this section we essentially consider the disordered version of
the ordered truss beam studied in Chen and Pierre.> We examine
the propagation of a selected wave-type through a finite region of
randomly disordered bays embedded in an infinite periodic struc-
ture. The disorder among the bays originates from differences in
their lengths (where the length of a bay is that of the upper or
the lower longeron beam). Except for the length variation, the
bay geometry is assumed to be unchanged, i.e., the upper and
lower longerons have equal lengths and the length of the diago-
nal member is determined accordingly. Small random disorder is
considered, such that the bay lengths are identically and uniformly
distributed independent random variables, whose mean is the nom-
inal bay length and standard deviation is ¢. In the following we
refer to o as the disorder level.

Since mono-coupled structures feature a single pair of left- and
right-traveling waves, the phenomenon of localization occurs sim-
ply through multiple reflections of the incident wave at the random
bays. In the multi-coupled truss beam studied here, however, an
incident wave which impinges on a random bay gives rise to trans-
mitted and reflected waves of each type present in the structure.
This mechanism leads not only to the localization of the incident
wave, but also to its conversion into other types of waves via en-
ergy leakage. In order to evidence these complex phenomena, we
consider two truss beams with different structural member axial
rigidities: the truss beam with the high axial rigidity features clear
wave localization and little energy leakage, while the one with a
100-fold decrease in axial rigidity exhibits pronounced wave con-
version as well as localization.

In both cases we investigate the propagation of waves incident
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from the left into an infinite truss beam which consists of 200 ran-
domly disordered bays embedded in otherwise ordered bays. We
first identify the passband structure of the ordered truss beam and
then examine the propagation of waves for various disorder lev-
els and frequencies. At some frequencies the associated ordered
system features two pairs of passband waves, which allows us to
examine how these waves localize and interact in disordered con-
figurations.

3.1 CASE I: WAVE LOCALIZATION PHENOMENON

In this case of high axial rigidity of the structural members the
parameters for the truss beams are: EI = 5.81482 x 10> Nm?
(structural member bending rigidity); EA = 1.93977 x 107 N
(structural member axial rigidity); m = 0.75948 Kg/m (mass
per unit length of a structural member); and, for an ordered bay,
Iy =13 = I3 = 1.397 m (length of the longerons). All members have
identical material properties and their axial rigidity is far greater
than their bending rigidity.

3.1.1 Characteristic Waves in the Ordered Truss Beam

Before we explore the dynamics of the disordered truss beam,
we must first identify the independent wave pairs that charac-
terize the periodic system. We restrict our investigation to the
dimensionless frequency range [0,7?], such that #? is the funda-
mental bending frequency of a pinned-pinned vertical longeron
beam. (The dimensionless frequency is defined from the frequency
as w = w(mli/(EI)/2 The bar in @ will be dropped for sim-
plicity.) As described in Section 2.1, the characteristic waves are
obtained by solving the eigenvalue problem for the ordered transfer
matrix T,: the propagation constants are given by the logarithm
of the eigenvalues and the wave shapes by the eigenvectors. Since
the transfer matrix of a bay has dimension 8 x 8, the truss beam
carries four pairs of characteristic waves.

The characteristics of these four wave pairs in terms of fre-
quency have been thoroughly investigated by Chen and Pierre®
and we refer the reader to it for details. Here, we use the power
flow defined in Eq. (28) to verify the frequency regions that define
the passbands for the various waves. Figure 5 depicts the power
flows associated with four pairs of characteristic waves as a func-
tion of frequency. Each curve in T'ig. 5 is obtained by considering a
characteristic wave of unit amplitude incident from the left to the
periodic truss beam, and by calculating the corresponding power
flow using Eq. (28). Since scattering cannot occur, the transmit-
ted power flow, which is independent of the number of bays, is
solely carried by the incident wave. The wave pairs labeled I, II,
and IIT are respectively bending, shear, and compression waves at
low frequencies (say w < 4). In the frequency range shown, the
wave pair labeled IV belongs to a stopband and features a very
large exponential decay constant (the real part of its propagation
constant®?); thus its power flow is zero. For each curve in the fig-
ure, regions defined by a non-zero power flow are passbands. Thus
for 0 < w < 4.9318, the type-I and -III waves are in passbands; for
4.9318 < w < 5.9115, only the type-1II wave is in a passband; for
5.9115 < w < 9.8246, type-II and -III waves are in passbands; for
9.8246 < w < 9.8584, type-1, -II, and -III waves are in passbands;
and for 9.8584 < w < w2, type-I and -II waves are in passbands.
Recall that all frequencies are dimensionless.

In general, the power flows depicted in Fig. 5 describe (at
least qualitatively) the energy levels associated with the various
passband waves of unit amplitude. For example, the energy of a
unit type-III wave is higher than that of a unit type-I wave when
w < 4.7. Note that the power flow associated with the type-I
wave becomes very large as the wave frequency nears the passband
bounding frequency, w = 4.9318. Since this bounding frequency
is very close to the resonant frequency of the diagonal structural
members, w = w2/2, we infer that near the passband edge the
deflection pattern of the type-1 wave features resonance of diago-



nal structural members (see reference 5 for the corresponding wave
shape). For this nearly resonant case the coupling forces at the bay
junctions become very large, which leads to the very large power
flow observed in Fig. 5 for the type-1 wave near its passband edge.
A similar pattern of large power flow is observed for the type-I1
and 11T waves when the frequency approaches w = 72, which is the
resonant frequency of the longeron structural members.

3.1.2 Wave Propagation In Disordered Truss Beams

Here we use the algorithm developed in Section 2.2 to examine the
propagation of characteristic waves in the disordered truss beam.
Besides examining wave shapes at various frequencies, we calculate
the power flow in an attempt to quantify the strength of localiza-
tion phenomena. We also examine the magnitude of the various
transmitted waves (the modulus of the complex components of R,,)
throughout the structure in order to capture the mechanisms of lo-
calization and wave conversion. Several representative frequencies
are cxamined below.

Atw =3

At this frequency, both type-I and -III waves are passband
waves. Figure 6 depicts the propagation of a selected type-I wave
incident from the left. For the perfectly periodic truss beam the
wave features a global bending pattern shown in Fig. 6a. Although
Fig. 6b is for a truss beam with a relatively large disorder level of
o = 10%, observe that the wave remains unattenuated and nearly
identical to that shown in Fig. 6a, even after traveling through
200 disordered bays. This result is consistent with the general
observation for mono-coupled systems that waves which featuring
global vibration patterns are little subject to localization (although
localization eventually takes place if the number of bays keeps
increasing).

At w = 4.92

Figure 7 illustrates a case of severe localization. At frequency
w = 4.92, type-I and -III waves are passband waves. Observe in
Figs. 7a and 7c the unattenuated propagation of these two waves
along the ordered truss beam. The deflection patterns for both
waves feature the local vibrations of the diagonal structural mem-
bers. For the disordered truss beam the disorder level is 0 = 0.3%.
Comparing Fig. 7c and d, we note that very little localization oc-
curs for the type-III wave in the disordered structure, although the
deflection pattern is substantially affected by disorder. Examining
Figs. 7a and b, however, we observe the severe localization of the
type-1 wave to the first few bays of the disordered truss beam.
Hence the type-I wave is highly sensitive to small disorder at this
frequency. Note that in this case the frequency is very close to
the upper passband edge of the type-I wave (w = 4.9318), hence
the strong localization wave observed in Fig. 7b appears consis-
tent with the result for mono-coupled systems that localization is
strongest near passhand edges.

In order to examine wave interactions in this case, consider a
type-I wave of unit amplitude, incident from the left to the same
disordered truss beam as in Fig. 7b. The magnitudes of the com-
plex amplitudes of the four transmitted characteristic waves (the
modulus of the elements of R,,) are calculated and plotted in Fig. 8
versus the bay number. First note that the magnitude of the type-
T incident wave decreases sharply as the bay number increases and
rapidly goes to zero, which is consistent with the localization shown
in Fig. 7b. Also observe that within the first few bays a small por-
tion of the energy of the incident wave is converted into the type-1I
and -III waves. Since the type-II wave is a stopband wave, its con-
tribution decays quickly, but note that the converted type-III wave
keeps traveling with almost constant amplitude until the end of the
disordered segment, which is consistent with the fact that nearly
no localization of type-IIl wave is depicted in Fig. 7d. This is
an example of the wave conversion phenomenon that can occur in
multi-coupled systems. However, since in this case the converted
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portion of the incident wave energy is so small, the strong local-
ization of the type-I wave still takes place.

Although the first few bays in Fig. 7b display a substantial de-
flection, we found that the power flow for the disordered beam is
approximately only 0.1% of that associated with the unattennated
type-I wave in the ordered beam. Recall that Eq. (35) shows that
the existence of reflected waves (L, ) reduces the power flow along
the structure. In order to understand the small value of power flow
obtained in the disordered case, we examined the magnitude of the
accompanying reflected type-I wave along the beam and found that
it nearly coincides with that of the transmitted type-I wave shown
in Fig. 8. Physically this means that the transmitted and reflected
type-I waves are nearly identical waves but traveling in opposite
directions. Hence these two waves almost form a standing wave
along the disordered structure (if we neglect the small phase dif-
ference between the opposite wave pairs). Since standing waves
do not produce power flow, the vibrational energy of the type-I
wave is thus confined to a small geometric region with little con-
tribution to the power flow, such that the net power flow in the
disordered beam is mainly supported by the type-III wave. On
the other hand, the power flow for the case of an incident type-III
wave in the disordered beam (see Fig. 7d) is only 2% smaller than
that associated with the unattenuated type-IIl wave in the ordered
beam. This confirms that the type-111 wave does not localize.

A one-cycle time simulation of the localized type-1 wave dis-
played in Fig. 7b is depicted in Fig. 9 for five successive instants of
time. As expected, we observe that the region in which the wave
is localized does not travel: the bending component of the wave
remains confined near the incidence region. This simulation shows
that localized waves do not propagate, which confirms the above
explanation regarding power flow.

At w = 1945

The above results are for frequencies that are smaller than the
fundamental natural frequency of the vertical longeron beam. In
order to determine the sensitivity of the wave dynamics to disor-
der at higher frequencies, we investigate the propagation of waves
at w = 19.45. At this frequency there are two wave pairs in pass-
bands, namely the type-I and -III waves. This frequency is close to
the upper bounding frequency (w = 19.576) of the type-IlI wave.
The results are shown in Fig. 10. Observe that the type-III wave
exhibits severe localization for a disorder level o = 0.2%. The
type-I wave, although somewhat altered, does not localize. This
demonstrates that the dynamics of the truss beam can be sensitive
to disorder at high frequencies. It also confirms that localization
is strong for frequencies close to a passband edge, and thus that
the phase of the incident wave is a key factor in localization.

The results for Case 1 suggest that (1) a wave of a given type
can become drastically localized if it leaks only a small portion of
its energy to other waves less prone to localization, in which case
the system behaves essentially like a mono-coupled one, (2) strong
localization takes place when the frequency is close to an edge of
the incident wave’s passbands, and (3}, localization is weak for a
wave which features a global vibration pattern at low frequencies
(as opposed to a pattern characterized by the local vibration of
individual members).

3.2 CASE II: WAVE CONVERSION PHENOMENON

The truss beam examined here 1s the same as in Case I, except that
the axial stiffness of the structural members has been decreased
by a factor one hundred, such that EA = 1.93977 x 10° N. This
reduced axial rigidity allows for increased interactions between the
bending and axial vibrations of the structural members, which in
turn favorizes the exchange of energy among the various waves
in the disordered case. This makes for richer results regarding
localization and wave conversion phenomena. Such interactions
were quite weak in Case I (see Fig. 8) because of the high energy



required to excite the very stiff axial motion.

3.2.1 Identification of Characteristic Waves

As in Case I, the characteristic waves of the ordered truss beam
are first identified. Figures 11 through 14 depict the propagation
constants for the four pairs of characteristic waves as a function
of frequency. Recall that the characteristic constant for a wave is
defined as the logarithm of the corresponding eigenvalue of the or-
dered transfer matrix. Fach figure displays (1) the real part of the
propagation constant, 7, which is the rate of exponential amplitude
decay of the wave and (2), the imaginary part of the propagation
constant, x, which is the change in phase from bay to bay. Regions
where the exponential decay rate is equal to zero are passbands,
in which waves propagate unattenuated. Regions defined by v > 0
can be eitler stopbands or complexbands, corresponding to an at-
tenuated wave. In stopbands the phase change per bay, , equals
either 0 or 7, yielding standing attenuated waves. In complexbands
« is generally different from 0 or @, corresponding to waves that
are both traveling and attenuated.

As in Case [, the wave pairs labeled I, 11, and III are respec-
tively bending, shear, and compression waves at low frequencies
(say w < 4.3). Figure 14 shows that in most of the frequency
range considered (w < 7.96) the wave pair labeled IV belongs to
a stopband and features a very large decay constant. Table 1
lists the frequencies that bound the passbands in the frequency
range considered. We find that the bending wave’s first pass-
band ranges from w = 0 to 4.6707. Within this range there
are two other wave pairs that feature a passband, namely the
bending and compression waves. Other passbands are located
as follows: for 4.6707 < w < 5.5930, only type IIT is in pass-
band; for 5.5930 < w < 5.8969, types 1I and III are in passbands;
for 5.8969 < w < 7.9488, types I, II, and III are in passbands;
for 7.9488 < w < 7.9688, types I and II are in passbands; for
7.9688 < w < 9.2272, types I, II, and IV are in passbands; and for
9.2272 < w < 7% types I and 1V are in passbands.

Pigure 15 depicts the power flow associated with the four pairs
of characteristic waves as a function of frequency. The passband re-
gions displayed in Fig. 15 (those with positive power flow) confirm
those found in Figs. 11-14. Observe that contrary to the results
shown in Fig. 5 for Case I, the power flow associated with the type-
I wave does not become very large as the wave frequency nears the
passband bounding frequency w = 4.6707. We explain this by not-
ing that in the case of smaller axial rigidity, the passband edge is
much farther than in Case I from the resonant frequency of the
diagonal structural members, w = 72/2. This leads to less severe
vibrations of the diagonal members near the passband edge and
thus to smaller coupling forces at the bay junctions, which in turn
gives a smaller power flow. On the other hand, the power flow
associated with the type-T wave becomes very large near its second
passband’s upper edge, w = 2. This is because this bounding
frequency is also the resonant frequency of the longerons.

3.2.2 Disordered Truss Beam Dynamics

Wave propagation in the disordered truss beam is studied for sev-
eral disorder levels and representative frequencies.

Atw = 4.2

At this frequency, both type-1 and -III waves belong to pass-
bands. Figure 16 depicts the power flow associated with type-I and
type-IIT waves of unit amplitude incident from the left to the truss
beam, as a function of disorder standard deviation. First note
that the power flow generally decreases as the disorder increases.
This signals the occurrence of localization. However, the power
flow associated with the type-1 wave increases from approximately
o = 5% to o = 5.6%, after which its decrease is resumed. Also, the
power flow of the type-11I wave decreases at a much higher rate for
5% < o < 5.6%, after which it experiences a rapid increase. The

variation of the power flow shown in Fig. 16 at the higher disor-
der levels suggests an interaction between the two types of waves.
Hence we choose to evidence the wave conversion phenomenon for
o =56% and ¢ = 6%.

First, we select a type-I wave of unit amplitude incident from
the left to a disordered beam with ¢ = 5.6%. The maguitudes
of the complex amplitudes of the four transmitted characteristic
waves are plotted in Fig. 17 versus the bay number. Observe that
the magnitude of the type-1 wave decreases consistently to reach
about 0.4 near the 60th bay, after which it experiences a rapid
decrease. However, a large portion of the first wave’s energy is
converted to the type-III wave, which grows from 0 to about 0.4
within the first 60 bays. Subsequently the type-1II wave sustains
its motion throughout the entire truss beam and begins decaying
slightly only after the 120th bay. Note that the magnitude of the
type-1IT wave is larger than that of the type-I wave over much of
the truss beam, even though the wave incident to the structure is
purely of the first type. When the four transmitted waves leave the
disordered segment, the vibration of the truss beam is dominated
by both the type-11I wave, of magnitude 0.38, and the type-I wave,
of magnitude 0.2. Also note the small but consistent contribution
of the type-II and -IV waves, which at this frequency belong to
stopbands.

Figure 17 evidences the wave conversion phenomenon in dis-
ordered multi-coupled structures. While the type-I incident wave
is subject to strong localization, as attested by its rapid initial de-
crease in magnitude, it succeeds in leaking its energy to another
wave (type ITI) that is less subject to localization, thereby allow-
ing for sustained motion along the truss beam. The occurrence of
wave conversion thus means that localization is more difficult to
obtain in multi-coupled than in monocoupled structures, where no
wave conversion can take place.

Next, we select a type-II1 wave of unit amplitude incident to
the same disordered beam as in Fig. 17. The magnitudes of the
four transmitted waves are shown in Fig. 18 versus the bay number.
The magnitude of the type-III wave decreases rapidly and remains
approximately at the value 0.2 past the 60th bay. However, observe
the massive leakage of energy from the type-III to the type-1 wave
over the first 70 bays. Here the wave conversion is so great that
there is not only no global localization of the motion, but also a
doubling of the motion amplitude from that of the incident wave.
Once most of the energy has been converted to the type-1 wave,
though, this wave is subject to localization and decays rapidly. It is
interesting to note that the decay pattern for the type-I wave after
the 70th bay is quite similar to that featured in Iig. 17. When the
four transmitted waves leave the disordered segment, the motion is
strongly localized and the truss beam vibration is composed of the
type-111 wave, of magnitude 0.2, and the type-1 wave, of magnitude
0.15.

Figure 19 depicts the magnitudes of the four transmitted waves
when a type-I wave of unit-amplitude is incident to a disordered
beam with ¢ = 6%. Observe that the type-I wave is subject to
severe localization and converts a large portion of its energy to the
type-III wave. Again the latter wave is sustained throughout the
beam and its magnitude becomes consistently larger than that of
the type-T wave. When the four transmitted waves leave the disor-
dered segment, only the type-III and type-I waves have substantial
magnitudes of 0.32 and 0.14, respectively. These are smaller than
the corresponding magnitudes observed in Fig. 17, which implies
that the power flow in Fig. 19 is smaller than that in Fig. 17. This
is consistent with the drop in power flow observed in Fig. 16 for
the type-I wave as disorder increases from o = 5.6% to 6%.

Next, Fig. 20 is as Fig. 19 but for a type-III incident wave.
The magnitude patterns in Fig. 20 are similar to those displayed
in Fig. 18, except that the wave conversion is perhaps not quitc as
spectacular. Moreover, the magnitudes of the waves that exit the
disordered segment are larger in Fig. 20 than in Fig. 18. This again

348



is consistent with the increase in power flow observed in Fig. 16
for the type-III wave as o increases from 5.6% to 6%.

The deflection patterns for waves traveling through ordered
and disordered truss beams are shown in Figs. 21 and 22. Figures
21a and 22a display the unattenuated propagation of type-I and
-ITT waves in an ordered truss beam, respectively. The type-1 wave
features a global bending motion, while for the type-III wave the
deflection pattern is one of compression. Figure 21b depicts se-
lected portions of the deflection pattern for a type-1 wave incident
to a disordered truss beam with o = 6%. Observe that the bend-
ing character of the motion is rapidly attenuated over the first
twenty bays or so, and that a conversion to a compression-type
motion takes place. Indeed, over the last thirty bays the deflec-
tion pattern of the truss beam is quite similar to that featured in
Fig. 22a for the type-IIl compression wave. Thus the deflection
pattern in Fig. 21b agrees well with the wave magnitudes shown
in Fig. 19. Also note that the power flow in the disordered case is
about 21% of that associated with the unattenuated type-I wave
in the ordered beam (see Fig. 16). This indicates that localization,
although substantial, is not nearly total because the less localized
type-1II wave becomes the vehicle for power transmission.

Figure 22b is for a type-III compression wave traveling through
the same disordered beam as in Fig. 21b. Observe that a very
substantial excitation of the type-I wave takes place approximately
from bay 20 to bay 70. This is clearly evidenced by the bending
character of the wave, which is similar to that shown in Fig. 21a for
an ordered beam. Past bay 70 the converted bending wave decays
and its attenuation is remarkably similar to that shown in Fig. 21b
for an incident bending wave. In particular, the converted bending
wave, while decaying, “re-converts” into a type-III compression
wave, as clearly seen over the last thirty bays in Fig. 22b. The
deflection pattern depicted in Figs. 22b is thus fully consistent
with the wave magnitude variations shown in Fig. 20. Note that
the power flow in this disordered case is approximately 28% of
that associated with the unattenuated type-III wave in the ordered
beam (see Fig. 16). This verifies that type-III wave is not strongly
localized for ¢ = 6%.

Figure 23 shows an interesting result. In Fig. 23a a type-II
wave, which for w = 4.2 belongs to a stopband, is incident to a
periodic truss beam. Since there is no scattering, the incident wave
magnitude decays exponentially. The same wave but incident to a
disordered beam with o = 13.9% is shown in Fig. 23b. We note
that the type-II incident wave rapidly converts its energy to both
type-1 and -1II waves. As a result, the wave motion extends much
farther into the disordered beam than it does in the ordered system
in Fig. 23a. These multiple energy conversions are made possible
solely by the reflections and wave interactions at the disordered
bay junctions. This result demonstrates that it is possible for a
stopband wave to travel significantly farther in a disordered sys-
tem than in an ordered system, because of the leakage of energy.
However, note that we had to select a relatively large disorder to
obtain this effect.

At w=4.62:

At this frequency, both type-I and -III waves belong to pass-
bands. The unattenuated deflection patterns of these two waves
in a periodic beam are depicted in Figs. 24a and 24c, respectively.
In Fig. 24d, a type-1II wave is incident to a disordered beam for
o = 0.8%. We observe that very little, if any, localization occurs.
In this case the power flow was found to be 88% of that for the
type-1I1 wave in the ordered beam, which confirms that the wave
does not become confined.

Figure 24b is for a type-I wave incident to the same disordered
beam as in Fig. 24d. Note that the wave becomes localized but
not nearly as severely as in Fig. 7Tb (Case I), although here the
frequency is also close to the first bounding frequency of the type-
[ wave, w = 4.6707. The wave magnitudes are plotted in Fig. 25
versus the bay number. The type-1 wave converts part of its energy

into the type-TII wave, but since the type-1II wave does not localize,
its propagation is sustained without much attenuation. In this case
the power flow is 5% of that associated with the unattenuated
type-I wave in the ordered beam, which confirms the substantial
localization.

Atw =5.4:

At this frequency only the type-IIT wave belongs to a passband.
Figure 26a depicts the unattenuated propagation of this wave in
the ordered truss beam. The deflection pattern features a small
global bending as well as a local bending of diagonal and horizontal
structural members. Although global bending patterns are gener-
ally not sensitive to disorder at low frequencies, in Fig. 26b we
observe that both global and local vibrations localize. Note that
since the type-IIT wave is the only passband wave at this frequency,
it cannot leak its energy to other passband waves to sustain motion
propagation.

The above results tell us that a wave of a given type can become
localized and then leak its energy to other waves less prone to
localization in order to sustain motion propagation. This wave
conversion phenomenon can only oceur in multi-coupled structures
and appears to weaken the degree of localization of incident waves.
Power flow is a useful descriptor of both localization and wave
conversion phenomena.

4. LOCALIZATION OF NORMAL MODES IN A
FIXED-FIXED TRUSS BEAM

Here, we use the formulation of Section 2.4 to investigate the lo-
calization of the normal modes of a fixed-fixed, 40-bay disordered
truss beam with a disorder level o = 4.0%. All other parameters
are the same as for Case II in Section 3.2. Before discussing the
localization of mode shapes, we first obtain the normal modes of
the associated ordered truss beam and compare them to those in
Chen and Pierre,® where a higher axial rigidity was used.

We find 51 normal modes in the frequency range w €[0,4.6707]
(i.e., the first passband of the bending wave). Chen and Pierre® oh-
tained 40 normal modes in the first passband of the bending wave.
Thus, even though in the present study the passband is narrower,
we obtain 11 additional normal modes. This can be explained as
follows. In Chen and Pierre,® the axial rigidity was much larger
than the bending rigidity, hence the 40 modes resulted primarily
from the bending of the structural members. In the present case,
however, the smaller axial rigidity enhances the presence of axial
vibrations in the modes, especially since compression waves also
propagate in this frequency range. This explains the 11 additional
normal modes in the first passband.

These 51 normal modes feature a bending vibration pattern or
one of compression, or the combination of the two. Figure 27 dis-
plays typical examples of these three types of modes. The transi-
tion from a global to a local vibration pattern occurs near w = 4.3,
that is, at a higher frequency than for the truss beam studied in
Chen and Pierre.®

We obtain a total of 172 normal modes for the periodic truss
beam in the frequency range [0,72]. In the same frequency range
we find 170 normal modes for the disordered truss beam with
o = 4.0%. This means that two modes shift out of the frequency
range due to disorder. Figure 28 depicts the modal distribution
in the frequency range [0,7%. We observe that the modal den-
sity becomes very high for the higher frequency range. The modal
density is also high near the passband edges given in Table 1.

Figure 28 also displays the effects of disorder on the natural
frequencies. We observe that the change in the natural frequencies
due to disorder is more pronounced in the higher modes. This
suggests that the dynamics of the truss beam is more sensitive to
disorder at high frequencies, as was observed in Section 3.

Figures 29 through 31 display selected normal modes of ordered
and disordered (o = 4%) truss beams. Figure 29 displays the
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first mode shapes of ordered and disordered beams. Observe the
very low natural frequencies of these modes. Also observe that
both modes feature the same global bending pattern and that no
localization occurs. Figure 30 is for the 46th normal mode, which
features primarily motion of the diagonal structural members. The
severe localization of that mode to a small region of the truss beam
is shown. In Tig. 31 the localization of the 169th normal mode is
shown. The ordered mode features primarily local vibrations of
the longeron beams and it undergoes severe localization in the
disordered case.

These results suggest that (1) the localization phenomenon
does not seem to occur for mode shapes that feature global vibra-
tion patterns (as opposed to patterns where individual members
resonate) and (2), the leakage of energy from one wave-type to
another, which was observed in the wave propagation problem, is
not obvious to identify for the normal modes.

5. CONCLUSIONS

We have tackled the difficult problem of localization in a nearly
periodic, multi-coupled truss beam. We have examined the effects
of small random disorder on both the propagation of waves in
infinite structures and the normal modes of vibration of finite truss
beams. The primary findings are as follows.

The localization phenomenon in disordered multi-coupled struc-
tures exhibits a complicated wave interaction mechanism, which
we refer to as the wave conversion phenomenon. An incident wave
that is subject to localization can transfer energy to another wave
which is less prone to localization, thereby sustaining the trans-
mission of vibration along the structure and lessening the confine-
ment effect of disorder. This leakage of energy to another wave is
probably characteristic of localization in disordered multi-coupled
structures, which has never been studied formally in structural dy-
namics. It suggests that localization is more difficult to obtain in
multi-coupled than in mono-coupled structures, much in the same
way as localization is easier to produce in one-dimensional systems
than in two- or three-dimensional ones.

A non-propagating wave that belongs to the stopband of an
ordered structure can, in a disordered structure, leak its energy to
other waves that are only weakly subject to localization. Thus, a
stopband wave in a disordered truss beam can induce a long-range
propagation that would not take place in the ordered structure.

Small random disorder in a truss beam also causes the localiza-
tion of the normal modes of vibration to small geometric regions.
We found that mode localization occurs primarily at higher fre-
quencies, that is, when individual structural members resonate. It
does not occur for the very-low-frequency global vibration modes.
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APPENDIX A: POWER FLOW IN PERIODIC
STRUCTURES

Here we use Egs. (28) and (34) to show that in an undamped
periodic structure the power flow associated with a passband wave
is positive and constant along the structure, while complexband or
stopband waves do not transmit power. Consider a wave incident
from the left to a perfectly periodic structure. Its amplitude is
multiplied by 1/ at each bay, where X is the eigenvalue of the
transfer matrix T, associated with the corresponding left-traveling
wave.® Hence the incident wave is governed by u,4q = %un.

(1) For frequencies in the stopband: Then A is real, with |A] > 1.
Since all displacement vectors u, are real, we obtain

P, = —‘glm[u,ﬁlcun] =0 (A1)

where the matrix C, in Eq. (28) can be denoted by C for a
periodic structure.

(2) For frequencies in the passband: Here ) = eti* with k €
(0, 7). This leads to

w
Popy = —Elm[uﬁ_QCunH] (42)
= —ilm[eij"u;?HCe:Fj"un] (A3)
w *
= —§Im[unﬁlcun] =P, (A4)

(3) For the passband bounding frequencies: Then A = +1, which
yields a non-attenuating wave with adjacent bays vibrating in
or out of phase, i.e., a standing wave. Since all the displace-
ment vectors are real, from case (1) the power flow is zero.

(4) For frequencies in the complexband: Then A = e'*ij"“, with
7 > 0and k € (0,7). Here we use Eq. (34) to show that
the power flow is zero (although it is not strictly necessary).
Irom u,4; = %un, we rewrite Eq. (A2) as:

w . .
Py = —Elm[e_"i]"uzﬂl Ce "F%y,]
w
=—e ¥ Elm[u:ﬂl Cu,]
=e P, (A5)
Equation (34) states that the power flow associated with un-
damped periodic or disordered structures is constant, i.e.,

Puy1 = P, Since v # 0, the only solution for Eq. (A5) is
Pn+l = Pn =0



A=1 A=-1
5.5930 (11) 1.6707 ()
5.8969 (1) 7.0488 (11I)
7.0688 (1V) 9.2272 (II)
72 (I, I1)

Table 1 The dimensionless bounding frequencies of the pass-
bands. These correspond to the double eigenvalues A = 1 or
—1. The parenthetical Roman numerals denote the type of the
associated characteristic wave.
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Figure 1 A generic, multi-coupled, nearly periodic structure.
Bays 1 through NV are disordered bays embedded in an otherwise
perfectly periodic and infinite structure.
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Figure 2 Wave coordinates for an arbitrary nth bay. L, con-
tains the m amplitudes of the left-going waves and R, the m
Amphtudcs of the right-going waves. The waves entering the
uth1 say are R, and L,yq, and those leaving the bay are R,
and L,.
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Wm

Figure 3 Truss beam assembly connected by pin joints. Bays
1 through N are disordered bays embedded in an otherwise
periodic and infinite truss beam.
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Figure 4 A single bay of the truss beam, consisting of four
uniform members with identical material properties.
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Figure 5 Power flow associated with each of the characteristic
waves as a function of frequency. Curve [ is for the type-I
{(bending) wave, curve II for the type-II (shear) wave, and curve
I1 for the type-III (compression) wave. Power flow for the type-
IV (evanescent) wave is zero over the range shown.

Figure 6 (a) A type-I (bending) wave with frequency w = 3
travels through a perfectly periodic truss beam. (b) The same
wave travels through the last 30 bays of a 200-disordered bay
segment. The standard deviation of disorder is ¢ = 10%.
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Figure 7 (a) A type-I wave with frequency w = 4.92 travels
through a perfectly periodic truss beam. (b) The same wave
travels through the first 30 bays of a 200-disordered bay seg-
ment. The standard deviation of disorder is o = 0.3%. (c) A
type-III wave with frequency w = 4.92 travels through an or-
dered truss beam. (d) The same type-HI wave travels through
the disordered beam of (b). Selected deflection patterns are
shown.
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Figure 8 Magnitudes of the complex amplitudes of the four
transmitted characteristic waves versus bay number, for a type-
[ wave of unit amplitude incident to 200 disordered bays. The
frequency is w = 4.92 and the disorder level is ¢ = 0.3%. Curve
¢ is for type-t wave, where ¢ =I, II, III, and IV.
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Figure 9 A one-cycle time simulation of the localized type-I
wave displayed in Fig. 7b is depicted for five successive instants
of time. Deflection patterns are shown at equal time increments
of 27 /(bw), where w = 4.92.
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Figure 10 (a) A type-1 wave with frequency w = 19.45 travels
through a perfectly periodic truss beam. (b) The same wave
travels through the last 30 bays of a 200-disordered bay seg-
ment. The disorder is ¢ = 0.2%. (¢} A type-Ill wave with
frequency w = 19.45 travels through a perfectly periodic truss
beam. (d) The same type-III wave travels through the first 30
bays of the disordered beam of (b).
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Figure 11 Propagation constant versus frequency for type-I
(bending) waves, (a) exponential decay constant, and (b) phase
change per bay. Stopbands and complex bands are regions
where v > 0. Passbands are regions where v = 0. The modes
of the finite truss beam occur at frequencies which belong to
the passbands.
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Figure 12 Propagation constant versus frequency for type-II
(shear) waves, (a} exponential decay constant, and (b) phasc.
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Figure 13 Propagation constant versus frequency for type-III

(compression) waves, (a) exponential decay constant, and (b)
phase.
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Figure 14 Propagation constant versus frequency for type-IV
(evanescent) waves, (a) exponential decay constant, and (b)
phase.
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Figure 15 Power flow associated with each of the characteristic
waves as a function of frequency. Curve [ is for the type-I
(bending) wave, curve II for the type-TI (shear) wave, curve
IIT for the type-III (compression} wave, and Curve IV for the
type-1V (evanescent) wave.
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Figure 16 Power flow versus disorder standard deviation for
type-I and -III waves incident to 200 disordered bays. The
frequency is w = 4.2
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Figure 17 Magnitudes of the four transmitted characteristic
waves versus bay number, for a type-I wave of unit amplitude
incident to 200 disordered bays. The frequency is w = 4.2 and
the standard deviation of disorder is o = 5.6%. Curve i is for
type-i wave, where i=[, I1, III, and 1V.
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Figure 18 Magnitudes of the four transmitted characteristic
waves versus bay number, for a type-III wave of unit amplitude
incident to the same disordered truss beam as in Fig. 17. The
frequency is w = 4.2 .
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Figure 19 Magnitudes of the four transmitted characteristic
waves versus bay number, for a type-I wave of unit amplitude
incident to 200 disordered bays. The standard deviation of
disorder is ¢ = 6% and the frequency is w = 4.2.
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Figure 20 Magnitudes of the four transmitted characteristic
waves versus bay number, for a type-II1 wave of unit amplitude
incident to the same disordered truss beam as in Fig. 19. The
frequency is w = 4.2,

Figure 21
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Figure 21 (a) A type-I wave with frequency w = 4.2 travels
through a perfectly periodic truss beam. (b) The same wave
travels through a 200-disordered bay segment. The standard
deviation of disorder is o = 6%. Selected portions of the deflec-
tion patterns are shown.
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Figure 22 (a) A type-III wave with frequency w = 4.2 travels
through a perfectly periodic truss beam. (b) The same wave
travels through a 200-disordered bay segment. The disorder is
o = 6%. Selected portions of the deflection patterns are shown.

1

1 I T | 1 I I L T
08 o — A
5] -
s m -
2 0.6 IV e .
o0
)
=
2 04 -
<
B
0.2 -
0 1 1 1 A 1 1 1 1 [l
0 20 40 60 80 100 120 140 160 180 200
Bay Number
(a)
1 1 1 l 1 1 1 1 1 !
0.8 ir o — A
L L=
= o o------
=
E 0.6 IV e -
&
=
S 04 i
<
=
0.2 -
0 bl Py PaTsg L ] L
0 20 40 60 80 100 120 140 160 180 200
Bay Number

(b)
Figure 23 (a) Magnitude of the type-II transmitted wave ver-
sus bay number. A unit type-II wave is incident to an ordered
truss beam for w = 4.2. (b) Magnitudes of the four transmitted
characteristic waves versus bay number, for the same type-1I
wave incident to a disordered truss beam with ¢ = 13.9%.
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Figure 24 (a) A type-I wave with frequency w = 4.62 travels
through a perfectly periodic truss beam. (b) The same wave
travels through a 200-disordered bay segment with ¢ = 0.8%.
Selected portions of the wave shape are shown. (c¢) A type-III
wave with frequency w = 4.62 travels through a perfectly peri-
odic truss beam. (d) The same type-III wave travels through a
200-disordered bay segment with ¢ = 0.8%. Selected bays are
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Figure 25 Magnitudes of the four transmitted characteristic
waves versus bay number, for a type-I wave of unit amplitude
incident to 200 disordered bays. Here, w = 4.62 and the disorder
level is 0 = 0.8%.

Figure 26 (a) A type-Ill wave with frequency w = 5.4 travels
through an ordered truss beam. (b) The same wave travels
through a 200-disordered bay segment with o = 5%. Selected
bays are shown.

Figure 27 Three global mode shapes for a fixed-fixed periodic
truss beam with 40 bays: (a) The 2nd mode, for w = 0.112,
features a pure bending pattern, (b) the 9th mode, for w =
0.8566, features a pure compression pattern and (c), the 15th
mode, for w = 1.6917, features a mixed bending-compression
pattern.
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Figure 28 Relative change of the natural frequencies of a 40-
bay truss beam due to disorder of standard deviation 4%, versus
the natural frequencies of the ordered beam. Each vertical line
corresponds to a normal mode of the truss beam. The close-
ness of the vertical lines also indicates the modal density in a
particular frequency range.

Figure 29 (a) The first mode shape of a 40-bay, ordered, fixed-

fixed truss beam. The mode’s frequency is w = 0.04056. (b)
The corresponding normal mode of the disordered truss beam
with o = 4%. The frequency of this mode is w = 0.04047.

Figure 30 (a) The 46th mode shape of the ordered truss beam
in Fig. 29. The mode’s frequency is w = 4.597. (b) The corre-
sponding 46th normal mode of the disordered truss beam with
o = 4%. The mode’s frequency is w = 4.592.

Figure 31 (a) The 169th mode shape of the ordered truss beam
in Fig. 29. The mode’s frequency is w = 9.76. (b) The corre-
sponding 169th normal mode of the disordered truss beam with
o = 4%. The mode’s frequency is w = 9.746.



