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0. ABSTRACT 

.\II in~os t iga t ion  of t h r  free dynamics of nearly pcriodic disordered 
t r i ~ ~ i  hea111s is presented. An exact wave transfer matrix  nietliod- 
o log ,~  is chosen in order t o  examine t h e  effects of slight disorder 
among the  bays upon the  propagation of waves and  tlie t,ransmis- 
\ion of vil)ration through t h e  truss beam. It is shown tha t  both 
free harmonic waves and nlodes of vibration t h a t  extend througli- 
out the  ent.irr ordered st.rncture may become localitrd t o  a few of 
tlic bays of t h r  disordered truss beam. In order t o  examine the  
intoractions among t h e  various waves present in the  structure,  the  
co~~cr .p t  of power flow is utilized as a scalar descriptor of localiza- 
tion. 1'11~ mecllanism of 1ocalizat.ion for this multi-coupled system 
ii I I I I I ~ I I  richer and more complex than  for mono-co~~plcd  systems. 
Spc~ifically, the leakage of energy from the  tvavc pair t h a t  is most 
211l)j('ct to  localization t o  wave pairs t h a t  ace less prone t o  local- 
i~a t io l i  is observed, suggesting t h a t  localization is more difficult 
to achieve in mult i-coupled systems than in mono-coupled ones. 
.-\lsl~. localization occurs primarily a t  higher frequencies, when in- 
dividual s tructural  members resonate. It does not occur for global 
b r n t l i ~ ~ g  vi1)ratioll modes. These are believed t o  be the  first results 
on localizat,ion for multi-coupled nearly periodic structures. T h e  
wave conversion mcchanisnl evidenced here is a novel phenomenon 
that  is prohahly characteristic of disorder effects in multi-coupled 

1. INTRODUCTION 

' 1 ' 1 1 ~  ir~tlivitlu;ll bays tha t  rnake up a spatially periodic e r i g i ~ ~ c c r i ~ ~ g  
s t r ~ ~ c . t u r c ,  such a s  a truss heam, a re  never exactly identical, becnuse 
pc'rfect periodicity is prevented by unavoitla.ble n~anufacturing tol- 
cranccs and o t l ~ e r  defects. These periodicity-destroyirlg irregulari- 
tie> a1.e rcferrctl t o  a s  mistuuing, o r  disorder. I t  is now well- know^^ 
111at. ~ i ~ i t l e r  ccrtain cor~ditions of weak internal coupling, or equiv- 
i i le~~tly.  of I~igh modal  density. small disorder among the bays of a 
1)criotlic structure leads to  the  qualitative alteration of i ts  dynanl- 
ics. 11). loccilizing t h e  mode shapes of vibration to  snlall geoniet,ric 
~rcxgio~~\ i11l(1 I)y trapping the  free l~arnionic waves near tlie energy 
ioilrce. M'e refer the  reader to  the  work of Pierre,' I I ~ d ~ e s . ~  and  
llci~tliksen' for fundamental studies of wave and mode localization 
pllcllorllella. 

T h e  n~ccllanism of mode localization in nearly periodic s t ruc -  
t i ~ r ~ s  ii \re11 undrrstood,  a t  least for tlie simple class of mono- 
c.o~~plotl s tructures (see Picrre,l H o d g ~ ~ , ~  nendiksen,%and Kissel"). 
1lo110-coupled structures are characterized by a single coupling co- 
ortlir~atr. 11ctwce11 two adjacent bays. and thus feature a single pair 
of I c l f t -  a n d  right-traveling Tvaves. When one wave impinges on  
;I tlifl;,rcnt ~ n e t l i r ~ ~ n  (for e s a n ~ p l c ,  a t  l.he junction of two slightly 
tliffrw~rt bay.), part of it is reflected and  par t  is t r a ~ ~ s l n i t t e d .  It 
is these multiple reflections a t  tlie junctions between the  r a ~ l d o m  
11;lys t h a t  cause t h e  localizatiori of incident waves. Thc mecha- 
~ ~ i s n i  for localization is thus  one of energy re-distribution, not  one 
of energy dissipation, such t h a t  the  energy remains confined t o  a 
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small geometric region. This results in larger vibration amplitudes 
locally and hence in reduced fatigue life, for example for turbonla- 
chinery rotors. O n  t h e  other  hand,  the localization of propagating 
disturbances near the excitation source may have useful passive 
control applications for space structures such as truss beams. 

Periodic truss beams are  doubtlessly subject t o  periodicity- 
destroying irregularities, because of discrepancies either anlong 
tlhc properties (e .g .  t h e  length) of individual s t ruc t l~ra i  mrm-  
hers or aniong the  characteristics of the  numerous joints that  
link structural  members ( e . g . ,  imperfect fits, clearanc(~s. and i l l -  

scrvice degradation). :Ilso, previous st~idies 11aw slio\v~i Illat t r r~ss  
bcams may possess very closely-spaced modes and thus high  nodal 
t le~ is i t i cs .~  Therefore, it is likely tha t .  a t  least iu the frcqne~~c,v 
ranges t.llat feature local vibrations of the truss members, the dy- 
n;~mics of truss beams is highly sensitive t o  such irregularitics and 
that  localization occurs. Truss beams, however. are multi-colrplerl 
periodic structures ( i .e . ,  the  bays a re  coupled through more t l l m  
one coordinate) and  the  theory of localization for multi-couplcd 
structures is not well developed yet. This may explain why there 
have not  been any studies of the  localization phenomenon in truss 
beams, except for t h e  localized normal modes reported in the  ~vork  
of Fricdrna~in et al.,' who used a finite element approach. 

r > I he main reason no  general theory of localization is yet avail- 
able for ~nm~lti-coupled disordered structures is tha t  tlicse systerns 
fcature a 1nuc11 more complicated nave  propagation ~nc~chanisili 
than mono-coupled ones, due t o  the  existence of more than  o l ~ e  
type of characteristic waves in t h e  periodic structure.  In particular. 
if a wave of a given type impinges on  the  jrlnctioi~ of two randoru 
bays, it produces not only a reflected and a t r a ~ ~ s m i t t r t l  component 
of t 1 1 ~  same type  as the  incident wave, but  also transrnittcd ant1 
rcllrctetl con~ponents  of all the  other  types of characteristic waves 
present ill tlie s t ruc t~ l re .  This leakage of energy into other  wave 
tj-pes is what  makes the  study of localization for multi-coupled 
systcms more challenging, as  we11 as more interesting, tllalr for 
 non no-coupled structures. Although there is a dearth of researcl~ 
011 multi-coupled localization, we point out  t,o the pron~ising re- 
cent developme~it  by Iiissel;' wlio ini t i i~kd.  a general theory tha t  
should pave the way for future studies. Also, in a recent study. 
Igi~sa and Tang7 presented a n  integral form tha t  approsimatcs 
;~symptotical ly the dyrianlic response rl len the niodal dens it,^ is 
I ~ i g l ~ .  These two developmrwts have potenlial to  yield advancc~s in 
t lie field of multi-coupled localizntion, with ilnmcdiatc application 
to truss beams. 

In this paper we examine the  occurrence of wave and mode 
localization in a disordered truss beam with simple geometry. T h e  
study is a continuation of t h e  research presented in reference 5. 
wliicl~ dealt primarily with t h e  dynamics of ordered truss beams. 
IIcre, we adopt  the  same wave transfer niatrix methodology as in 
reference 5. and  a key aspect of t h e  formulation is t h a t  the  dynam- 
ics of one bay is represented by a linearly exact transfer matrix.  
Thus  the  dynarnics of t h e  entire t russ beam is simply described by 
a product of transfer matrices. However, contrary t o  the case of a 
pcriodic truss beam, the  ~nethodology faces severe nu~nerical  prob- 
Icms for the  disordered system when. taking the  product of random 
\rave transfer matrices. In order t o  circunlvent this dilficulty, we 
drvelop in this paper a new algorithm to  calculate accuratelv the 



wave amplitudes at  all bays. This allows us to  obtain an  accurate 
depiction of the dynamics even a t  those (high) frequencies where 
iudividual structural members undergo resonances. As a result, we 
are able to  tackle the difficult (both analytically and numerically) 
p~ml~lern of localization in truss beams with structural irregularities 
and to  obtain waves and rnodes with various degrees of localization 
for different frequencies. A key result is that waves tha t  localize 
most appear to  leak their energy to  other waves that feature weaker 
localization. Hence, in multi-coupled systems, the propagation of 
Xvave motion can be sustained by one wave, although the incident 
n.ave may become strongly localized. We believe the wave con- 
vrrsion rvidcnccd here is a new mechanism for localization tha t  is 
clmracteristic of disordcred multi-coupled systems. 

.%nother foc.11~ of the paper is the use of power flow as a de- 
scriptor o f  wave localization. Power flow is defined as the time- 
averaged power (force times velocity) at  the junctions between 
bays: it describes the amount of power which is transmitted by 
waves through the structure. ~ e a d q r s t  introduced the concept 
of power flow for multi-coupled periodic structures and he showed 
that  only passband waves can transmit energy. Signorelli and von 
 loto ow'^ applied these findings to  the characteristic waves in pe- 
riodic truss beams. However, t o  date,  power flow has only been 
utilized to  examine wave propagation in ~e r f ec t ly  periodic struc- 
tures. I n  this paper we generalize the definition of power flow 
to randomly disordered structures and make use of it as a scalar 
descriptor t o  examine the occurrence of wave localization. This 
makes sense since when an incident wave is subject to  localiza- 
tion, its vibrational energy is confined to  a small geometric region, 
which implies that  or~ly a small amount of power is transmitted 
; ~ l o r ~ g  the structure. 

The paper is organized as follows. Section 2 describes the ex- 
act !\,axre transfer matrix n~etl~odology for a general multi-coupled 
disordered structure. We first set the problem of harmonic waves 
propagating through a disordered segment and propose an algo- 

rithm to resolve the numerical difficulties that  arise. We then 
define the power flow associated with characteristic waves in dis- 
ordered systems and obtain general results regarding it. Finally, 
we formulate the eigenvalue problem which governs the modes of 
vibration of finite structures. In Section 3 we use this formula- 
tion to  examine the propagation of waves through a disordered 
two-dimensional truss beam. Wave localization and conversion 
phenomena are evidenced and studied. In Section 4 we obtain 
the norrrial modes of a disordered fixed-fixed truss beam. Finally, 
Section 5 concludes the paper. 

The primary original contributions of the paper lie (1) in the 
evidence of localization for a multi-coupled disordered structure, 
( 2 )  in the illustration of the interactions between various wave 
types in disordered structures, i . e . ,  in the wave conversion phe- 
nomenon, (3)  in the use of power flow as a descriptor of localiza- 
tion and ('I), in the development of an  algorithm for predicting the 
dynamics of large-scale disordered multi-coupled structures. 

2. W A V E  T R A N S F E R  M A T R I X  F O R M U L A T I O N  F O R  

D I S O R D E R E D  M U L T I - C O U P L E D  S T R U C T U R E S  

In the wave transfer matrix approach the motion of the structure 
is regarded as being made of a combination of waves traveling 
through the structure. This methodology is described in detail in 
reference .5 for ordered multi-coupled structures, in which case the 
waves that  make up the motion are independent. In this section 
the wave approach is extended t o  the case of disordered bays for a 
general multi-coupled periodic structure and the concept of power 
flow is introduced. Only the main steps of the formulation are 
given in Section 2.1, since much of the derivation is similar to  that  
in reference 5 .  

Our goal is t o  study the propagation of a characteristic wave trav- 
e ~ i n ~ ~ t h r o u g h  disordered bays. To that  end, we consider the free 
vibrations of the generic, multi-coupled, nearly periodic structure 
shown in Fig. 1. This infinite structure consists of a finite segment 
of N randomly disordered bays embedded in an otherwise ordered 
structure. We index the disordered bays from 1 to  N .  All bays 
for n = -x, . . . , O  and TL = 'V + 1, .  . . . +m are ordered and thus 
identical. The hays for I L  = 1,.  . . , N are randomly disordered and 
l~ence slightly different. We restrict the internal coupling in the 
structure t o  that  between adjacent bays. 

Figure 1 depicts one bay, with the independent g e n e r a l i d  co- 
ordinates through which inter-bay coupling occurs. Let us denote 
by m the number of coupling coordinates between two bays and by 

(U,)L and ( F n ) ~  the vectors (or the columns) of time-dependent 
generalized coupling coordinates and generalized forces a t  the junc- 
tion of the n th  and (n  - 1) th  bay. Similarly, denote by (Un)R  and 

the time-dependent coupling coordinates and forces a t  the 
right end of the n th  bay. In general, these vectors describe linear 
and rotational motions, and each has dimension m. Assuming a 
single-harmonic motion gives the following equations: 

where we define u, = ( u , ) ~  and j = fl, and where u , ~  and 
u,r arc the real and imaginary parts of u,, respectively. Writing 
the strain and kinetic energies for a bay in terms of the coupling 
coordinates, we can derive a frequency-dependent dynamic matrix 
that  relates the force and displacement amplitudes a t  both ends of 
a bay. This 2rn by 2m matrix is given by (see Chen and Pierre5 
for detail). 

where in general the mass and stiffness matrices are symmetric, 
thus A, = A:, D, = D:, and C, = B:. 

The first step of the wave methodology is the formulation of 
transfer matrices tha t  relate the dynamics at  two adjacent bays. 
These matrices can be defined because we consider only nearest- 
neighbor coupling. The general form of the transfer matrix is de- 
rived in Chen and pierre5 for a multi-coupled system and we refer 
the reader t o  it for details. Here we choose to define the state at  
the nth bay by the displacement state vector x, = [U:,U:-~!~, 

where ?' denotes a transpose and u, is the vector of coupling co- 
ordinate amplitudes a t  the junction of the (n  - 1)th and nth bays. 
This yields the general form of the displacement transfer matrix: 

where 
T*, = -B-' n (An + Dn-I) 
T2, = -B ,~C, , -~  

Since the number of coupling coordinates between bays is m, x,, is 
a 2m-vector and TI, and T2, are m by m matrices. From Eq. (4) ,  
the transfer matrix T, is determined by the structural properties 
of the (n  - 1) th  bay and those of the nth bay. Hence, for the 
randomly disordered system shown in Fig. 1, the transfer matrices 
T, ,  for n = 1, ..., N + 1 ,  are random and generally different from 

the ordered (or nominal) transfer matrix, which we denote by T o .  
Note tha t  the transfer matrix of the (N  + 1)th bay is also random, 
although that  bay is not disordered. 

The next step in the wave formulation is t o  define a coordi- 
nate transformation between the displacement and the wave coor- 
dinates. To achieve this, we seek characteristic wave motions such 
tha t  when a wave travels across the junction between two ordered 

2.1 M E T H O D O L O G Y  



bays, the state vector is multiplied by a constant. This complex 
constant accounts for the change in wave amplitude or phase, or 
both. at  the coupling junction. It can be shown easily tha t  rhar- 
actcristic waves are obtained by solving the eigenvalue problem 
for the transfer matrix To of an ordered bay. The constants that  
characterize the propagating or attenuating nature of the waves 
are given by the eigcnvalues of To, while the characteristic wave 
s11q)es (tlie deflection pattern of tlie structure) are given by the 
eigenvectors of T o .  The eigenvalues of To occur in reciprocal pairs, 
l~erice there are rn pairs of left- and right-traveling waves. We ran 
form tlre matrix X whose colurnns are the eigenvectors of To, such 
that. tlre first i n  columns of X correspond to the left-traveling wavcs 
and the last m colurn~is to  right-traveling waves. This allows us to  
separate l e f t  and right-traveling waves. 

The physical displacement amplitude coordinates are then 
transformed into wave amplitude coordinates by a linear transfor- 
mation that  is defined by the matrix of eigenvectors of the ordered 
transfer matrix, X .  For the n th  bay, we obtain 

wlrere the m-vector L n  contains the complex amplitudes of the 
left-traveling wavcs and the m-vector R, those of tlre right- 
traveling wavcs. As shown in Fig. 2,  the waves entering the ntlr 
hay are R, i~nd  L,+l and those leaving the bay are R,,+] and 
L,. Each wave coordinate represents the contribution of the cor- 
responding tvave to  the overall motion. Through tlie coordinate 
transformation in Eq. (5), the total motion can be expressed as 
a lil~ear combination of the characteristic waves. Note that  the 
coordinate transformation takes the same form for ordered and 
disordered systems. Substituting Eq. ( 5 )  into Eq. ('I), the wave 
amplitudes at  two adjacent bays are related by 

whew W ,  is the ~iwrt .  transfer nzatriz for the n th  bay. At this 
point it is appropriate to distinguish betwcen ordered and disor- 
dered Ihays. 

For an ordered hay (-m < n 5 0 and N + 1 < n < +m) 

Then T, E To and W ,  = W ,  = X-'T,X. Since X is the ma- 
trix of eigenvectors of To, the wave transfer matrix is the diagonal 
matrix of the eigenvalues of To. It has the form: 

where A is a diagonal matrix representing the left-traveling waves 
(its elements have modulus greater than or equal to  one) and A-' 
corresponds to  the reciprocal right-traveling waves. Equations (6) 
and (7) tell us that  the 2m characteristic components of a wave 
incident to  the junction of two ordered bays are not only fully 
transmitted t.lirough the junction and not reflected, but also re- 
main independent and do not exchange energy with one another. 
This means that  in an ordered structure characteristic waves travel 
independently. 

For a disordered bay (0 < n 5 iV + 1) 

The wave transfer matrix for the n th  disordered bay, W, ,  is 
no longer a diagonal matrix, because the transformation defined 
by X does not diagonalize tlie random transfer matrix T,. This 
allows for scattering at  the junction of two disordered bays as well 
as for exchange of energy among the various types of cl~aracteristic 
waves, through both reflections and transmissions of one wave type 
into the other types. 

Using the recursive form of Eq. (G), we can relate the wave 
amplitudes at  both ends of the disordered segment, that  is, those 
at site 1 to  those a t  site ( N  + 2),  as 

Since our primary interest lies in the localization of waves t rav 
cling through disordered bays, ivr choosc to  examine the, propaga- 
tion of a characteristic wave that  is incident from the left to bay 
1 and is represented by the wave amplitude vector R I .  If there 
v7ere no disordered bays in the infinite structure. this Xvavr would 
be fully t,rans~nitted without encountering any reflection nor any 
alterations. Specifically. thr  711 right-traveling charxcter.istic con -  
ponents oft  Ilc wave (~epresented by R l )  would remain indcpc~ntle~lt 
and not exchange energy with other cliaracteristic wavcs as they 
travel t l ~ r o u g l ~  the structure. hlatlieniatically. this means that we 
~vould have L,L+2 = L1 = 0 and R , \ T + ~  = A-(.'+''R~. with A 
diagonal. llowever, when ~ v e  send t l ~ e  same incident wave tllrougli 
the tlisorclered segment, there are not only rcflcrtions for cacli type 
of waves, but also exchanges of energy between the various t,ypch 
of ( t r a~ i sn~ i t t rd  and reflected) clraracteristic waves a t  each junc- 
tion between disordered bays. This means that the reflected n.avc3 
amplitudes L1 through LN+1 are different from zero. Moreover. 
we have LN+Z = LN+3 = ... = 0, since all bays to  the right of the 
disordered segment are ordered and thus do not cause reflections. 
Using the facts tha t  L.wfZ = 0 and R1 is a known vector, we ran 
solve for L1 in terms of R1 from Eq. (8). n'e obtain: 

Once L1 is determined. we can ca l c~~ la t e  the wave ampl i t~~des  at  
all bays from Eq. (G), simply by multiplying by the appropriate 
disorderrd wave transfer matrices. In particular, the vector of 
wave amplitudes transmitted through the disordered segment. a 
quantity of special interest in localization studies, is given by: 

Afterwards, the physical displacement vector at  each bay is leadily 
obtained from Ey. (5). 

The above wave formulation faces severe numerical problems 
in practice, namely when the displacement transfer matrix has a 
large eigenvalue (of the order of 1000) and when the number of 
bays is not small (greater than 10). This is because calculating 
the amplitudes reflected by the disordered segment, L I ,  rcqnires 
talting tlie product of the nearly diagonal wave transfer matrices 
that  characterize the disordered bays. Multiplying these matrices 
generates significant errors when some diagonal elements of W,, 
(corresponding t o  the large eigenvalues of To) are large compared 
to  off-diagonal elements. This occurs because the errors present 
in the small off-diagonal terms (which themselves are due to  inac- 
curacies in X and its inverse) are amplified by the large diagonal 
elements a t  each wave transfer matrix multiplication. It results in 
an incorrect wave a~nplitude L1, which means that  all other wave 
amplitudes cannot be obtained from Eq. (6). In order to overcome 
this numerical problem, the following algorithm is developed to  
calculate accurately the wave amplitudes a t  all sites. 

2.2  A N  A L G O R I T H M  F O R  W A V E  A M P L I T U D E S  IN 
L A R G E  D I S O R D E R E D  S T R U C T U R E S  

The motivation for this algorithln is the desire to  lessen the mag- 
nification of numerical inaccuracy caused hy the multiplication of 
niatrices containing large numbers. In order to curb this error, we 
makc use of the fact tha t  LN+2 = 0 (recall that  all bays t,o the 
right of the disordered region are ordered). By expressing LA,+:, as 
a product of wave transfer matrices and the wave amplitude vect,or 
at  site 1 ,  and then performing appropriate operations on each sidi. 
of t.11e equation, we can reduce the error due to  large nrlmbers ill 
each ~na t r ix  multiplication. 



For convenience, the wave transfer matrix of an arbitrary nth 

wl~err  all submat~.ices are m by nz and 0, contains large num- 
hers on its d i a g o ~ ~ a l  (corresponding to  left-traveling waves). Using 
1,:qs. (8) and ( l l ) ,  we can express LN+2 as 

(12) 
In ordtr  to reduce the possible error amplified by the large num- 

hers in \vc prc-niultiply both sides of Eq. (12) by 0 ~ : ~ .  
'1-Iris yiclds 

Yest, the first product in Eq. (13) is expanded. This yields: 

A g ~ i n ,  to  redncc the possible error amplified by the large num- 
bers in O l r ,  we pre-mnltiply both s~des  of Eq. (14) by ( 0 . v  + 
S +ll?h ) - l .  Thus, 

Similarly. the first product in Eq. (16) is expanded and a matrix 
Sn' is introduced. \.Z7e obtain 

where S N  = (@,y $ sN+~~~\T)-~(@'N + SN+I*N) (18) 

If ire ~ e p e a t  recursively N times the procedure described above 
and at  each iteration introdnce the proper substitution matrix S,, 
\vc c,nd np with 

in which the  errors in the  off-diagonal elements of W, have not 
been anrplified by the large elements in 0 , .  Since R1 is a selected 
riglit traveling wave amplitude, we can calculate L1 in term of R1 
fr.~!lll 1,:q. (20): 

L1 = - S I R 1  (21) 

Ncxt, we m e  L1 and R1 to calculate L2  and R 2 .  From Eq. (6) 
and (11) we have 

Then, Eq. (19) becomes 

L2.  This error will be carried over and accumulated in the succes- 
sive calculations of wave amplitudes at  other sites. To avoid this; 
we first use Eq. (22) to  solve for R2 and then bring R2 into Eq. (23) 
to  solve for L2. since S 2  has already been calculated. Having de- 
termined the wave amplitudes a t  site 2, we are able to  calcdate 
those a t  site 3, site 4, and so on by repeating the same process as 
for RZ and L> Therefore, the wave amplitudes a t  all sites can be 
obtained accurately using this algorithm. 

2.3 P O W E R  F L O W :  A D E S C R I P T O R  O F  W A V E  LO- 
C A L I Z A T I O N  

We study the power flow associated with waves propagating 
tllrough undamped, multi-coupled, disordered periodic structures. 
When a wave propagates, it transmits energy along the s tn~ct i i r r .  
Since the internal coupling is restricted to  adjacent bays, each bay 
receives or transmits energy througlr its two junctions with the 
neighboring bays. The resulting flow of power that  travels tllrough 
the struct,ure in the direction of the incident wave can be qnan- 
tified by taking the time-average of the input or output ponw at 
each junction. This average power flow, which accounts for the 
interaction between the various transmitted and reflected waves. 
indicates how mnch of the input (incident) power is being convt~yed 
through the structnre. Power flow is a function of frequency and 
of the composition of the incident waves and thus it can he used to 
drfine the filtering properties of ordered aud disordcrcd periodic 
st,ructures. This can be of use for passive control applications. 
Moreover, power flow is a convenient scalar that  provides physical 

insights into the interactions of waves and thus into localization 
phenorn~na. 

Power flow in perfectly periodic, undamped structures has been 
studied in references 9 and 10, although their definitions of power 
differ slightly. Mead was first to  show that the power flow as- 
sociated with a passband wave is identical at  all bay junctions, 
and tha t  the power flow associated with a complexband or a stop- 
hand wave is zero (although coniplcxband waves are propaga.ting, 
the net power flow is zero). Thus power can only be transmitted 
along periodic structures by passband waves and the power flow is 
constant throughout the structure. 

In this work we adopt the definition of power of Signorelli anti 
von  loto ow'^ and extend the definition of power flow to  a disor- 
dered multi coupled structure. Referring to  Fig. 1,  we define the 
instantaneous input power, p,(t), at  the left-hand junction of the 
nth bay as 

pn(t) = ~ e [ ( F n ) Z l ~ c [ ( u n ) ~ I  (24) 

where Re[(Fn,)L] is the real part of the coupling force a t  the junr- 
tion and Re[(U,)L] the  real part  of the  nodal velocity vector. Note 
tha t  p , ( t )  is a scalar. The power flow P, is defined as the time 
average over one period 7' = 2 ~ / w  of the instantaneous power: 

The force and velocity amplitudes in Eqs. (1) and (2) are suhsti- 
tuted into Eq. (24). Then Eq. (3)  is used to  express the forces in 
terms of the nodal displacements. This yields: 

Il'e use Eq. (22) to  solve for R2 but not for L2. This is because 
l a ~ g e  ~~urnbe r s  in will again amplify the error while calculating 

Kcxt, we substitute Eqs. (26) and (27) into Eq. (24). Using this 
expression for p,(t) and the fact tha t  BT = C , ,  we obtain the 
power flow in Eq. (25) as: 



where * denotes a complex conjug;~tc and Im an imaginary part. 
The po1ver flow l',, is thus determined by the displacement vectors 
on cach side of the n th  bay and by the matrix C,. From Eq. (3) ,  
recall tliat C,  reprcsents the coupling between two adjacent junc- 
t i o ~ ~ s .  It is this coupling wl~ich allows for energy conversion among 
ivaves a i d  power transmission. Note that  the power flow is also 
au csplicit fmction of frequency. 

Using Eq. (28), we can show that  for a perfectly periodic, un- 
damped stnicture the power flow associated with a passband wave 
is nonzero and identical at all bays, while power flow for a corn- 
plexhand or a stopband wave is zero. These proofs are given in 
Appendix A. 

Kext, we derive a general result for power flow in disordered 
itructures. From Eq. (4), we have 

~Zultiplying both sides by - U ; ~ B ,  yields 

Note tha t  the three terms in Eq. (30) are complex scalars and 
that ( A ,  + D,_l)  is symmetric and real, since both A, and DnP1 
are real symmetric. Therefore, U:?(A, + DnPl)u ,  is equal t o  its 
conjugate transpose and thus it must be real. Then taking the 
imaginary part of Eq. (30) yields 

lTsing t l ~ a t  u i r ~ , u , + l  equals its transpose and that  B: = C,, 
wc rewi te  Eq. (31) as: 

Finally, transforming the negative sign on the left-hand sidc of 
Eq. (32) into ;t complex conjugate gives 

or, from 1:q.  (28): 

Pn = (34) 

Lye have sho\vn the important property tha t  all bays transmit tlie 
i a ~ n e  potver to  the next bay. i .e., the power flow in an disordered 
~iutlanipcd structure is constant along the structure. This means 
that tlie result ohtained by Meadg for the special case of periodic 
s t ruc t~~res  holds for disordered systems as well. Note that  this re- 
sult is physically reasonable. Since we consider the free vibration 
of an undamped structure, the one-cycle power received by any bay 
must be equal to  the output power to  the adjacent bay. Otherwise, 
the energy of a bay could increase until failure occurs, which obvi- 
ously is not t l ~ r  case. Also note tha t  this rcsult permits the use of 
a single scalar to describe wavc trar~smission and interactions in a 
conlpact and global manner. This suggests power flow as a useful 
descriptor of wave localization. 

Using Eq. (5),  we can express P, in Eq. (28) in terms of wave 
amplit,ilde coordinates: 

This shows tha t  the power flow is composed of three parts: the con- 
tribution from transmitted waves, the contribution from reflected 
waves, and the joint contribution from the interaction of transmit- 
ted and reflected waves. Without formal proof, we contend tha t  
a wavc propagating toward the right should result in a positive 
power flow. Therefore, a left-traveling wave is expected t o  trans- 

mit negative power ilow to the right (i.e. positive poxver flow to  
the left). Using this argument we explain that the first two terms 
in the riglit,-hand sidc of Eq. (35) have opposite signs, which indi- 
cates tha t  part  of the incident energy is not transmitted througll 
t,he structure due to  wave reflections. 

iiext we apply Eq. ( 3 5 )  to a selected wave incident from the 
left and traveling through the disordered structure, as described 
in Section 2.2. Since LN+2 = 0, we choose the site 71 = 7 + 2 to  
calculate t,he pourer flow in the strurture. Thc power flow P at any 
site can be simply written as: 

TIence the knowledge of the transmitted wave amplitudes, R , ~ T + ~ ,  
is sufFicient to  determine how 111uc1l of the incident powcr pas st^ 

t l ~ r o u g l ~  the disordered segment. Qualitatively, this power is pro- 
portional to  the total energy of the waves wheu they leave t l ~ c  
disordered region. The emergent power flow associated wit11 an 
incident passband wave will, in general, decrease as the disorder 
level increases, since the scattering of waves hecomes large. 

It is interesting to  note that  for a disordered structure, an 
incident stopband or complexband wave no longer transmits zero 
power flow (as is the cast, in perfectly periodic structures). 'I'liis is 
bccausc the periodicity-drstroyiilg irregularities cause interactiom 
between the various waves, such that passband wavcs appcar ;is 
transmitted or reflert,ed waves. This results in a non-zero power 
ilow in the structure, although it may generally be small. 

Finally, another interesting result is that if a passband wave is 
il~cident to  the above disordered structure and if the poxver flow 
is calculated at bay n = 1, then the joiut contribution term ill 
Eq. (3.5) (the third term in the right-hand side) vanishes. This 
mcarls that  tlie resultant power flow is simply the difftrcnce of 
the incident power and the power diverted by the reflected xvavps 
at  site 1. Note tha t  this argument is not true for a stopband or 

complexbatld incident wave. The proof is on~i t~ted  here due to 
space hnitations.  

2.4 N O R M A L  M O D E S  O F  A F I N I T E  D I S O R D E R E D  
S T R U C T U R E  

In this section we apply the transfer matrix formulation to deter- 
mine the normal modes of vibration of finite disordered structures. 
In order for a finite (undamped) structure t o  undergo motion in a 
normal mode a t  a given frequency, the linear conlbination of the 
characteristic waves traveling along the structure a t  that  frequency 
must form a standing wave, i.e., all degrees of freedom must vi- 
brate in or out of phase. 

We consider an AT-bay, multi-coupled, disordered structure 
with fixed-fixed boundary conditions. The bays are numbered from 
12 = 1 t o  :IJ. Our aim is to  derive the eigenvalue problem whose 
solution determines the natural frequencies and a.ssociated mode 
shapes. This can be achieved easily by writing the relation be- 
tween the displacement vectors at  three adjacent bays. We have. 
from the first block of m equations in Eq. (4): 

Letting the bay index n in Eq. (37) go from 2 to  N ,  we obtain thr  
followil~g matrix equation: 

- T 2 2  T i 2  -1 0 . . .  . . .  o 
0 0 T23 T13 -1 . . .  0 

. . 
. . 

o . . .  0 T~(N-1) TI(N-1) -1 0 
0 . . .  . . .  0 TZN TIN -1, 

(38) 
where the matrix has dimension m(N - 1) by m(iV + 1). Kext, we 

UI 

. U N + ~ -  

= 0 



apply the boundary conditions to  Eq. (38). Since u l  = U N + ~  = 0 
for fixed ends, we eliminate the first and the last m-block columns 
in Eq. (38). Thus. the rectangular system of equations (38) reduces 
to a square system of dimension rn(Ar - 1) x m ( N  - 1): 

I n  order to  ol~lain a non-trivial solution for the structure's dis- 
place111ent wctor [u:, . . . , u:lT, the determinant of the matrix in 

Eq. (39)  must equal zero. Those frequencies that  render this deter- 
minant zero arc the natural frequencies of the fixed-fixed structure. 
The associated eigenvectors [u:, . . . , uZlT define the mode shapes 
that correspond to  the natural frequencies. 

3. W A V E  P R O P A G A T I O N  I N  D I S O R D E R E D  T R U S S  
BEAMS 

IIere we apply the formulation presented in Section 2 to  study 
Lvave propagation through the truss beam shown in Fig. 3. One 
bay of the truss bcam is shown in Fig. 4. It consists of four pin- 
joint, uniform, homogeneous structural members. We refer to  the 
n1em1)ers labeled 1, 2. and 3 in Fig. 4 as the longeron beams, and 
to  the structural member labeled 4 as the  diagonal bcam. Each 
bay has t\vo nodal points on each side. I3ecause the members are 
pinned at  the joints, there are only two degrees of freedom at each 
ilodal point, two displacements. Hence the number of coupling 
coo~dinates between two adjacent bays is four and the transfer 
rnatrix for a bay has dimension eight by eight. 

An e m c t  bay transfer matrix was derived in Chcn and Pierres 
for the tniss beam in Fig. 3. It is based upon exact linear models of 
bending and axial vibrations for each of the four structural mem- 
bers making up a bay. This derivation and the transfcr matrix are 
not given here and we refer the reader to  reference 5 for details. 

In this scction we essentially consider the disordered version of 
the ordered truss beam studied in Chen and P i ~ r r e . ~  We examine 
the propagation of a selected wave-type through a finite region of 
randomly disordered bays embedded in an infinite periodic struc- 
ture. The disorder among the  bays originates from differences in 
their lengths (where the length of a bay is tha t  of the upper or 
thr  lower longeron beam). Except for the length variation, the 
hay geometry is assumed to  be unchanged, i . e . ,  the upper and 
lower longerons have equal lengths and the length of the diago- 
nal member is determined accordingly. Small random disorder is 
considered, such tha t  the bay lengths are identically and uniformly 
distribi~ted independent random variables, whose mean is the nom- 
inal ba.y length and standard deviation is u. In the following we 
refer to  (T as the disorder level. 

Sinrr mono-coupled structures feature a single pair of left- and 
right-traveling waves, the phenomenon of localization occurs sim- 
ply throrigh rnultiplc reflections of the incident wave a t  the randon1 
h q s .  Ln the multi-coupled truss beam studied here, however, an 
incident \vave which impinges on a random bay gives rise to trans- 
mitted and reflected waves of each type present in the structure. 
This mechanis~n leads not only to  the localization of the incident 
{vave. but also to  its conversion into other types of waves via en- 
ergy leakage. In order to  evidence these complex phenomena, we 
consider two truss beams with different structural member axial 
rigidities: the truss beam with the high axial rigidity features clear 
wave localization and little energy leakage, while the one with a 
100-fold decrease in axial rigidity exhibits pronounced wave con- 
version as well as localization. 

In both cases we investigate the propagation of waves incident 

from the left into an  infinite truss beam which consists of 200 ran- 
domly disordered bays embedded in otherwise ordered bays. We 
first identify the passband structure of the ordered truss beam and 
then examine the propagation of waves for various disorder lev 
els and frequencies. At some frequencies the associated ordered 
system features two pairs of passband waves, which allows us to  
cxarnine how these waves localize and interact in disordered con- 
figurations. 

3.1 C A S E  I: W A V E  L O C A L I Z A T I O N  P H E N O M E N O N  

In this case of high axial rigidity of the structural members the 
parameters for the truss beams are: EI  = 5.81482 x lo3  ~ m '  
(structural member bending rigidity); E A  = 1.93977 x l o 7  N 
(structural member axial rigidity); m = 0.75948 Kg/m (mass 
per unit length of a structural member); and, for an ordered hay, 
ll = l2 = l3 = 1.397 m (length of the longerons). All members have 
identical material properties and their axial rigidity is far greater 
than their bcnding rigidity. 

3.1.1 Charac t e r i s t i c  W a v e s  in  t h e  O r d e r e d  T r u s s  B e a m  

Before we explore the dynamics of the disordered truss beam, 
we must first identify the  independent wave pairs tha t  charac- 
terise the periodic system. We restrict our investigation to  the 
dimensionless frequency range [0,a2],  such tha t  a 2  is the funda- 
mental bending frequency of a pinned-pinned vertical longeron 
beam. ('l'he dimensionless frequency is defined from the frequency 
as = w ( n d ~ / ( E ~ ) ) ~ / ~ .  The bar in w will be dropped for sim- 
plicity.) As described in Section 2.1, the characteristic waves are 
obtained by solving the eigenvalue problem for the ordered transfer 
matrix T o :  the propagation constants are given by the logarithm 
of the eigenvalucs and the wave shapes by the eigenvectors. Since 
the transfer matrix of a bay has dimension 8 x 8 ,  the  truss beam 
carries four pairs of characteristic waves. 

The characteristics of these four wave pairs in terms of fre- 
quency have been thoroughly investigated by Chen and Pierre5 
and we refer the reader to  it for details. IIere, we use the power 
flow defined in Eq. (28) to  verify the frequency regions that  define 
the passbands for the various waves. Figure 5 depicts the power 
flows associated with four pairs of characteristic waves as a func- 
tion of frequency. Each curve in Fig. 5 is obtained by considering a 

characteristic wave of unit amplitude incident from the left t o  the 
periodic truss beam, and by calculating the corresponding power 
flow using Eq. (28). Since scattering cannot occur, the transmit- 
ted power flow, which is independent of the number of bays, is 
solely carried by the incident wave. The wave pairs labeled I, 11, 
and 111 are respectively bending, shear, and compression waves at  
low frequencies (say w < 4). In the frequency range shown, the 
wave pair labeled IV belongs to  a stopband and features a very 
large exponential decay constant ( the real part of its propagation 
c o n ~ t a n t ~ . ~ ) ;  thus its power flow is zero. For each curve in the fig- 
ure, regions defined by a non-zero power flow are passbands. Thus 
for 0 < w 5 4.9318, the type-I and -111 waves are in passbands; for 
4.9318 < w 5 5.9115, only the  type-I11 wave is in a passband; for 
5.9115 < w 5 9.8246, type-I1 and -111 waves are in passbands; for 
9.8246 < w < 9.8584, type-I, -11, and -111 waves are in passbands; 
and for 9.8584 < w 5 .rr2. type-I and -11 waves are in passbands. 
Recall tha t  all frequencies are dimensionless. 

In general, the power flows depicted in Fig. 5 describe (at  
least qualitatively) the energy levels associated with the various 
passband waves of unit amplitude. For example, the energy of a 
unit type-I11 wave is higher than tha t  of a unit type-I wave when 
w < 4.7. Note tha t  the power flow associated with the type-I 
wave becomes very large as the  wave frequency nears the  passband 
bounding frequency, w = 4.9318. Since this bounding frequency 
is very close t o  the resonant frequency of the diagonal structural 
members, w = 7i2/2, we infer tha t  near the passband edge the 
deflection pattern of the type-I wave features resonance of diago- 



nal structural members (see reference 5 for the corresponding wave 
shape). For this nearly resonant case the coupling forces a t  the bay 
junctions become very large, which leads to  the very large power 
flow observed in Fig. 5 for the type-I wave near its passband edge. 
A similar pattern of large power flow is observed for the type-11 
and I11 waves when the  frequency approaches w = x2, which is the 
resonant frequency of the longeron structural members. 

3.1.2 Wave Propagation In  Disordered Truss Beams 

Here we use the algorithm developed in Section 2.2 to  examine the 
propagation of characteristic waves in the disordered truss beam. 
Besides examining wave shapes a t  various frequencies, we calculate 
the power flow in an  attempt t o  quantify the strength of localiza- 
tion phenomena. We also examine the magnitude of the various 
transmitted waves (the modulus of the complex components of R,) 
throughout the structure in order to capture the mechanisms of lo- 
calization and wave conversion. Several representative frequencies 
are examined below. 

A t w = 3  

At this frequency, both type-I and -111 waves are passband 
waves. Figure 6 depicts the propagation of a selected type-I wave 
incident from the left. For the perfectly periodic truss beam the 
wave features a global bending pattern shown in Fig. 6a. Although 
Fig. Fb is for a truss beam with a relatively large disorder level of 
o = lo%,  observe tha t  the wave remains unattenuated and nearly 
identical to  tha t  shown in Fig. Ga, even after traveling through 
200 disordered bays. This result is consistent with the  general 
observation for mono-coupled systems tha t  waves which featuring 
global vibration patterns are little subject t o  localization (although 
localization eventually takes place if the number of bays keeps 
increasing). 

Figure 7 illustrates a case of severe localization. At frequency 
w = 4.92, type-I and -111 waves are passband waves. Observe in 
Figs. 7a and 7c the unattenuated propagation of these two waves 
along the ordered truss beam. The deflection patterns for both 
waves feature the local vibrations of the diagonal structural mem- 
bers. For the disordered truss beam the disorder level is o = 0.3%. 
Comparing Fig. 7c and d ,  we note tha t  very little localization oc- 
curs for the  type-I11 wave in the disordered structure, although the 
deflection pattern is substantially affected by disorder. Examining 
Figs. 7a and b,  however, we observe the severe localization of the 
type-I wave t o  the first few bays of the disordered truss beam. 
Hence the type-I wave is highly sensitive t o  small disorder a t  this 
frequency. Note tha t  in this case the frequency is very close to  
the upper passband edge of the type-I wave (w = 4.9318), hence 
the strong localization wave observed in Fig. 7b appears consis- 
tent with the result for mono-coupled systems tha t  localization is 
strongest near passband edges. 

In order t o  examine wave interactions in this case, consider a 
type-I wave of unit amplitude, incident from the left to  the same 
disordered truss beam as in Fig. 7b. The magnitudes of the com- 
plex amplitudes of the four transmitted characteristic waves (the 
modulus of the elements of R,) are calculated and plotted in Fig. 8 
versus the bay number. First note that  the magnitude of the type- 
I incident wave decreases sharply as the bay number increases and 
rapidly goes t o  zero, which is consistent with the localization shown 
in Fig. 7b. Also observe tha t  within the  first few bays a small por- 
tion of the energy of the incident wave is converted into the type-I1 
and -111 waves. Since the type-I1 wave is a stopband wave, its con- 
tribution decays quickly, but note tha t  the converted type-I11 wave 
keeps traveling with almost constant amplitude until the end of the 
disordered segment, which is consistent with the fact tha t  nearly 
no localization of type-I11 wave is depicted in Fig. 7d. This is 
an example of the wave conversion phenomenon tha t  can occur in 
multi-coupled systems. However, since in this case the converted 

portion of the incident wave energy is so small, the strong local- 
ization of the type-1 wave still takes place. 

Although the first few bays in Fig. 7b display a substantial de- 
flection, w~ found that  the power flow for the disordered beam is 
approximately only 0.1% of tha t  associated with the unattenuated 
type-I wave in the ordered beam. Recall that  Eq. (35) shows that  
the existence of reflected waves (L,) reduces the power flow along 
the structure. In order to  understand the small value of power flow 
obtained in the disordered case, we examined the magnitude of the 
accompanying reflected type-I wave along the beam and found tha t  
it nearly coincides with tha t  of the transmitted type-I wave shown 
in Fig. 8. Physically this means that  the transmitted and reflrctrd 
type-I waves are nearly identical waves but traveling in opposite 
directions. Hence t,hese two waves almost form a standing Lvave 
along the disordered structure (if we neglect the small phase dif- 
ference between the opposite wave pairs). Since standing waves 
do not produce power flow, the vibrational energy of the type-I 
wave is thus confined t o  a small geometric region with little con- 
tribution to  the power flow, such that  the net power flow in thc 
disordered beam is mainly supported by the type-I11 wave. On 
the other hand, the power flow for the case of an  incident type-I11 
wave in the disordered beam (see Fig. 7d) is only 2% smaller than 
that  associated with the unattenuated type-I11 wave in the ordered 
beam. This confirms tha t  the type-111 wave does not localize. 

A one-cycle time simulation of the localized type-I wave dis- 
played in Fig. 7b is depicted in Fig. 9 for five successive instants of 
time. As expected, we observe that  the region in which the wave 
is localized does not travel: the bending component of the wave 
remains confined near the incidence region. This simulation shows 
tha t  localized waves do not propagate, which confirn~s the above 
explanation regarding power flow. 

The above results are for frequencies that  are smaller than the 
fundamental natural frequency of the vertical longeron beam. In 
order t o  determine the sensitivity of the wave dynamics to disor- 
der a t  higher frequencies, we investigate the propagation of waves 
a t  w = 19.45. At this frequency there are two wave pairs in pass- 
bands, namely the type-I and -111 waves. This frequency is close to 
the upper bounding frequency (w = 19.576) of the type-I11 wave. 
The results are shown in Fig. 10. Observe that  the type-I11 wave 
exhibits severe localization for a disorder level a = 0.2%. The 
type-I wave, although somewhat altered, does not localize. This 
demonstrates tha t  the dynamics of the truss beam can be sensitive 
to disorder a t  high frequencies. It also confirms that  localization 
is strong for frequencies close to  a passband edge, and thus that 
the phase of the incident wave is a key factor in localization. 

The results for Case 1 suggest that  (1) a wave of a given type 
can become drastically localized if it leaks only a small portion of 
its energy to  other waves less prone t o  localization, in which case 
the system behaves essentially like a mono-coupled one, (2)  strong 
localization takes place when the frequency is close to  an edge of 
the incident wave's passbands, and (31, localization is weak for a 
wave which features a global vibration pattern a t  low frequencies 
(as opposed to  a pattern characterized by the  local vibration of 
individual members). 

3.2 C A S E  11: W A V E  C O N V E R S I O N  P H E N O M E N O N  

The truss beam examined here is the same as in Case I, except tha t  
the asial stiffness of the structural members has been decreased 
by a factor one hundred, such tha t  E A  = 1.93977 x l o 5  N. This 
reduced axial rigidity allows for increased interactions between the 
bending and axial vibrations of the structural members, which in 
turn favorizes the exchange of energy among the various waves 
in the disordered case. This makes for richer results regarding 
localization and wave conversion phenomena. Such interactions 
were qnite weak in Case I (see Fig. 8) because of the high energy 



required to  excite the very stiff axial motion. 

3.2 .1  Ident i f ica t ion  of Cha rac t e r i s t i c  W a v e s  

h s  in Case I. tile c l~a rac t e~ . i s t i~  waves of the ordered truss beam 
are first identified. Figures 11 throngh 14 depict the propagation 
ro~lstants for the four pairs of clmracteristic waves as a function 
of frequency. Recall tlra,t the characteristic constant for a wave is 
defined as the logarithm of the corresponding eigenvalue of the or- 
dered tra~lsfcr matrix. Each figure displays (1) the real part of the 
propagation ronstant, -(, which is the rate of exponential amplitude 
decay of the \vaw and (2), the imaginary part of the propagation 
constant, K ,  which is thc change in phase frorn bay t o  bay. Regions 
where the exponential decay rate is equal t o  zero are passbands, 
ill  ~vhich waves propagate ui~attenuated.  Regions defined by y > 0 
caii ! ) e  cit l~er stopl)arlds or complexbands, corresponding to  an at-  
te~luatrd wave. In stopbands the phase change per bay, K ,  eqnals 
eit1rc.r 0 or K ,  yielding standing attenuated waves. In complexbands 
t ;  is gencrally different frorn 0 or i;, corresponding to  waves that 
arc hot11 travcling and attenuated. 

As i n  Case I ,  the wave pairs labeled I. IT, and I11 are respec- 
tivcly bending. shear, and compression waves at  low frequencies 
(say w < 4.3). Figure 14 shows that  in most of the frequency 
rang(, considered (w < 7-96) the wave pair labeled IV belongs t o  
a stopl~arid and features a very large decay constant. Table 1 
lists tho frequencies that  bound the passbands in the frequency 
range colisidcrrd. b\'e find that  the bending wave's first pass- 
band ranges from w = 0 t o  4.6707. Within this range there 
are two othcr wave pairs that  feature a passband, nanlely the 
l~endirrg and compression waves. Other passbands are located 
as follows: for 4.6707 < w < 5.5930, only type I11 is i n  pass- 
band: for 5..5930 < UJ < 5.8969, types I1 and I11 are in passhands; 
for 5.8969 5 w 5 7.9488, types I, 11, and I11 are in passbands; 
lor 7.9488 < w < 7.9688, types I and I1 are in passbands; for 
7.9688 5 w 5 0.2272, types I, 11, and IV are in passbands; and for 
9.2272 < w < rZ; types I and IV are in passbands. 

k'igure 15 depicts the power flow associated with the four pairs 
of'cllaractcristic waves as a function of frequency. The passband re- 
gions displayed in Fig. 15 (those with positive power flow) confirm 
those found in Figs. 11-14. Observe that  contrary to  the results 
sho~vn i l l  Fig. 5 for Case I, the power flow associated with the type- 
I wave does not become very large as the wave frequency nears the 
passband hounding frequency w = 4.6707. We explain this by not- 
ing that in the case of smaller axial rigidity, the passband edge is 
much farther than in Case I from the resonant frequency of the 
diagonal structural members, w = r 2 / 2 .  This leads t o  less severe 
vibrations of the diagonal members near the passband edge and 
thus to  smaller coupling forces a t  the bay junctions, which in turn 
gives a smaller power flow. On the other hand, the power flow 
associated with the type-I wave becomes very large near its second 
passband's uppcr edge, w = a2. This is because this bounding 
frccjuency is also the resonant frequency of the longerons. 

3.2.2 D i s o r d e r e d  Truss B e a m  D y n a m i c s  

L4'ave propagation in the disordered truss beam is studied for sev- 
eral disorder levels and representative frequencies. 

At this frequency, both type-I and -111 waves belong to  pass- 
bands. Figure 16 depicts the power flow associated with type-I and 
type-I11 waves of unit amplitude incident from the left t o  the truss 
beam, as a. function of disorder standard deviation. First note 
that the power flow generally decreases as the disorder increases. 
This signals the occurrence of localization. However, the powcr 
flow associated with the type-I wave increases from approximately 
a = 5% to  a = 5.6%, after which its decrease is resumed. Also, the 
power flow of the type-111 wave decreases at  a much higher rate for 
,5% < 0 < 5.6%, after which it experiences a rapid increase. The 

variation of the power flow shown in Fig. 16 at  the higher tlisol. 
der levels suggests an interaction between the two types of waves. 
Hence we clioose t o  evidence the wave conversioll phei~omei~on for 
a = .5.6% and a = 6%. 

First. we select a type-I wave of unit amplitude incident from 
the left to  a disordcrcd beam with u = 5.6%. The magnitudes 
of the complex amplitudes of the fonr transmitted characteristic 
waves are plotted in Fig. 17 versus the bay number. Observe that  
thc magnitude of the type-I wave decreases consistently to  reach 
ahout 0.4 near the 60th bay, after which it experiences a rapid 
decrease. IIowever, a large portion of the first wave's energy is 
converted t o  the type-I11 wave, which grows from 0 to  about 0.4 
within the first 60 bays. Subsequently the type-I11 wave sustains 
its motion t,hroughout the entire truss beam and begins decaying 
slightly only after the 120th bay. Note that  the magnitude of the 
type-I11 wave is larger than tha t  of the type-I wave over much of 
the truss beam, even though the wave incident to the structure is 
purely of the first type. When the four transmitted waves leave the 
disordered segment, the vibration of the truss beam is dominated 
by both the type-I11 wave, of magnitude 0.38, and the type-I wave, 
of magnitude 0.2. Also note the small but consistent contribution 
of the type-I1 and -1V waves, which a t  this frequency belong to  
stopbands. 

Figure 17 evidences the warre conversion phenomenon in dis- 
ordered multi-coupled structures. While the type-I incident wave 
is si11)ject t o  strong localization, as attested by its rapid initial dc- 
crease in magnitude, it succeeds in leaking its energy t o  another 
wave (type 111) tha t  is less subject to  localization, thereby allom- 
ing for sustained motion along the truss beam. The occurrence of 
wave conversion thus means tha t  localization is more difficnlt to  
obtain in multi-coupled than in monocoupled structures, where no 
wave conversion can take place. 

Text,  we select a type-I11 wave of unit amplitude incident to 
the same disordered beam as in Fig. 17. The magnitudes of the 
four transmitted waves are shown in Fig. 18 versus the bay number. 
The magnitude of the type-I11 wave decreases rapidly and remains 
approximately a t  the value 0.2 past the 60th bay. IIowever, observe 
the massive leakage of energy frorn the type-I11 to the type-I wave 
over the first 70 bays. Here the  wave conversion is so great tha t  
there is not only no global localization of the motion, but also a 
doubling of the motion amplitude from that  of the incident wave. 
Once most of the energy has been converted to  the type-I wave, 
though, this wave is subject to  localization and decays rapidly. It is 
interesting t o  note that  the decay pattern for the type-I wave after 
the 70th bay is quite similar to  that  featured in Fig. 17. When the 
four transmitted waves leave the disordered segment, the motion is 
strongly localized and the truss beam vibration is composed of the 
type-I11 wave, of magnitude 0.2, and the type-I wave, of magnitude 
0.1.5. 

Figure 19 depicts the magnitudes of the four transmitted waves 
when a type-I wave of unit-amplitude is incident to a disordered 
beam with a = 6%. Observe that  the type-I wave is subject to  
severe localization and converts a large portion of its energy to the 

type-I11 wave. Again the latter wave is sustained throughout the 
beam and its magnitude becomes consistently larger than that  of 
the type-I wave. When the four transmitted waves leave the disor- 
dered segment, only the type-I11 and type-I waves have substantial 
magnitudes of 0.32 and 0.14, respectively. These are smaller than 
the corresponding magnitudes observed in Fig. 17, which implies 
tha t  the power flow in Fig. 19 is smaller than that  in Fig. 17. This 
is consistent with the drop in power flow observed in Fig. 16 for 
the type-I wave as disorder increases from a = 5.6% t o  6%. 

Next, Fig. 20 is as Fig. 19 but for a type-I11 incident wave. 
The magnitude patterns in Fig. 20 are similar t o  those displayed 
in Fig. 18, except tha t  the wave conversion is perhaps not quite as 
spectacular. Moreover, the magnitudes of the waves that  exit the 
disordered segment are larger in Fig. 20 than in Fig. 18. This again 



is consistent with the  increase in power flow observed in Fig. 16 
for the type-111 wavc as u increases from 5.6% to  6%. 

The deflection patterns for waves traveling through ordered 
and di~ordered truss beams arc shown in Figs. 21 and 22. Figures 
21a and 22a display the unattenuated propagation of type-I and 
-111 waves in an ordered truss beam. respectively. The type-I wave 
features a global bending motion, while for the type-111 wave the 
deflection pattern is one of compression. Figure 21b depicts se- 
lected portions of the deflection pattern for a type-I wave incident 
to a disordered truss beam with a = 6%. Observe tha t  the bcnd- 
ing character of the motion is rapidly attenuated over the first 
twenty bays or so, and that  a conversion to  a compression-type 
motion takrs place. Indeed, over the last thirty bays the deflec- 
tion pattern of the truss beam is quite similar t o  tha t  featured in 
Fig. 22a for t l ~ e  type-I11 compression wave. Thus the deflection 
pattern in Fig. 21b agrees well with the wave magnitudes shown 
in Fig. 19. Also note tha t  the powcr flow in the disordered case is 
about 21% of tha t  associated with the unattenuated type-I wave 
in the ordpred hearn (see E'ig. 16). This indicates tha t  localization, 
although substantial, is not neaily total bccause the less localized 
type-I11 wave becomes the vehicle for power transmission. 

Figure 221) is for a type-I11 compression wave traveling through 
the same disordered beam as in Fig. 21b. Observe tha t  a very 
substantial excitation of the type-I wave takes place approximately 
from bay 20 to  bay 70. This is clearly evidenced by the bending 
character of the wave, which is similar to  that  shown in Fig. 21a for 
an ordered beam. Past bay 70 the converted bending wave decays 
and its attenuation is remarkably similar to that  shown in Fig. 21b 
for an incident bending wave. In particular, the  converted bending 
wavc, while decaying, "re-converts" into a type-I11 conlpression 
wave, as clearly seen over the last thirty bays in Fig. 22b. The 
deflection pat t r rn  depicted in Figs. 22b is thus fully consistent 
with the wavc magnitude variations shown in Fig. 20. Note that 
the powcr flow in this disordered case is approximately 28% of 
that associated with the unattenuated type-I11 wave in the ordered 
beam (see E'ig. 16). This verifies tha t  type-I11 wave is not strongly 
localized for o = 6%. 

Figure 23 shows an interesting result. In Fig. 23a a type-I1 
wave, which for w = 4.2 belongs t o  a stopband, is incident to  a 
periodic truss beam. Since there is no scattering, the incident wave 
magnitude decays exponentially. The  same wave but incident t o  a 
disordered beam with a = 13.9% is shown in Fig. 23b. We note 
that the type-11 incident wave rapidly converts its energy to  both 
type-I and -111 waves. As a result, the wave motion extends much 
farther into the disordered beam than it does in the ordered system 
in Fig. 23a. These multiple energy conversions are made possible 
solely by the reflections and wave interactions a t  the disordered 
bay junctions. This result demonstrates that  it is possible for a 
stopband wave to travel significantly farther in a disordcred sys- 
tem than in an ordered system, bccause of the leakage of energy. 
IIowevcr, note tha t  we had to  select a relatively large disorder to  
obt.xin this effect. 

.kt this frequency, both type-I and -111 waves belong to  pass- 
bands. The unattenuated deflection patterns of these two waves 
in a periodic beam are depicted in Figs. 24a and 24c, respectively. 
In Fig. 24d, a type-I11 wave is incident t o  a disordered beam for 
u = 0.8%. We observe tha t  very little, if any, localization occurs. 
In this case the power flow was found t o  be 88% of tha t  for the 
type-I11 wave in the ordered beam, which confirms tha t  the wave 
does not become confined. 

Figure 24b is for a type-I wave incident to  the same disordered 
beam as in Fig. 24d. Note tha t  the wave becomes localized but 
not nearly as severely as in Fig. 7b (Case I), al thougl~ here the 
frequency is also close to  the first bounding frequency of the type- 
I wave, w = 4.6707. The wave magnitudes are plotted in Fig. 25 
versus the bay number. The type-I wave converts part of its energy 

into the type-I11 wave, but sinre the type-I11 wave does not localize. 
its propagation is sustained without much attenuation. In this case 
the power flow is 5% of that  associated with the unattenuatetl 
type-I wave in the ordered beam, which confirms the substantial 
localization. 

At w = 5:1: 

At t,his frequency only the type-I11 wave belongs to a passb;rnti. 
Figure 2Ga depicts the unattenuatrd propagation of this tvave iu 
the ordered truss beam. 'The deflection pattern features a small 
global bending as well as a l o r d  bending of diagonal and Iiouizontal 
structural members. Although global bending patterns are genrr- 
ally not sensitive to disorder at  low frequencies. in Fig. 261, Xve 
observe tha t  both global and local vibrations localize. Note that 
since the t,ype-I11 wave is the only passband wave a t  this frequency: 
it cannot leak its energy to  other passband waves to  sustain motion 
propagation. 

The above results tell us tha t  a wavc of a given type can become 
localized and then leak its energy to other waves less prone to 
localization in order to  sust,ain motion propagation. This wave 
conversion phenomenon can only occur in multi-coupled structurrs 
and appears to  weaken the degree of localization of incident waves. 
Power flow is a useful descriptor of both localization and wave 
conversion phenomena. 

4. LOCALIZATION OF NORMAL MODES IN A 
FIXED-FIXED TRUSS BEAM 

IIere, we use the formulation of Section 2.4 to  investigate the lo- 
calization of the normal modes of a fixeci-fixed, 30-bay disordered 
truss beam with a disorder level u = 4.0%. All other pa rame t~ r s  
are the same as for Case 11 in Section 3.2. Before discussing the 
localization of mode shapes, we first obtain the normal modes of 
the associated ordered truss beam and compare them to  those in 
Chen and Pierre,' where a higher axial rigidity was used. 

We find 51 normal modes in the frequency range w t [ 0 ,  4.67071 
(z.e., the first passband of the bending wave). Chen and Pierre5 011- 
tained 40 normal modes in the first passband of the bending wavc. 
Thus, even though in the present study the passband is narrower. 
we obtain 11 additional normal modes. This can be explained as 
follows. In Chen and P i ~ r r e , ~  the axial rigidity was much larger 
t l ~ a n  the bending rigidity, hence the 40 modes resulted primarily 
from the bending of the structural members. In the present case. 
however, the smaller axial rigidity ~nhances  the presence of axial 
vibrations in the modes, especially since compression waves also 
propagate in this frequency range. This explains the 11 additional 
normal modes in the first passband. 

These 51 normal modes feature a bending vibration pattern or 
one of compression, or the combination of the two. Figure 27 dis- 
plays typical examples of these three types of modes. The transi- 
tion from a global to  a local vibration pattern occurs near w = 4.3, 
that  is, a t  a higher frequency than for the truss beam studiet! in 
Chen and Pierre.5 

We obtain a total of 172 normal modes for the periodic truss 
beam in the frequency range [0, ?rZ]. In the same frequency range 
we find 170 normal modes for the disordered truss beam with 
u = 4.0%. This means tha t  two modes shift out of the frequency 
range due t o  disorder. Figure 28 depicts the modal distribution 
in the frequency range [0 , r2 ] .  We observe tha t  the modal den- 
sity becomes very high for the highcr frequency range. The modal 
density is also high near the passband edges given in Table 1. 

Figure 28 also displays the effects of disorder on the natural 
frequencies. We observe tha t  the change in the natural frequencies 
due to  disorder is more pronounced in the higher modes. This 
suggests tha t  the dynamics of the truss beam is more sensitive to  
disorder a t  high frequencies, as was observed in Section 3. 

Figures 29 through 31 display selected normal modes of ordered 
and disordered ( u  = 4%) truss beams. Figure 29 displays the 

349 



first motlr s l~apes  of ordered and disordered beams. Observe the 
very low natural frequencies of these modes. Also observe that  
hoth niotles feature the same glol~al bending pattern and that  no 
localizat,ion occurs. Figure 30 is for the 46th normal mode, which 
feat ures primarily motion of the diagonal structural members. The 
revere localizat,ion of that  mode to  a small region of the truss beam 
is shown. I n  Fig. 31 the localization of the 169th normal mode is 
sho\vn. The ordered rnode features primarily local vibrations of 
the longeron bcams and it undergoes severe localization in the 
disordered case. 

These results suggest that  (1) the localization phenomenon 
dow not seem to  occur for mode shapes that  feature global vlbra- 
t ~ o n  pdttcrnr ( a s  oppt,;rd to  patterns where individual mcrnhers 
r c r o n a t ~ )  and (2) ,  the ledhage of energy from one wave-type to  
another, whlth was observed in the wave propagation problem, is 
not ohvlous to  identifj for the normal modes. 

5. CONCLUSIONS 

\ire have tackled the difficult problem of localization in a nearly 
periodic, mult,i-coupled truss beam. We have examined the effects 
of small random disorder on both the propagation of waves in 
infinite s t r ~ ~ c t u r r s  and the normal modes of vibration of finite truss 
beams. The prirnary findings are as follows. 

The localization phenomenon in disordered multi-coupled strnc- 
tures exhibits a complicated wave interaction mechanism, which 
we refer to  as the u1az.e conversion phenomenon. An incident wave 
t l ~ a t  is subject to  localization can transfer energy to  another wave 
Lvhich is less prone to  localization, thereby sustaining the trans- 
mission of vibration along the structure and lessening the confine- 
ment cffect of disorder. This leakage of energy to  another wave is 
probably characteristic of localization in disordered multi-coupled 
structi~res,  which has never been studied formally in structural dy- 
namics. It suggests that  localization is more difficult to obtain in 
multi-ronplc~i than in  non no-coupled structures, much in the same 
\vay as localization is easier to  produce in one-dimensional systems 
than in two- or three-dimensional ones. 

A non-propagating wave that  belongs to  the stopband of an 
ordered structure can. in a disordered structure, leak its energy to 
o t l~e r  waves that  are only weakly subject to  localization. Thus, a 
stopband wave in a disordered truss beam can induce a long-range 
propagation that  would not take place in the ordered structure. 

Small random disorder in a truss beam also causes the localiza- 
tion of the normal modes of vibration t o  small geometric regions. 
\Ve found that  mode localization occurs primarily a t  higher fre- 
quencies, that  is, when individual structural members resonate. It 
does not occur for the very-low-frequency global vibration modes. 
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APPENDIX A: POWER FLOW IN PERIODIC 
STRUCTURES 

Here we use Eqs. (28) and (34) t o  show that  in an undamped 
periodic structure the power flow associated with a passband wave 
is positive and constant along the structure, while complexband or 
stopband waves do not transmit pourer. Consider a wave incident 
from the left to  a perfectly periodic structure. Its amplitude is 
multiplied by 1 / X  a t  each bay, where X is the eigenvalue of the 
transfer matrix T o  associated with the corresponding left-traveling 
wave.5 Hence the incident wave is governed by u,+l = i u , .  

(1) For frequencies in the stopband: Then X is real, with I X /  > 1. 
Since all displacement vectors u, are real, we obtain 

where the matrix C, in Eq. (28) can be denoted by C for a 
periodic structure. 

(2) For frequencies in the passband: Here X = e*j", with K E 
(0. lr). This leads to  

(3)  For the passband hounding frequencies: Then X = f 1, which 
yields a non-attenuating wave with adjacent bays vibrating in 
or out of phase, i.e., a standing wave. Since all the displace- 
ment vectors are real, from case (1) the power flow is zero. 

( 4 )  For frequencies in the complexband: Then X = e7'3", with 
y > 0 and K E ( 0 , ~ ) .  Here we use Eq. (34) to  show that 
the power flow is zero (although it is not strictly necessary). 
From u,+l = i u , ,  we rewrite Eq. (A2) as: 

Equation (34) states tha t  the power flow associated with un- 
damped periodic or disordered structures is constant, i.e., 
P,+l = l',. Since y # 0, the only solution for Eq. (A5) is 
P,+l = PVL = 0 



Table 1 The dmensionless bounding frequencies of the pass- 
bandi. These correspond to  the double eigenvalues A = 1 or 
-1. The parenthetical Roman numerals denote the type of the 
associated characteristic wa\e. 

r -  Disordered Hays 1 

Figure 1 A generic. multi-coupled, nearly periodic stnlcture. 
Ray5 1 through N are disordered bays embedded in an otherwise 
perfectly periodic and infinite structure. 

1 2 3 4 5 6 7 8 9 1 0  
Dimensionless Frequency 

Figure 5 Power flow associated with each of the characterist~c 
\ \ales as a function of frequency. Curve I is for the type-I 
(bending) wave, curve I1 for the type I1 (shear) wave. and culve 
I11 for the type-I11 (compression) wave. Power flow for the type- 
I\.' (cx\anesccnt) wave is zero over the range shown. 

Figure 2 Wave coordinates for an  arbitrary n th  bay. L, con- 
['') 

rains the m amplitudes of the left-going waves and R, the m Figure 6 (a)  A type-I (bending) wave with frequency w = 3 
amplitudes of the right-going waves. The waves entering tile t ~ a ~ c l s t h r o u g h  a perfectly periodic truss beam. (b)  The same 

11th Ijay are R, and L,+I, and those leaving the bay are R,L+l wave travels through the last 30 bays of a 200-disordered bay 
a n d  L,. segment. The standard deviation of disorder is u = 10%. 

I 

I Figure 3 TI.IISS beam assembly connected by pin joints. Bays 
I 1 tlll.ougll iY are disordered bays embedded in an othcr~vise 

1)eriotlic and infinite tmss  beam. 

Figure 7 (a )  A type-I wave with frequency w = 4.92 travels 
tlirough a perfectly periodic truss beam. (b) The same wave 
travels through the first 30 bays ?f a 200-disordered bay seg- 
ment. The standard deviation of disorder is u = 0.3%. (c) h 
type-I11 wave with frequency w = 4.92 travels through an or- 
dered truss beam. (d) The same type-I11 wave travels through 
the disordered beam of (b).  Selected deflection patterns are 
shown. 

I Figure 4 A smgle bay of the truss beam, consisting of four 
I imifoim members with identical material properties. 
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F i g u r e  8 !Jagnitlldes of the complex amplitudes of the four 
t ~~aris~ii i t tct l  characteristic waves versus bay nu~nber ,  for a type- 
I wave of linit amplitude incident to 200 disordered bays. The 
frecl~i~nry is w = 4.92 and the disorder level is o = 0.3%. Curve 
i is for typr-i  wave, where i =I, 11, 111, and IV. 

F i g u r e  9 A one-cycle time simulation of the localized type-I 
wave displayed in Fig. 7b is depicted for five successive instants 
of time. Deflection patterns are shown at  equal time increments 
of 2;r/(5w), where w = 4.92. 

F i g u r e  10 (a )  A type-I wave with frequency w = 19.45 travels 
through a perfectly periodic truss beam. (b) The same wave 
travels through tlie last 30 bays of a 200-disordered bay seg- 
rr~cxlt. The disorder is a = 0.2%. (c) A type-I11 wave with 
frequency ci = 19.45 travels through a perfectly periodic truss 
beam. ( d )  The same type-I11 wave travels through the first 30 
bays of the disordered beam of (b ) .  
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(a)  
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(b)  
F i g u r e  11 Propagation constant versus frequency for typc-I 
(lwnding) waves. (a)  exponential decay constant: and (b) phase 
change per bay. Stopbands and complex bands are regions 
where y > 0. Passbands are regions where y = 0. The rnodes 
of the finite truss beam occur a t  frequencies which helo~ig to  
tlie passhnds .  
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ib)  
F i g u r e  1 2  Propagation constant versus frequency for type-I1 
(shear) waves, (a)  exponential decay constant, and (b) phase. 
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( h )  

F i g u r e  13 l'ropagation constant versus frequency for type-111 
( c o ~ n l ) r < ~ s s i o r ~ )  waves, ( a )  exponential decay constant. and ( b )  
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(a )  
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(b)  

F i g u r e  14 Propagation constant versus frequency for type-IV 
(evar~esce l~ t )  waves, ( a )  exponential decay constant, and ( b )  
pll;lsc.. 

-I 
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Dimensionless Frequency 

F i g u r e  15 Power flow associated with each of the  charactclristic 
waves a s  a function of frequency. Curve I is for the  t\-pc-I 
(bending) wave. curve I1 for the type-I1 ( s h ~ a r )  wave. curve 
111 for t h e  typc-111 (compression) wave, and ( 'urve I\.' for thc. 
t.ype-IV (evanescent) wave. 

A 
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F i g u r e  16 Power flow versus disorder s tandard deviation for 
typc-I  and -111 waves incident t o  200 disordered I~ays.  'The 
f req i~(~ncy  is U. = 4.2 
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F i g u r e  17 Magnitudes of the  four t ransmitted characteristic 
waves versus bay number,  for a type-I wave of unit amplitude 
incident t o  200 disordered bays. T h e  frequency is w = 4.2 and  
t h e  s tandard  deviation of disorder is (T = 5.6%. Curve i is for 
type-i wave, where i=I, 11, 111, and  IV. 
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F i g u r e  18 Magnitudes of the four transmitted characteristic 
waves versus bay numb, for a type-I11 wave of unit amplitude 
incident to the same disordered truss beam as in Fig. 17. The 
frequency is w = 4.2 . 
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F i g u r e  19 Magnitudes of the four transmitted characteristic 
waves versus bay number, for a type-I wave of unit amplitude 
incident to  200 disordered bays. The standard deviation of 
disorder is a = 6% and the frequency is w = 4.2. 
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F i g u r e  20 Magnitudes of the four transmitted characteristic 
waves versus bay number, for a type-I11 wave of unit amplitude 
incident to  the same disordered truss beam as in Fig. 19. The 
frequency is w = 4.2. 

F i g u r e  2 1  

F i g u r e  21 (a) A type-I wave with frequency w = 4.2 travels 
through a perfectly periodic truss beam. (b) The same wave 
travels through a 200-disordered bay segment. The standard 
deviation of disorder is u = 6%. Selected portions of the deflec- 
tion patterns are shown. 
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F i g u r e  22 (a) A type-I11 wave with frequency w = 4.2 travels 
t,hrough a perfectly periodic truss beam. (b)  The same wave 
travels through a 200-disordered bay segment. The  disorder is 
a = 6%. Selected portions of the deflect,ion patterns are shown. 
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(b) 
F i g u r e  23 (a)  Magnitude of the type-I1 transmitted wave ver- 
sus bay number. A unit type-I1 wave is incident t o  an ordered 
truss beam for w = 4.2. (b)  Magnitudes of the four transmitted 
characteristic waves versus bay number, for the same type-I1 
wave incident t o  a disordered truss beam with a = 13.9%. 



Figure  24  (a)  A type-I wave with frequency w = 4.62 travels 
thlough a perfectly periodic truss beam. (b) The same wave 
travels through a 200-disordered bay segment with a = 0.8%. 
Selected portions of the wave shape are shown. (c) A type-111 
wave ui th  frequency w = 4.62 travels through a perfectly peri- 
o d ~ ~  truss beam. (d)  The same type-I11 wave travels through a 
200 disordered bay segment with a = 0.8%. Selected bays are 
sllolvrl. 
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F igu re  25 Magnitudes of the four transmitted characteristic 
wdves versus bay number, for a type-I wave of unit amplitude 
incident t o  200 disordered bays. Here, w = 4.62 and the disorder 
level is a = 0.8%. 

F i g u r e  26 ( a )  A type-I11 wave with frequency w = 5.4 travels 
through an ordered truss beam. (b)  The same wave travels 
through a 200-disordered bay segment with a = 5%. Selected 
bays are shown. 

F i g u r e  27 Three global mode shapes for a fixed-fised periodic 
truss beam with 40 bays: (a)  The 2nd mode, for w = 0.112, 
features a pure bending pattern, (b)  the 9th mode, for w = 
0.8566, features a pure conlpression pattern and (c), the 15th 
mode, for w = 1.6917, features a mixed bending-compression 
pattern. 
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Dimensionless Frequency 
F i g u r e  28 Relative change of the natural frequencies of a 40- 
bay truss beam due to  disorder of standard deviation 4%, versus 
the natural frequencies of the ordered beam. Each vertical line 
corresponds to  a normal mode of the truss beam. The close- 
ness of the vertical lines also indicates the modal density in a 
particular frequency range. 

(b) 

F i g u r e  29 (a)  The first mode shape of a 40-bay, ordered, fixed- 
fixed truss beam. The mode's frequency is w = 0.04056. (b) 
The corresponding normal mode of the disordered truss beam 
with a = 4%. The frequency of this mode is w = 0.04047. 

F i g u r e  30 (a)  The  46th mode shape of the ordered truss beam 
in Fig. 29. The mode's frequency is w = 4.597. (b) The corre- 
sponding 46th normal mode of the disordered truss beam with 
a = 4%. The mode's frequency is w = 4.592. 

F i g u r e  31 (a) The 169th mode shape of the ordered truss beam 
in Fig. 29. The mode's frequency is w = 9.76. (b) The corrc- 
sponding 169th normal mode of the disordered truss beam with 
a = 4%. The mode's frequency is w = 9.746. 


