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ABSTRACT

In structural design, the stiffest structure has been
considered optimal. However, if the flexibility is
implemented in some appropriate portions, a flexible
structure provides higher performance than the
stiffest structure. Furthermore, since flexible portions
can provide a mechanical function to the structure, a
new breed of jointless structural mechanisms known
as compliant mechanism can be designed with
structural flexibility. In this study, we present a
methodology to provide the optimal structure
accounting for structural flexibility in the case of
periodic input loads. First, dynamic mutual mean
compliance is introduced in order to define flexibility
using a mutual energy concept. Second, a new
multi-objective function incorporating the
maximization of flexibility and stiffness is proposed.
Next, an optimization procedure is constructed based
on the homogenization design method and sequential
linear programming (SLP). Finally, some examples
are presented to confirm the problem specifications
of the optimal configurations.

INTRODUCTION

Topology optimization has been extensively
considered to design the structural configuration for
the stiffness maximization and the eigen-frequency
maximization. We shall discuss a structural
optimization method which implements structural
flexibility in the case where structures are subjected
to a periodic applied force in time using the
homogenization design method. In general structural
design, the stiffest structure has been considered
optimal. However, by implementing flexibility in

appropriate portions of the structure, we can obtain
additional functions such as the mechanical function.
A typical example of a structure with an additional
mechanical function is a compliant mechanism (a
flexible structure). It is designed to be flexible in
order to achieve a specified motion.

The earliest effort of incorporating flexibility into a
structure was made by Burns and Crossley1, and
Midha and his associates2 developed a design method
based on traditional rigid body. On the other hand,
Ananthasuresh et al.3, Sigumud4, and Nishiwaki et
al.5 constructed design methods based on the
topology optimization technique. However, these
works focus on the design of compliant mechanisms
for static force input and do not consider the situation
where compliant mechanisms are subjected to
periodic loads in time.

It is also noted that we can design a high frequency
actuator or a mechanical transducer by combining a
flexible structure with excitation devices such as
piezoceramic or electromagnetic devices (e.g.
Onituska et al.6). Since these devices have small time
constants, they can provide high frequency excitation.
One drawback of such devices is that the output
displacement is generally too small for use in an
actuator or mechanical transducer. However,
combining these devices with flexible structures can
overcome this problem. That is, the mechanical
structure can amplify the device displacement using
flexibility. Typical applications are the design of the
ultrasonic motor and the ultrasonic traveling wave
linear motor. While several methods have been
presented for analysis of this type of high frequency
actuator using FEM (e.g. see Kagawa et al. 7), a
design method of a flexible structure for high
frequency actuators has not been established.

1 Copyright © 2000 by S. Min, S. Nishiwaki and N.
Kikuchi. Published by the American Institute of
Aeronautics and Astronautics, Inc. with permission.

1
American Institute of Aeronautics and Astronautics



(c)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

In this paper, we shall develop a methodology in
which the homogenization design method is used to
obtain the optimal structure design considering
flexibility for cases in which the boundary is under a
periodic load in time.

HOMOGENIZATION DESIGN METHOD

The homogenization design method has been
widely used as a topology optimization method since
Bends0e and Kikuchi8 introduced. The key ideas are
the use of the extended and fixed design domain D
which includes the original design domain Qrf , a
priori, and the introduction of the characteristic
function defined by

fl if

This characteristic function allows to describe any
shape or topology as an optimal configuration.

Since the characteristic function can have only the
discretized value, either 0 or 1 in an infinitely small
area, the physical properties defined using the
characteristic function are very discontinuous
everywhere in the extended design domain D. This
nature makes numerical treatment of the structural
optimization problem difficult. To overcome this
problem, Bends0e and Kikuchi8 utilized the
homogenization method. In this method, the
discontinuous physical properties are relaxed to
smooth functions as the homogenized properties. The
extended design domain D is reconfigured using the
homogenized properties.

Consider the microstructures shown in Fig. 1. The
microstructure is formed inside an empty rectangle in
a unit cell, where a, P, and 6 are regarded as the
design variables. The variable 9 represents the
rotation of the unit cell.

Q.^-
Design domain

Microstructure

Fig. 1. Microstructures for the relaxation of the
design domain

First, we calculate the homogenized elasticity
tensor, EH, in the case where the angle 6 is set to 0.
To obtain this homogenized elasticity tensor, the
characteristic deformations, z ( x , y ~ ) , are calculated
using the following equation:

[Sy(v)T E(X,y)£y(Z(X,y))dY

(v)T E(x,y)dY for Vve
(2)

, / x jwhere ev(v) =4 — - dv2 l dv,
— - — — L

dy2 2(dy2

Vy is the admissible space defined in the unit cell Y

such that Vy = | v : v; e //' (7) v is Y-periodic .

After obtaining the characteristic deformations, , the
homogenized elasticity tensor, EH , is computed by

(3)

where |7| stands for the area of the unit cell. Next,
when the unit cell is rotated by angle 9, the
homogenized elasticity tensor, EG , is computed by

EG = R(6}T EH R(9] (4)

where R is the rotation matrix.
Thus, the homogenized elasticity tensor, EG , is

determined by the microscopic design variables a, P,
and 9.

FORMULATION OF FLEXIBILITY AND
STIFFNESS UNDER PERIODIC LOADS

The flexibility and stiffness are formulated in the
case where the periodic loads in time are applied
using the mutual energy concept introduced by Shield
and Prager9 and Huang10. Suppose that an elastic
body occupying a two dimensional domain, Q, is
fixed at boundary F d . Now we consider the two
equilibrium cases with a different traction in a
different boundary: Case (a) and Case (b), as shown
in Fig. 2. That is, in Case (a), the elastic body is
subjected to boundary traction t' at boundary F(l ,
and in Case (b), it is subjected to boundary traction
f at boundary F,, . Body forces applied to the
elastic body and the damping effect are assumed to
be ignored for simplicity in the formulation. The
displacement fields are u =\u\,u\} in Case (a), and

u2 = (w,2,M2
2} in Case (b). We suppose that tractions

and are harmonic excitations to the elastic body,
and displacement fields and are also harmonic in
the steady state. That is, tractions t{ and t1 and
displacement fields u' and u2 are assumed to be
described as

f'=7W2 = 7V* (5)
u=Uleia,u2=U2ei°" (6)

where a> stands for an excitation frequency, t stands
for time, and 7" , T2 , U1 and U2 stand for
amplitudes of t] , t2 , u' and u2 , respectively.
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Here, we introduce the linear form implying the
mutual mean compliance in the dynamic problem
defined by

I2([/')=[ T2U'dT = [ T2V]dT, U1 eV (7)

where ¥ is the admissible linear space such that
V = (v = V& : v, e Hl (Q) with v = 0 on Yd, i = l,2\.

We assume that boundary traction t1 in Case (a)
is an applied force, and the amplitude of boundary
traction T2 in Case (b) is a unit dummy vector.
Then, mutual mean compliance Z2(t/') represents
the measure of deformation at boundary F,, when
we apply boundary traction /' at boundary T, .

That is, mutual mean compliance L2 (u'} is
interpreted as how flexible or stiff boundary F,, is
when boundary traction t' is applied at boundary
F, in the dynamic case. Therefore, by maximizing

or increasing the absolute value of L2 (U1 \, we can
obtain sufficient flexibility along a direction specified
by T2 with respect to t1 . Note that both the
maximization of L2(u1} and minimization of

L2(U1} provide sufficient flexibility, because under
harmonic excitation, the deformation in the direction
of - T2, where the phase angle is a>t, is identical to the
deformation in the direction of T2, where the phase
angle is raH- n.

Case (a) Case (b)

Fig. 2. An elastic body subjected to two tractions

The following bilinear forms to describe the
equilibrium equations are introduced by the concept
of mutual potential energy:

(8)

(9)

(10)

(U)

f o r t / ' e F , V v 2 e F

f o r t / 2 e F , V v ' e F

Es(u)dQ.

au(u,v}=

with linearized strains

(12)

where E is the elasticity tensor and p is the mass

density. Substituting U2 into v2 in (8) and U1

into v1 in (9), we obtain the following relation at
equilibrium:

and the total mutual potential energy can be written
as follows:

(14)

Taking the first variation of F with respect to U],
U2 and a design variable A yields

at/'
3-1 U~.

2

J_
2'

8A

8A (15)

-0>2C'2° c dA
-SA + SU'"

dA2

H——

Using equilibrium equations (8), (9) and (14), the
sensitivities of the total mutual potential energy and
the mutual mean compliance L2 (U*} with respect to
a design variable A yield, respectively,

dF __ l_ ,- / 2 \ T dE i , \
dA ~ 2 ***( ' dA£\ ' n,,(1°)

and

(17)

Next, we only consider Case (a). The linear form
implying the mean compliance in the dynamic
problem is defined by
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I1 ({/')=[ T1 U'dT =[.T- U-dT, Ul e V (18)

The mean compliance Ll(u1} is interpreted as the

measure of stiffness at boundary F,, when we apply
boundary traction t1 at boundary F/( . By
minimizing or decreasing the absolute value of

(, we can obtain sufficient stiffness along a

direction specified by T 1 . Since the displacement
fields satisfy the following the equilibrium equations:

fort/1 eF .Vv 'eF
we obtain the following relations at equilibrium:

(20)

(21)

Taking the first variation of F with respect to
(71 and a design variable A and using equilibrium
equations (20) and (21), the sensitivities of the total
mutual potential energy and the mutual mean
compliance L1 (ul } with respect to a design
variable A yield, respectively,

dA 2

~2& *

06)

and

(17)

FORMULATION OF THE MULTI-OBJECTIVE
OPTIMIZATION PROBLEM

Suppose that the original design domain Qrf of a
flexible structure is fixed at boundary F^ and is
subjected to the periodically oscillating boundary
traction t} = T]ejl0' , where ca is an excitation
frequency and t is time, as shown in Fig. 3.

Case (a) Case (b) Case (c)

Fig. 3. Two performance criteria for flexible
structure design

Now, we design a flexible structure which starts to
deform along a direction specified by unit dummy
vector T2, where t1 = T2e'°* as shown in Fig. 3
(a). To implement this function in the flexible
structure, we must take into account the kinematic
and the structural requirements. To satisfy the
kinematic requirement, the flexible structure must
have sufficient flexibility, which provides sufficient
deformation along a direction specified by unit
dummy vector T2 when periodically oscillating
boundary traction f is applied. The kinematic
requirement is obtained by maximizing the absolute
value of mutual mean compliance Z,2 ([/'), and the
problem can be formulated as follows:

Case (a)

max Z?(C/ ' )

subject to

(22)

(23)

(24)

V(a] = {v: v, £ H] (Qd) with v = 0 on Frf} (25)

g(a,p}= ^ (l-a/?yn-Q, <0 (26)

where Qs is the total volume constraint of the solid
material forming the porous structure. On the other
hand, for the structural requirement, we impose
sufficient stiffness at boundaries F, and F/; as
shown in Fig. 3 (b) and (c). For case (b), sufficient
stiffness is obtained by minimizing the absolute value
of the mean compliance at boundary F , , posed by

traction t1 while boundary F(, is fixed, and the
problem can be formulated as follows:

m na.p.e ^3H T3 U3 dT

subject to
_ rn]

(27)

(28)

(29)

(30)

Q s < 0 (31)

For case (c), sufficient stiffness is obtained by
minimizing the mean compliance at boundary F,,

with v = 0 on F,, and F ;
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posed by the reaction force of the reaction force
while boundary F, is fixed because the flexible
structure must be imposed by applied traction tl.
The direction of the reaction force is assumed to be
opposite to that of dummy load vector T2. However,
the excitation frequency of the reaction force is not
uniquely determined, a priori, and is usually
unknown in the design phase of some flexible
structures, since this depends on the contact
condition. In this case, we assume that the reaction
force is considered to be statically applied in the
engineering sense, and the problem can be formulated
as follows:

Case (c)

mm

subject to

*•(«<)={.

<Tl4 __ rj

(32)

v:v / 6 / / ' (n , )
with v = 0 on F and F,

(33)

(34)

(35)

(36)

where COR is the excitation frequency of the reaction
force.

To satisfy the kinematic and the stiffness
requirements, it is necessary to consider three
optimization problems and the multi-objective
optimization problem is formulated to design a
flexible structure under a periodic load in time. The
weighting method has been employed most
commonly because of the simplicity, but in this
problem, the mutual mean compliance I}(U^\ can
be close to infinite with certain weighting
coefficients. A different form of a multi-objective
function is proposed to find the appropriate optimal
configuration in the Pareto optima as follows:
max / = I

(37)

where W and w,. are the weighting coefficients
such that 0 < W < \ and 0 < ws < 1. W represents
the relative importance of flexibility and stiffness.
ws represents the relative importance of two
stiffnesses defined in Case (b) and Case (c) shown in
Fig. 3. We take squares of two mean compliances
£3(w3) and L4(u4} since the absolute values of
them must be minimized to obtain sufficient stiffness
in the dynamics case. It is noted that since weighting
coefficient W depends on excitation frequency

a>, we must adjust this weighting coefficient for a
different frequency problem. Since the multi-
objective function is composed of the logarithm
functions, the optimal solution obtained is one of the
Pareto optima5.

(input Data

Calculate homogenized elasticity coefficients

Calculate sensitivities using FEM

Solve SLP problem with respect to a and J3

Fig. 4. Optimization procedure

Fig. 4 shows a flowchart of the optimization
procedure. In the first step, homogenized elasticity
tensor is computed using the finite element method.
Using the finite element method, the numerical
values of homogenized elasticity tensor are
calculated. In the second step, the mutual mean
compliance, the two mean compliances, the total
volume, and the objective function are computed
using FEM. Extended design domain D is discretized
by the finite elements. We approximate that the
configuration of the microstructure is uniform in each
element. The configuration of the microstructure in
the z'-th element can be represented by three design
variables, a,, /?,, and 6, for i=l,...,n, where n is the
number of element. Therefore, the total number of
design variables is 3« in the entire design domain D.
In the third step, sensitivities of mutual compliance,
the two mean compliances, and total volume, and the
objective function with respect to design variables are
computed if the objective function is not converged.
In the fourth step, the optimization problem with a,
and f3i is solved by sequential linear programming
(SLP). SLP can deal with a variety of objective
functions and can handle numerous design variables
although fast convergence cannot be expected. In the
fifth step, angle 6, is updated. In this study, this angle
is practically updated to minimize the two mean
compliances for simplicity of computation. To
minimize the two mean compliances, the direction of
angle 6} is updated to the principal direction of stress
using the multi-loading criterion.
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NUMERICAL EXAMPLES

Fig. 5 shows the design domain where boundary
conditions and specifications are as indicated. The
deformation along a direction specified by dummy
load at B is to be maximized when the periodically
oscillating force along a direction specified at point
A, while the stiffnesses at both points A and B are to
be maximized. Points A and B are corresponding to
F, and F,, , respectively. The properties of the
isotropic material correspond to Young's modulus =
100, Poisson's ratio = 0.3, and mass density = 7.8510"
6. The magnitude of amplitude of an applied force is
assumed to be a unit load. The design domain is
discretized using 1800 QUAD4 finite elements. The
total volume constraint of the material Qv is
considered to be 20% of the volume of the whole
design domain.

24

A

Design domain Qj

B
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- 12 ̂
Fig. 5. Design domain for simple model

• Optimal solutions with different weighting
coefficient W

There exist many local optima in this dynamic
problem since we can achieve the same eigen-
frequency with different material distributions in the
fixed design domain in order to obtain sufficient
flexibility. We must choose appropriate initial
configurations in order to obtain the appropriate
optimal configurations which have physical meaning
among local optima. Therefore, we basically use the
optimal configuration in the static case as an initial
configuration in the dynamic case. Fig. 6 shows the
optimal configuration in the case of excitation
frequency <w=0 (rad/s)(OHz) and \vs = 0.4 using the
uniform initial configuration where values of
microscopic design variables a, and fft are set to 0.90,
and the value of Q is set to 0.0 for all elements. To
investigate the effect of the weighting coefficient
W , Fig. 6 is utilized as an initial configuration while
the excitation frequency is set to #>=502.65 (rad/s)
(80Hz). Table 1 shows values of three objective
functions and the lowest eigen-frequencies of optimal
configurations with different weighting coefficients
W, and we can see that each optimal configuration
has the lowest eigen-frequency which is almost the
same as the excitation frequency of the applied force.
It is reasonable that the resonance situation can
provide the highest flexibility if we do not take into

account the structural requirement. However, due to
the structural requirement which prevents the
objective function from going toward infinity, the
lowest eigen-frequency is not exactly the same as the
excitation frequency of the applied force. Fig.7 and
Fig.8 show the optimal configuration and its eigen-
mode of the lowest eigen-frequency, respectively, in
the case of W = 0.02.

Fig. 6. Optimal configuration
(co=0 (0 Hz), W=0.5, ws=0.4)

Table 1. Objective functions at optimal points
(Optimal configurations in Fig. 6 used as initail solutions)

co=502.65(rad/s) (&QHz),ws=QA

W
0.01
0.02
0.03
0.05
0.08

0.1
0.3
0.5

case (a)
6.811

1146.86
1450.96
290.52
432.96
421.51
713.03

198.041

case (b)
0.359
0.362
0.374
0.390
0.402
0.417
0.535
0.633

case (c)
0.147
0.149
0.153
0.156
0.161
0.163
0.180
0.198

Eigen-frequency (Hz'
32.78
79.81
80.17
80.90
80.62
80.80
79.24
80.81

Fig. 7. Optimal configuration
(co=502.65 (80 Hz), W=0.02, ws=0.4)

Eigen-mode shape

x Original shape
Fig. 8. Eigen-mode of the lowest eigen-frequency

• Optimal solutions with different weighting
coefficient ws

Table 2 shows values of three objective functions
and the lowest eigen-frequencies of optimal
configurations with different weighting coefficients
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ws while Fig.6 is also utilized as an initial
configuration and W is set to 0.02. It is noted that
the weighting coefficients ws corresponding to the
relative stiffness significantly change the flexibility
defined by the mutual mean compliance, but have
little influences to the stiffness. Fig. 9 shows the
optimal configuration in the case of ws = 0.8 and
gives similar topology except the portion connecting
from PI to ?2 compared with Fig. 7.

Table 2. Objective functions at optimal points
(Optimal configurations in Fig. 6 used as initail solutions)

o=502.65(rad/s) (80Hz),fF=0.02
w

0.2
0.4
0.6
0.8

case (a)
6.863

1146.86
739.45

1779.13

case (b)
0.371
0.362
0.363
0.363

case (c)
0.125
0.149
0.168
0.213

Eigen-frequency (Hz)
31.12
79.81
79.71
79.93

Fig. 9. Optimal configuration
(0=502.65 (80 Hz), W=0.02, ws=0.8)

• Optimal solutions with different excitation
frequency o

Table 3 summarizes values of three objective
functions and the lowest eigen-frequencies of optimal
configurations with different excitation frequencies o>
while ws is set to 0.4. Different weighting
coefficients W and initial configurations are required
to obtain physically meaningful structures. Fig. 10
shows that there is little difference in structural
topology up to 0=251.33 (rad/s)(40Hz). As the
excitation frequency becomes higher than 40Hz, the
structural portion connecting from PI to ?2 is
generated, and on the contrary, no materials are
distributed to the portion from P3 to P4.

It is clear that the optimal configuration depends
on the excitation frequency and is noted that each
optimal configuration has the lowest eigen-frequency
which is almost the same as the excitation frequency
of the applied force. That is, the dynamic effect
affects the topology configuration, especially in the
high excitation frequency case. Therefore, the
dynamic effect must be considered in the design
phase if the excitation frequency of the applied force
is high.

Table 3. Relation between the applied frequency
and objective functions (ws=0.4)

w/27t (Hz)
40
80
120
160
200
240

W
0.005
0.02
0.05
0.2
0.1
0.4

case (a)
919.16
1146.86
509.54
284.21
191.97
518.87

case (b)
0.383
0.362
0.372
0.479
0.434
0.643

case (c)
0.152
0.149
0.156
0.166
0.168
0.202

E.f.(Hz)
39.55
79.81
119.62
159.26
199.32
240.51

Fig. 10. Optimal configuration
(co=251.33 (40 Hz), W=0.005, ws=0.4)

Fig. 11. Optimal configuration
(0=753.98 (120 Hz), W=0.05, ws=0.4)

Fig. 12. Optimal configuration
(0=1005.31 (160 Hz), W=0.2, ws=0.4)

Fig. 13. Optimal configuration
(0=1256.64 (200 Hz), W=0.1, ws=0.4)

liî l̂lJiJMlll'fiil̂ liS

Fig. 14. Optimal configuration
(0=1507.96 (240 Hz), W=0.4, ws=0.4)
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CONCLUSIONS

In this research, we developed a topology
optimization method implementing flexibility for
cases in which the boundary is under a periodic load
in time. First, the mutual mean compliance was
formulated using the mutual energy concept in order
to define the measure of flexibility in the dynamic
case. The sensitivity of the mutual mean compliance
with respect to a design variable was derived.
Second, the multi-objective optimization problem
was formulated in order to design a flexible structure
under a periodic load in time. A new multi-objective
function was also formulated in order to obtain
appropriate optimal solutions which have physical
meaning. Next, the optimization algorithm was
constructed based on the homogenization design
method. Finally, two design examples were presented
to examine the characteristics of the optimal
configurations. These examples confirm that the
flexible structure under a periodic load can be
designed using the method presented here.

ACKNOWLEDGEMENT

This research was supported by Center of
Innovative Design Optimization Technology (ERC of
Korea Science and Engineering Foundation).

REFERENCES

(1) Burns, R. H.; Crossley, F. R. E. 1966: Structural
permutations of flexible link mechanisms. ASME
Paper No. 66-MECH-5.
(2) Her, I.; Midha, A. 1987: A compliance number
concept for compliant mechanisms, and type
synthesis. J. Mechanisms, Transmissions, and
Automation in Design, Trans. ASME 109, 348-355.
(3) Ananthasuresh, G. K.; Kota, S.; Kikuchi N. 1994:
Strategies for systematic synthesis of compliant
MEMS. Proc. of the 1994 ASME Winter Annual
Meeting, Chicago, Illinois DSC-55-2, 677-686.
(4) Sigmund, O. 1996: On the design of compliant
mechanisms using topology optimization. Danish
Center for Appl. Math. Mech. 535, 1-28.
(5) Nishiwaki, S.; Frecker, M. I.; Min, S.; Kikuchi,
N. 1998: Topology optimization of compliant
mechanisms using the homogenization method. Int. J.
Numer. Meth. Eng. 42, 535-650.
(6) Onitsuka, K.,; Dogan, A.; Tressler, J. F.; Xu, Q.;
Yoshikawa, S.; Newnham, R. E. 1995: Metal-ceramic
composite transducer, the "Moonie". J. Intel. Mat.
Sys. Struct. 6, 447-455.
(7) Kagawa, Y; Tsuchiya, T.; Kataoka T. 1996:
Finite element simulation of dynamic response of
piezoelectric actuators. J. Sound and Vibration 191,
519-538.

(8) Bends0e, M.P.; Kikuchi, N. 1988: Generating
optimal topologies in structural design using a
homogenization method. Comput. Methods. Appl.
Mech. Engrg. 71, 197-224.
(9) Shield, R. T.; Prager, W. 1970: Optimal structural
design for given deflection. J. Appl. Math. Phys.,
ZAMP 21, 513-523.
(10)Huang, N. 1971: On principle of stationary
mutual complementary energy and its application to
optimal structural design. J. Appl Math. Phys.,
ZAMP 22, 609-620.


