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ABSTRACT

The mementum interaction of a cylindrical
droplet c¢loud entrained in a forced or
potential wvertex 1s investligated in the
present study. A clecud expansion time scale
T,/e, is first ldentified, then a dimension-

less parameter ¢, equal to the ratio of the
cloud expansion time to the diffusion time is
found to characterize the behavicr of a
droplet-laden swirling cloud. For the casea
of ¢ <<1 the forced vortex strength, even
decreases due t¢ the droplet drag con the gas
flow, remains uniform within the initial
cleoud reglon. Cn the other hand, the
droplets in the potentlal vortex essentially
behave in a non-interactive mode so that the
vortex decay is mainly caused by the viscous
stress In itself rather than the exlstence of
droplets. Besides, the parameter ¢ has
implications for the cloud wvaporizaticn
behavior considering Pr=0(1). The results
for ¢ << 1 suggests that a "strong™ swirling
flow may substantially influence the
structure of the group vaporizatiocn or
combustion. Finally the approximate
analytical sciutions develcped for ¢ <<1 are

found to be In excellent agreement with
nurerical solutions.

NOMENCLATURE

Droplet diameter
Evaporation constant
Vortex strength
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Inter-dropiet distance
Number density

Cloud radius
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Time

Droplet velocity

Gas velocity

Gas wviscosity coefficient

Gas klnematic viscosity

Density
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Velocity relaxation time

thickness of the vaporization laver
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Dimensionl Variab]
Ca Drag coefficient
) = Dyq/Bye
% - Ry/Da?
K = K(1+0.276 Re?pr1/3)
Kep kg defined in Eg. (13)
Koo Kpp defined in Eag. (23)
n = n/n,
Pr Prandtl number
Re Reynolds number
r = ¥/R,
t = T/ (T,/8,)
Uy = 0/ (2, Re/ )
Uy = UprtkgRy)  or Ug/ (ko/Ry)
Vr = Gr/(t‘vﬁO/Eo)
Vo = Vg/keRg)  or  Tp/ (Kpg/Ry)
) - -
p - L5 5,05,
B = (1+2K)P
g, = (2MnyDyuRe2) 7t
£, = (RepTed? or (KT RH2
o = (Ty/e,) / (Rg2/V)
T = T/7,
pg = §g/§g0
g Angular displacement
Y] Volume of the discrete cell
A =(keo—K) /kp or a difference operator
Subscripts
o Initial condition
d Droplet
£ Forced vortex
g Gas
P Potentlal vortex
r Radlal direction
0 Tangential direction

INTRODUCTION

In most liquid fuel combustion systems a
spray is injected through an atomizer inte a
chamber, where it mixes with the ambient gas
and burns. Experiments!:? have revealed Lhat
the combustlon of droplets In a spray differs
fundamentally from the combustion of an
isclated droplet. The collective behavior of
droplets 1in a spray usually results in a
relatively cool and fuel-rich vegion. The
droplets 1in this region first vaporize and




the vapor then burns as a gas-phase diffusion
flame outside the droplet cloud; in other
words, the dreplets in the spray vaporize or
purr as a group rather than as individual
droplets.

The c¢oncept of the group behavicr of
droplet clouds in a stationary atmosphere has
by now been well sstablished.? 7 The effect
of convective flow on droplet cloud behavior
has been studied by Bellan and Harstad.®:?
However, droplet clouds in swirling flows
have rarely been investigated even though

swir® combustors,l9 swirl atemizers,ll swirl

diffusion flames*? and swirl mixing’?® have
receatly gained considerable attention. Mac

et al.ll have found in recent cxperliments
~hat swirl spray flames have a different
structure from non-swirl spray flames or
regular turbulent diffusion flames. Tn a
provious study'? the behavior of a dilute
cloud in both forced and potential vortices
has been studied, and it was concluded that
the droplet density redistribution in the
cloud may significantly influence the
structure of the group vaporization or
combusticon.

This paper is focused on droplet c¢louds
in axisymmetric swirling flows, in particular
on the interaction between the droplets and
the gas flow. The momaentum interaction
metweeon the o©woe phases 1s  in gencral
attributed to three components: (1) the
droplet drag, {2) the dreplet vaporization,
and (3) a small pressure gradient.? Previous
analytical studies!3~17 of the droplet moticn
in swirliang flows have generally neglected
all interaction effects since the inclusion
cf any of thesc ecffects will certalinly
cemplicate the problem. Fortunately it has
heen found that a nondlilute spray only
requires a few mlilli-seconds to attalin a
near-saturated condition, and only a small
fraction of a second te reach complete
saturaticn within the cloud.® It is then
reasonable to assume that the cloud 1is
initially in the near-saturated conditlicn so
that the vaporization effect on the interior
gas motien 1s small, In the present study
the momentum exchange due to the droplet drag
and slow vaporizatlon will be evaluated while
the pressure ls assumed constant.

The geverning equations for the swirling
droplet clouds are first formulated below and
are used to identify characteristlc time
scales assocliated with the swirling clouds.
It is shown that the benavior of the swirling
cloud is characterlized by a parameter equal
to the ratic of a characteristic ¢loud
expansion time to a characteristic diffusion
time.  The governing eguations are then used
o study the cffent of gas-dreplet
interaction on feorceow and potential vortex
droplet clouds.

GQVERNING EQUATJIONS AND CLOUD
CHARACTERISTICS

The behavicr of a dilute cylindrica!
droplet cloud in swirling flows has been
analyzed elsewherel? by assuming time-
invariant forced and potential vortices. The
present analysis is mainly concerned with the
momentum interaction between a cylindrical
droplet cloud and the swirling flow of an

infinitely large region (see Flg. 1), as well
as the characterization of droplet-laden
swirling flows by suitable dimensionless
parameters. As discussed above it can be
assumed that the swirl cloud is initially in
a near-saturated state so that the radial
veloclty {Stefan flow) of the vapor 1s small.
It 1s not c¢lear how long 1t will take the
swirl cloud to reach complete saturation or
if it ever doces so0. In this study the
droplets wlthin the cloud are assumed to
evaporate slowly. The mass loadlng ratioe
(liguid mass/gas mixture mass) within the
cloud 1s assumed te be in the range of 0.1~
10. The initial swirling gas flow is that of
an axlsymmetric forced or potential vortex.
The analysis of other more complex swirling
flows such as a Rankine or Hill spherical
vortex i1s not attempted here.

The major assumptions made In this
analysis are: {1) the density ratio {(Py/Pgo)
is of the order of 10006, {2} the dropleb mass
loading ratio is assumed nct to exceed 10 so
that the volumetric fraction of the dreoplets
can be neglected, (3) the droplet
vaporization rate within the spray is assumed
small, (1) the droplet temperature is
constant and uniform, {5) the droplets arc
monce—-sized and initially uniformly
distributed within the cloud, (&} the droplet
interactions, breakup and collislons are
neglected, ({7) the radlal velocity of vapor-
gas mixture within the cloud 1is at least onc
order of magnltude less than that of the
droplets.

1 o i E s T4 Scal

In the previous non-interactive vortex
cloud studyl4'19 it was shown that an
appropriate parameter governing the single
droplet motlon in an axisymmetric forced or
potential wvortex field is £, (= square of
Stokes number) rather than the Stokes number
ltselif. The Stcokes number is deflned as the
ratio of the droplet velocity relaxation time
to the characteristic flow time,2% and is
often used to indlcate the ability of
droplets to respond toe c¢hanges in the gas
flow. For forced and potential vortices the
initial gas velocities are

Vg = Kpof,  kpo/F {la,o)

respectively and the corresponding valuos of
the parameter €, are then

g, = (kegTa) 2, (RpgTe/Re%) 2 {?a,b)
Here  TyPaliy’/ (18R is the initial
velooily relaxation vime for a single
droglet . Typical values of T, for 50 and 100

Um hydrocarbon fuel droplels in a boiling
environnont are  aboutl 5 and 20 msee
respectively. Note that symbols arc deflined
in the nomenclature,

For g,<<l, it follows from physical
arguments that the droplet tangentiai
veleocity will rapidly relax to the gas
tangential velocity, so that after a short
time the droplet velocity becomes independent
of the initlal tangential velocity. For non-
vaperizing dreoplets the radial velocity, to



zeroth order, in both forced and potential
vortices can be shown to be respectivelyl?

O, = (£,/T)T,  (6,/T,) (Rg1/TY) {3a,b)

Equaticns (3a,b) suggest that the initial
cloud poundary at T = R, ls expandirg with
velocity (£,R,/Ty), seo that a characteristic
cloud expansion tlime based on the cloud
radius R, can be defined as

Cloud expansion time scale = T4/g,. (4)

The role of the cloud expansiocn time
scale in the case of vaporizing sprays will
become evident after the nondimenslconal-
ization of governing equatiocons.

The droplet phase 1s treated in
Lagranglan coordinates and as a continuum in
the number density equation. Using the

characteristic time 7,/g,, length R,, radial
velocity £,R;/%, and tangential velocity k. R,
or waﬁo for the forced and potential

vortices, the droplet dynamic eguations are
non-dimensionalized to yleld

du 1 Ug? 1V, ~U
-a?‘ = + = L f(Re) (5a)
g, ¥ g T

diy U0y 3 V= Uy

il T f (Re) {5b)
dr/dt = U, (6a)
r{df/dty = Up/e,t’? (6b)

and for the low Reynolds Numbey flow under
conslderation the viscous drag functlon is

taken as f(Re) =1++Re?’3. It should be noted

that the Basset force, pressure gradient
force, apparent mass force and any other
forces are neglected bascd on assumption
(13?1; droplet-droplet interacticns are
neglected based on assumption (2), and the
effect of droplet vaporization on the drag 1s
also neglected bkased on assumption (3).
Therefore, the droplet drag coefficlent Ca=
{24/Re)f(Re) can be used with satisfactory
accuracy.2?? Moreover, 1If g,<< 1, which 1s
the case of interest in this analysis, the
relatlive veleocity and hence the associated
Reynolds No. will guickly relax to a value of
Oleg,), so that the Stokes drag assumption
f{Re) =1 can be considered as a good
approximation in Eg. (5). On the other hand,
the varlation of the droplet drag ccefficient

has to be consldered more carefully if g,21.

Using the initlal number density n, and
initial droplet diameter Dy, as reference
values, the dimensionless droplet nunber

density and vaporization equatlions are given
by

-d...r..]. + ﬂa(rur) = 0 7
dt Y r 9r tn
dt ; ‘
Pl & 0276 Rt By - - KD (8)
t g, £,

where K 1s the dimenslonless wvaporization
constant. The dimensionliess relaxation time

T, in fact, is the square of the dimension-

less droplet diameter D? since Tmii%aﬂ(ﬁdlﬁ
Yao)?- On the baslis of assumption (4), it ls

reasonable to use the "p?-law" of
vaporization which is the basis of Eg. (8).
It should be noted that K~0(1l) in single
dreoplet combustlion. However, K<<1 in the
case of the slow vaporizatiorn considered

here, and X=0, s¢ that T=1 in the non-
vaporizing case.

Since the gas radial velocity is small
compared to the gas tangentlal velocity, the

dimensionless f-momentun equation for the gas
becomas

av Vg ~ U Qg
_a..:.n. :Hﬁ.—o__....._o_f(p\e‘ ¥‘2K_B.{Ug - VD‘
e e, T £,T
g4 .19
+p ar(r artrvg)) (9}
g

B, the droplet loading ratie, the ratie
of the spray mass per unit velume to the gas
density, c¢an be represented as

Bn n 3?2

- (10)

p o,
The first term on the right hand side of
Eg. (9) represents the drag force ¢f the
droplets on the gas flow; the second term is
the momentum source (sink} due to droplet
vaporization. The third term is due to the

gaseous viscous stress, and the coefficient ¢

in terms of dimensional quantitiles 1s given
by

%/t
g = ——= (11
Ro2/Vy

Therefore ¢ represents the ratiec of the
characteristic cloud expansion time to the
characteristic wvilscous diffusion time (or
say, vortex decay time). The relevance of
this ratio to practical sprays becomes

apparent when ¢ 1ls expressed in alternate
form after substituting for T,:

R 2 .
1 P Do’ 2, &

——id =8, (12
188, 5oy Ry? 3,

where €= (270 D4R,?) 7! has been used as a
small parameter in the asymptotic analysls of
spherical sheath combustion by Correa and

Sichel.®® The parameter g, is in fact the



inverse of the group conmbustion number
proposed by Chiu and his coworkers,>* and

can be shown to be equal to (8/Ry)? where §
is the thickness of the vaporizaticn front at
the edge of the cloud,3 8 For the case of
By=0(1) in the swirling cloud, the relative

magnitudes of g, and £, will determine the
significance of the gas viscous diffusion,
ard hence the significance of the gas thermal
diffusion 1f Pr=0{1) relative to the cloud
expansion due to swirling flows.

The problem of the cloud benavior in
swirling flows can now be categorized into
various reglmes according to the magnitude of

g. The aralysls of the momentum interacticn
will be presented in the subsequent section.

) 5 << 1

Gas diffusion velocity << Cloud expansion
vaelocity

The wviscous diffusicn of the vertex flow
in this regime is negligible. The gas
velocity within the cloud 1s Jargely
determined by the droplet drag and the
vapocrizatlion source. When the droplets
spiral out of the initial cloud, they may not
survive for a significant time due to the
heated amblence. The 1nitial cloud reglon is
therefere the main region within which the
vortex velocity will govern the droplet
moticon and is the reglon which will be
particularly discussed in this study. In the

case of Pp=0(1}, this regime implies g <<g,
«<<1, and this conditlon will pe satisfied
for relatively large values of ke or kg

12 g = 0l)

Gas dlifusion wvelocity = Cloud oxpansion
velcolity

The decay of the vortex within the cloud
is not only determined by the coxistence of
droplets but also by the viscous stress
within the amblent gas or the cloud itself.
This regime is characterized by E.=g, 1if B,
=0(1).

43 g > 1

Gas diffusion veloclty >> Cloud expansion
veloclity

The strength of the veortex Lls very
limited. Tn the limlting case., the cloud

becomes almest statlcnary so that the droplet
motion becomes less important compared to the
speed of the viscous or thermal diffusion,
Tre vapeorization behavior of the cloud is
characterized by a regressive vaporization
layer at the edge of the cloud. The speed of
this tnin layer is mainly determined by the
parameter E. and the ambient conditions.%s 8
Therefore, it 1s better to use the diffusicon
time scale rather than the cloud expansion
time scale teo describe the vaporization
behavior of the cicud. Per By=0(1), then g,

<<E,<<) in this regime.

The kehavior of the cylindrical cloud in
the regime of 6.»>1 {s essentially similar to
the spherical problem discussed by Correa and
Sichel. 38 ir the regime of G=0{(1)

numerical solutions are generally required.
In the following the analytical results for

the momentum interaction are developed for
the regime of o<<1i.

For a typlcal example Py=1, Dgo=100 mum,
Ry;=10 em, then g,=0{(1071) . 1In the regime &
<<1, this implies g,=0(107%) .

ANALYSIS AND RESULTS

1. Forced YVortex Cloud

The dimenslonless gas veloclity in a
forced vortex l1s initially Vg=r ©plus a

small radial welocecity. With the disturbance
caused by droplets, it 1s not c¢lear whether
the gas tangential velocity remains linear
with radius. However, the dimensionless gas
velocities may still be expressed as

Vg = K.r, v

= ](fr'tr (}38,b)

r

Here k¢ 1s not vyet conslidered as an
ordinary vortex strength, but as a general
function of (r,t) defined by Eg. (L3a). Also,
kKep is small compared with k, and should bhe
expressible as a function of ky and droplet
propertices. It sheuld also be noted that k. =
0 for the non-vaporizing cloud.

Without loss of generality, the radial
and tangential velocities of droplets in
Lagrangian coordinates can be written in the
form

Ug = Thit), U, = rtg{t)

(14a,b)
where g and h are arbitrary functions of
time and r=ri{t,ry}. In the Lagranglan
formulation U%,Ur,e,r,T) depend only on time
if the inlitial droplet locatlon ry is
specified.

Substitutling Egs. (13,14) into Eq. (5)
with the ald of Egs. (6,8) yvields the
following equations for the functions gt}
and hit).

dh 1

<= = — (k- h) ~ 21gh {15a)

dt €T

d 1 .

a—%—-—;(h2-(1—x')g+kfr)—tg2 {15p)

v

The zeroth order solutions of Eg. {15)
wlith e,<<1 are hs=k;, g= (k2+ke ) /{1-K') .,  To
first order in g, the scoluticns are than
given by

h = %y - g, {16a)

g = {k2+k, )/ (1L-K") -9, (16b)

where h; and ¢4, are gencral functlons of ¥
and t and to be determined by solving the gas
phase equation (9) and Eq. (15) together.

By neglecting the viscous term In the
case of ¢ << and substituting Fgs.
(13a,11a,16a) into Eq. {9) and elimirating r
from both sides of the equation, it follows
that,



Ik 3 B 3 Bon Tt/
To- = - (14 K1) = hy= - (145 K') e,

(17)
are functions

Four wvartables (K', kg ngT)

of {r,t). However, Egq. {(17) suggests that 1if
K', ng, T are uniform, then k; will also be
uniform {independent of r). Meanwhile Eq.
{7) for the number denslty suggests that if
K', kg, ¥ are uniform, then after the
substitution of  U.~(k2+k, )Te/(1-K'), ng
becomes independent o¢f r, in Lagrangilan

cocordinates and thus will also be uniform in
Hulerian coordinates.

For the regime o©<<1, the temperature
within the cloud 1=z mainly determined by the
vaperization of dreplets, and since XK' is
mainly a function of temperature, the uniform
ngt wlll cause XK' tec be uniform. A uniform
vaporization constant K' will also result in
a uniform dreplet radius T as impllied by Eg.
{8Y. Therefore, if any three of these foux
varlabkles have uniform distribution, the
fourth one will also be uniform. It follows
that ali of these variables will remains
uniform if they are initially uniform.

The independence of these variables from
the radius r greatly simplifies the problem.
k¢ now has the nermal meaning of the vortex
strength. The partial derivative in Eq. (17
is thus essentially as same as the
supbstantial derivative. Therefore h, c¢can be

determined from Eqgs. (15-17) and is given by
h 2t (k2ko 1k {18)

1 (1"3(')(1*‘3') 1 iz T
where P = {14-%K')B. The parameter g,
can be obtained by the substitution of Is!
into Eg. {15b), but it is considered less

important and so 1s not considered further in
this analysis.

The Lagrangian number density to zeroth
order within the original cloud region can be
determined from Eg. (7) by the substitution

of U, and is given by
14
(kA% 01
ne = CXP(-20 —7%:R+?—‘dt) {19)

it is noted that this number density can

ba uscd in both the Lagrangian and Eulerian
formulations since it ts uniform within the
cloud. Finally kg, representing the momentum

interaction between the gas and the cloud, s

obtainod by the substitution of TFas. (18,19
into Kq. (17 and then intoqra;inq. Tt
fotlows that i
t
‘iiB Dg o
ke 0 pi J‘ i act
B
1 4342
;K‘)[O jae } (20)
] Py

where kg is the initial vortex strength.
In general Kg=1 for droplets whose initial
speed equals the gas velocity. For initially

stationary droplets, ki represents the
vortex strength which exlsts after the
droplets have been accelerated to the gas
velocity, and may be approximated by 1/(1+8.)
based on the invariance of total angular
momantum.

The exponential term in Eq. (20}

represents the effect of droplet vaporization
on the vortex strength, whlch i{s unity for
the non-vaporizing case but Is greater than
one for the vaporizing case. For the non-
vaporlizing case f(as in a saturated cloud),
Eq. (20) may be further reduced to an
algebraic eguation after some mathematical
manipulations so that

A A 2kt
(1 - = Yexp(T—=—} = exp{- ——~
i 1+ By {1 + By ?
{21)
whare A= (keo—ke) /k¢
The veortex strength k; in Egs. (20) is

not determined explicitly since ny is also a
function of ki, However, Eq. (21) can be
used to determine the wvarlation of k; with

time easlly. Furthermore, as t —e, B1-0
and kK¢ can then be obtained from Eq. {20) for
the non-vaporizing case.
k
X, = ——t— (22)
o L+ By

The extent of the influence of droplets
on the gas flow is now evident. For the
initial leading ratio By<0.1, the decrease

of the vortex strength (and hence the gas
velocity) is less than 10%.

2. Potential Vortex Cloud

Following the procedures in the analysis
of the forced vortex, the gas and droplet
velocities in the potential vortex can be
expressed as

- = 3

Vg = Kkp/r, Vor = tKy./r (23a,bk)

Ug = ait)/r, Uy = 1p(ty/c? (24a,b)
where X,, kg, Db, q are considered as general
functions of (r,t}). kgt is small comparead
with X, and equal to zere for the non-
vaporizing case. After substitution, Egs.
(5)yand (9) become

da 1

T T TR, —ad {25a})

dt g P

do . L . K)o 3w

ac cgt(q {1 -K'yptk, )y t 1 (25b)

% 3 B

oo Tl GEY ok ma) (26)

W



To zeroth order in g, solutions are qz}%,
p= (k2 +Xk,)/{1~K'). To first order in g, the
sclution is gq=k;-£,q, where

L
o Lert 1 0%y
R B r?ar (2

Therefore, the gas-droplet interactlion in
the potential wvortex 1s mainiy assoclated
with the small radial velocity (Stefan flow)
of the gas. This situation 1s unlike the
forced vortex where the droplet velocity lag
1s mainly determined by the vortex strength
rather than by the Stefan flow. Moreover,
the number denslty in the potential vortex of
the non-vaporizing cloud has been shownid to
be typifled by a high density front at the
location of r= {4t)?*? moving cutward from the
center of the vortex. Even though k., is yet
unknown, 1t 1s small so that the details of
the interaction between the vaporilizing cloud
and the radlal veleocity within the pctential
vortex, though more complex, have only a
small influence on the flow.

However, for the non-vaporizing case, k.
=0 so that g, =0, the dreoplets will nmove with
the same tangentlal speed as the gas. The
drag force due te droplets on the gas flow 1s
therefore zero and the wvariation o¢f the
veleoclty with time will be completely duae to
viscous disslipation. The solution of Eqg. (9)
at any finite ¢time with the boundary
condition of rVg=0 at r=0 is then glven by

X r?
Vo = T [1-exp(-7] (28)
r2
or ky = Kpg [l—exp(—a)] (29)

Here k, is not uniform so that it does
not represent the ordinary vortex strength.
Also, ky,=1 for droplets with the initial

speed of the gas veleccity, and kpnﬁl/(1+ﬁﬂ
for initlally staticnary droplets. In the
case of ¢ <<1, the characteristic time for
the motion of the high droplet denslty front
is much smaller than the characteristic
viscous vortex decay time. This implies that
the droplet c¢loud constantly moves In a
"clean" vortex field. The number density
distribution is thus as same as the one
calculated using k,=1 instead of Eq. (29) .
For the non~vaporizlng cloud in Eulerlan
coordinates, the dimensionless number density
is then given byl?

r
B = 7% - a1/ (30)

This result implles that the number
density within the potential vortex becomes
highly nonuniform.

NUMERICAL SOLUTIONS

Mumerical solutlons were carried ocut for
the non-vapcrizing case. The Stokes drag
assumption was not made In numerical

computation so that the Reynolds No. needs to
be expressed in terms of dimensicnless
variables, and is given by

Pus T

Re = (18505 0, 16, (v,0,) 24 (0g-v) 2] 2
Pa

{(31)

The values of density ratioc py/pg,= 1000,
£.=10", €,-0.001,0.01,0.1 and loading ratios

5=0.1,1.0,5.0 were used 1in calculations.
The Lagranglan Egs. (5,6) for the droplet
motlon were integrated using fourth order
Runge-XKutta method. The initlally uniformly
dlstributed droplets are separated by a

distance I, which is related to n, by fg=

1/1,°. The gas field is discretized along the
radial directlen into several annular cells,
The gas momentum Eg. (9} in each cell § 1is
differenced in an explicit form given by

N
3
_l__n+l “_BJ_}. A _ . n
m(%;‘%ﬂﬁ‘%nwjgt%j Up,) T (Re})
i=1
+(Diffusion)g £32)

Here the diffusion term 1s c¢center~
differenced, vy ls the volume of the discrete
cell j, and Ny 1s the number of droplets in
the cell 3. The subscript 1 represents each
droplet. The superscript n represents the
time step. The c¢ollective droplet drag in
each annular cell is assumed tec act uniformly
on that cell.

The computational cycle for each time
step starts by determining a new value of tho
gas wveloclity from Eg. (32), and then solving
Egs. (5,6) using the new value of the gas
velocity. The computational domain covers
the reglon of r<€20 which is considered large
enough for obtaining good solutions in r<1.
The convergence c¢riterion generally requires

At <min(3e,{Ar)?/ (4Bye.), 26,1 For the fixed
value of £, the discrete cell width Ar=0.01

and time At=0.ig, are used through all for
simplicity desplte of the additional computerg
time. The smaller time step 1s even required
for the droplets close to the center of the
potential vortex in the 1initial few time
steps., The computation was performed until
all droplets move out of the initially
distributed regien or until £ =10.

Figure 2 shows the variation of the
computed vortex strength k, with the radius

during the time t=0~5.

=0.667%x10"2<<1 explains two facts in the
flgure : {1) the k¢ even decreases, but
remains about uniform in the region r<1, {2)
the cloud expansion speed is much faster than
the viscous diffusion speed, whlch can be
seen from the figure that the cloud boundary
expands up to r=1.55 at t=0.5 and the
region outside the <¢loud still remains
undisturbed, i.e., kg=1. The decreasing
rate of %k, is alsc shown toc decrease with
time.

The correspending ¢



The varlation of the computed ks at r=
0.8 with time 1s compared with analytical
solutions in Figs. 3 and4. It is shown that
for B,=0.1 all droplets move out of the
cloud before £ =10. The influence of the
visceus diffusion on the cloud 1s more
sericus for the 1nitially statlonary cloud
than the cloud with the initilal speed of gas
velozity. For €,=0.01, even 1f B,=5 (the

corresponding ¢=0.0333), Fig. 3. shows that
analytical solutions almost colncide with
exact numerical sclutions. Moreover, even
though the assumption of g,<<1 has been made
in the droplet dynamics equatlons, both
figures show that the analytical solutions
for €,=0.1 are also acceptable and even more

accurate than for &,=0.01 in the cloud of B,

=5. For the case of g,=0.001 the numerical
solutions display the importance of the
viscous diffusion from the ambience if o2
0(l). 1In Fig. ¢ the results for stationary
droplet clouds show that momentum exchange
mainly occurs in the initlal short time
during which droplets are accelerated to the
gas speed,

The gas velocity distribution in the
potential vortex 1s shown in Fig. 5 for the
case of £,=0.01 and By,=1. The difference
between the analytical solutions of Eg. (29)
and the numerical solutions 1s almost not
distinguishable. The vortex decay 1is
therefore determined by the gaseous viscous
stress. For other cases, as long as ¢g<<1,
similar results will be obtained.

Supmary and Copnclusiong

A dimensiconless parameter §g,, equal to
the square of S5tokes number, was found in a
previous study to characterlze the single
droplet motion in axlsymmetrlic forced and
potential vortex flows. In the present study
the characteristic cloud expanslion time scale
tdentifled so that another
dimensionless parameter ¢, egqual te the ratieo
of the clcud expansleon time to the wviscous
diffusion time, was found to characterize the
benavior of a two-phase dreplet cloud in
swirling flows. The cloud behavior is then
categorized into threce different regimes
accordling te the magnitude of o. The
momentum interactioen, generally ignored in
the regime ¢>>1 and the stationary cloud, is
essentlal in the regime ¢ <<1 in determining
the cloud moticn as well as the vaporivzation
and combustion. Analytical solutlicons of the
gas velocities developed for the regime g<<1
wore found in excellent agrecment with oxact
numerical solutions.

In the forced wvortex, analytical
solutions for << 1, so the diffusion cffecct
is neglected, indlecate Lhat four varlables
(K,k¢, n, T} continue to remaln uniform in the

inittal cloud reglon if they are initially
uniform. An algebraic ecquatien of ky for the

non-vaporizing case was doveloped so that the
variation of k; with time could be easily

Ty/€, was

obtained for varicus [ 's. As t e, the
vortexr strength decreases by a facterx
1/¢1+B,) . This implies that the gas-droplet
interaction may be neglected for droplet
clouds as dilute as By<0.1. Exact numerical
calculations showed these analytlc relatlons
to be reasonably accurate for 0<<1 even if

g, =0.1.

In the potentlal vortex, the gas-dreplet
interaction is mainly assoclated with Stefan
flow. Therefore, for the non-vapcrizing case,
the droplets essentially meve in a non-
interactive mode if droplet collisions are
not considered. The decay of the potential
vortex 1s thus only caused by the wviscous

dissipaticon 1n 1tself. For the reglme g1,

the droplet cloud moves much faster than the
viscous dissipation speed so that the droplet
number density can be determined by the
"clean" vortex flow.

Even though the parameter ¢ in this study
is only used to characterize the motion of a
droplet cleoud, 1t certalinly has implications
for the <¢loud wvaporization behavier
considering Pxr=0{(1). For the locading ratic

B,=0(1), & can be expressed as the ratic of

£, to g,. The parameter g, i.e., the Inverse

cf the group combustion number, has already
played an important role in the cloud life
time of a wvaperizing or burning droplet
cloud. It 1s therefore anticipated that the
relative magnitudes of €. and g, will
determine the vaperization behavior of a
swirling droplet cloud.

The swirling flows occurring in spray
vaporization or combustion will generally be
far more complex than the simple vortices
considered here. However, the results for O
<< 1 suggest that a "strong"™ swirling flow
will substantially influence the structure of
the group vaporlzation or combustion
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GROUP YAPORI1ZATION
WITHIN A SWIRLING FLOW
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Fig.t Physical plcture of a cylindrical
droplet cloud in a swirling flow of
an infinite reglon.



Vg Ve (= Ky)

Fig.2

(at r=0.8)

Ky

Flg.3

®39

oo

.0 2.0
DIMENSIONLESS TIWE (1)

L Be =1.0 Uge = Yoo
I €, = 0.0100

L €. = 0.0001

L

0.% 1.0 1.5
DIMENSIONLESS RADIUS (r)

2.0

Profiles of the computed dimension—
less forced vortex strength durlng t

=0~5.

Anafytic solu, Ee =
------ Hum.(E,= 0.1) Ugo™
——— Num.(Ey= ¢.01)
—e—- Num_ {E,=~ 0.00%)

4.0 6.0 8.0

10.¢

Comparison of analytical sclutlions

with numerical solutions of the

dimensionless forced yortex strength

at r=0.8 for Ugy = Vy,.

Flg.4

Vo /Vao (= K,)

{at r=0.8)

1.5
r Anolytic solu, E. = 0,0001
Fos----- Num, (Ey= 0.1) Ugem ©
F === Nom, {Ey= 0.01)
F—-—- Num.(Ey= 0.001}
t.okF
SE [ _B,=0.10
b
-

1.

DIMENSIONLESS TIME (1)

Comparlson of analytical sclutlons

with numerical solutions of the

dimensicnless forced vortex strength

at r=0.8 for Ug=0.

.5
L By = 1.0 Ugo * Voo
F £, = 0.0100
L £, = 0.000¢
L

0.5 1.0
DIMENSIONLESS RADIUS (r)

1.5

Comparison between anaiytlcal and

computed profiles of ky during t =0~

10,

.0



