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This paper focuses on trajectory control of the six-degree-of-freedom body fixed reference frame located on a very

flexible aircraft. The six-degree-of-freedom equations ofmotion of a reference point on the aircraft are coupledwith a

low-order strain-based nonlinear structural analysis and an unsteady finite state potential flow aerodynamicsmodel.

Because of the inherent flexibility of the aircraft, the low-order structural frequencies are of the same order as the

rigid-body mode frequencies. This coupling is accounted for in the controller development. A heuristic approach

based upon pilot behavior is developed. The approach separates the problem into two parts: a fast inner loop and a

slower outer loop. Dominant kinematic nonlinearities are handled in the outer loop, whereas the inner loop is further

separated into a lateral and longitudinal motion. Control of the inner-loop lateral motion is accomplished using a

standard linear quadratic regulator. For the longitudinalmotion, dynamic inversion is used. Differences between the

desired and actual trajectories are handled using a nonlinear proportional, integral, derivative approach. The

closed-loop time integration is accomplished using an implicit modified Newmark method. A capstone numerical

simulation is presented, highlighting the strengths and weaknesses of the method.

Nomenclature

A, B, C = linear state-space matrices
B = body fixed reference frame; distributed and

point control input influence matrices
b = displacements and rotations as time integral of

�; semichord length
CL� = coefficient of lift

CGB = rotation matrix from B and G frame
e = error state
F = applied force
FB = linear force vector applied at B reference frame
Fi = inflow state matrices for inflow differential

equation
f��� = generic function
fdst, fpt = distributed and point forces
G = inertial frame
g = nonlinear state-dependent control influence

vector function
g0 = gravity column vector
H = modified Jacobian matrix
h = position and orientation column vector of

flexible structure; rate of climb
I = identity matrix
IB = inertia dyadic with respect to the B reference

frame
IB = inertia matrix
J = Jacobian matrix
Jtrim = trim cost function
K = closed-loop gain matrix or function

k = member index, a member is a collection of
elements

kx, kdx, kIx,
kIIx, kIIIx

= proportional, derivative, integral, double
integral, and triple integral gains of a given state
x

Laero, L� = airfoil lift force and lift force due to control
surface deflection, respectively

M = applied moment
M, C, K = generalized mass, damping, and stiffness

matrices
MB = moment vector applied at B reference frame
Mdst,Mpt = distributed and point moments
Maero,M� = airfoil pitching moment and pitching moment

because of control surface deflection,
respectively

m = mass per unit span
nload = normal acceleration
O = origin of B reference frame
P = aircraft roll rate
p = position of the origin of the w frame with

respect to the origin of the inertial frame
pa = position of an arbitrary point in the vehicle with

respect to origin of the inertial frame
pB = inertial position vector of the B reference frame
pB = inertial position of B reference frame
pr = position from B reference frame origin to local

w reference frame
prc:m: = vector from B reference frame origin to the

center of mass
Q = aircraft pitch rate; state weighting matrix used in

controller design
QM = portion of generalized mass matrix inverse
q = generalized displacement column vector
R = generalized force column vector; aircraft yaw

rate; control input weighting matrix used in
controller design

RF = generalized force applied to elastic states
RB = generalized force applied to B reference frame

states
S = wing area
S = search variable column vector
s = undeformed beam spatial coordinate
T = transpose operator
t = time
u = aircraft longitudinal velocity; control input
V = total aircraft velocity
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v = aircraft lateral velocity
vB = linear velocity of B reference frame
w = local elastic reference frame; aircraft vertical

velocity
wx, wy, wz = column vectors of unit vector components of the

local elastic reference frame
x = generic state-space variable
y = linearized output
� = angle of attack
� = column vector of B reference frame linear and

angular velocities
� = flight path elevation angle
� = change in a variable or state
�u = control surface angle deflection
� = column vector of elastic strain state
�x, �x, �y, �z = element strains corresponding to extension,

twist, and in- and out-of-plane bending
�B = generalized B reference frame rotation vector
� = column vector of inflow states
�0 = inflow velocity
� = flight path bank angle
	 = density
� = quaternion column vector used for B reference

frame orientation
�, �, � = Euler aircraft angles of pitch, roll, and yaw

 = state-space linearized variable
~� = matrix of angular velocities !B
!B = angular velocity vector of B reference frame
!B = angular velocity of B reference frame
� = reordered rows and/or columns of the entity
_��� = derivative with respect to time

Subscripts

a = aileron
B = reference to the body fixed reference frame
bb, bf = contributions of a particular matrix to the body

and body/flexible differential equations of
motion

c:m: = center of mass
com = commanded input
des = desired input
e = elevator
ext = external
F = reference to the flexible degrees of freedom
f = filtered state-space matrix
ff, fb = contributions of a particular matrix to the

flexible and flexible/body differential equations
of motion

G = global matrix
h�, hb, h = vector with respect to strain, �, or displacement/

rotation of B reference frame, respectively
lat: = lateral
long: = longitudinal
r = relative; rudder
s = wing sweep
t = wing twist; thrust
u = control input
x, y, z = reference to x, y, and z coordinates
0 = initial value

Superscript

aero = related to aerodynamic effects

I. Introduction

R ECENT advances in airborne sensors and communication
packages have brought the need for high-altitude long-

endurance (HALE) aircraft. These platforms can be categorized
under three broad missions, each supporting either the military or

civilian communities. The missions include airborne intelligence,
surveillance, and reconnaissance (ISR) for the military [1]; network
communication nodes formilitary and civilian usage [2]; and general
atmospheric research [2]. Because of the mission requirements, the
desired vehicles are characterized by high-aspect-ratio wings and
slender fuselages resulting in very flexible vehicles. Examples of
mission optimization studies for this class of vehicle can be found in
[1], in which it is shown that the aircraft are required to have a fuel
fraction greater than 66%. This results in a very small structural
weight fraction. The combination of high aerodynamic efficiency
and low structural weight fraction yields inherently flexible wings
and nonlinear structural and flight dynamics. The HALE vehicle will
then be susceptible to large dynamic wing deformations at low
frequencies, presenting a direct impact into the flight dynamic
characteristics of the vehicle and controller design, as was seen in the
Helios flight tests [3].

The HALE aircraft mission will be unmanned because of its “dull,
dirty, or dangerous” [4] nature; in other words,

the attributes that make the use of unmanned preferable to
manned aircraft . . . [are] in the case of the dull, the better sustained
alertness of machines over that of humans and, for the dirty and the
dangerous, the lower political and human cost if the mission is lost,
and greater probability that the mission will be successful. Lower
downside risk and higher confidence in mission success are two
strong motivators for continued expansion of unmanned aircraft
systems.

In 1914, Lawerence Sperry, son of Elmer Sperry, demonstrated his
father’s autopilot over Paris by standing up in the cockpit of his
airplane and having his mechanic walk out on the wing to create an
external disturbance [5]. Sperry’s inventionwas capable ofmaintain-
ing pitch, roll, and heading angles [6]. This remarkable demonstra-
tion ushered in the use of the autopilot for a variety of aircraft and
aircraft missions. Sperry’s autopilot relied upon linear techniques
and a relatively stiff biplane box type of construction. Since then,
control theory has evolved significantly. For an overview of aero-
elastic control, Mukhopadhyay [7] provides an excellent review pa-
per of both analysis and control of aeroelastic structures over the past
100 years. He provides a summary of elastic theory, unsteady aero-
dynamics, and control, and he highlights the future of nonlinear aero-
elastic control. Recently, researchers have looked at applying linear,
robust control, and nonlinear techniques for aeroelastic control.

Modern linear control techniques such as linear quadratic
regulator (LQR) and linear quadratic Gaussian (LQG) observers
have been applied by several researchers. Newman and Buttrill [8]
have researched the longitudinal flight dynamics, longitudinal linear
controller design, and sensor location for a high-speed transport.
Their aircraft modeling shows the importance of including elastic
modes and sensor location when designing controllers for flexible
aircraft and the difficulty in suppressing aeroelastic dynamic effects
from the rigid-body response of a flexible supersonic transport.
Tuzcu [9] and Meirovitch and Tuzcu [10] have coupled nonlinear
rigid-body dynamics with linear structural dynamics. The
formulation treats structural dynamics as disturbance inputs to the
rigid-body dynamics. Results are presented for lightweight transport
aircraft using standard LQRandLQGcontrol theory. Pedro andBigg
[11] have also applied traditional LQR and LQG techniques to a
flexible aircraft. They developed a simulation to evaluate pilot
ratings for an aeroelastic longitudinal aircraft model. Their approach
looks only at the longitudinal dynamics with a Dryden gust model.
Cesnik and Ortega-Morales [12] have used the geometrically exact
beam formulation, coupled with finite state aerodynamics and
imbedded actuation, to study and control flutter of a HALE-type
cantilevered wing. Their work focuses on the use of LQG observers
to optimize sensor type, sensor placement, and actuation distribution.
They have shown that a single strain gauge sensor, optimally placed,
can provide the sensing necessary to control flutter of a high-aspect-
ratio cantilevered wing.

Robust techniques using H1, H2, H1, and � synthesis have been
studied by several researchers. Chavez and Schmidt [13] used linear
structural modes to develop longitudinal controllers based upon �
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synthesis. Their work focuses on developing a systematic approach
in which robust controllers can be controlled without complete
knowledge of the flexible system. They also present techniques for
identifying structural modes of interest andmethods of incorporating
unsteady aerodynamics directly into the robust formulation without
the necessity of building an aerodynamic state-space model. Kron
et al. [14] have applied a reduced order H1 controller to a two-
degree-of-freedom (DOF) lateral model of highly flexible transport
aircraft. Their work focuses on characterizing model uncertainty
when reducing the structural model. The uncertainty is then handled
systematically through the development of a 2-DOFH1 lateral con-
troller. Finally, numerical results are presented, validating their
method. Li and Agarwal [15] have also studied the use of a reduced
order structural modeling to develop a linear robust controller using
H2 andH1 techniques for a high-speed civil transport aircraft. They
have shown, for that class of aircraft, that the model reduction pro-
vides sufficient information for the linearized controller. Goman
et al. [16] have conducted a parametric study of various H1-based
and traditional LQR/LQG controllers on a longitudinal elastic air-
craft model.Their study shows similar controller designs between the
two methods and improved robustness using the H1-based design.

Dardenne and Ferreres [17] have designed a lateral controller for
highly flexible transport aircraft. The design assumes a linear time
invariant (LTI) plant and uses a linear quadratic/programming
procedure to design the controller using frequency domain
constraints. Their initial results have looked at reducing the wing-
bending effects on lateral motion. Patil [18] and Patil and Hodges
[19] have also usedminimization routines in designing a static output
feedback (SOF) controller used forflutter suppression ofHALE-type
aircraft. The resulting controller is of a much lower order than LQR/
LQG type controllers but is valid only for a single operating
condition. The authors use gain scheduling of different SOF
controllers to expand the operating conditions.

Calise et al. [20] have studied the use of output feedback
(dynamic inversion) mixed with a neural network plant perturbation
estimate to control a longitudinal flexible aircraft model. The process
assumes a nonminimum phase (NMP) system with stable zero
dynamics. Calise et al. [20] present initial results showing that their
method could suppress structural mode interaction for a simplified
longitudinal aircraft model. Krishnaswamy and Bugajski [21] have
used dynamic inversion for studying control of rockets with fuel
slosh. A key aspect of their study is the use of an underactuated
system. They have developed an observer model for estimating the
fuel slosh dynamics, showing that the resulting controller can control
the pitch dynamics of the booster vehicle while damping fuel slosh
dynamics. Finally, Gregory [22–25] has applied a novel dynamic
inversion control technique for suppressing longitudinal motion
because of linear aeroelastic effects of high-speed transports. The
variation in the dynamic inversion is the inclusion of prefilters to
move the structural modes further into the left-half plane. Results
show the ability to significantly improve ride control and
longitudinal aircraft handling in the presence of longitudinal
structural modes.

Although most of the aeroelastic control work summarized here
deals with different classes of aeroelastic effects than the very
flexible HALE-type aircraft, the control techniques, both linear and
nonlinear, have potential relevance to trajectory control of very
flexible aircraft. This paper presents an initial control architecture
development proposed for trajectory control of the 6-DOF body
fixed reference frame located on a very flexible aircraft. The
nonlinear 6-DOF equations of motion of a reference point are
coupled with a low-order strain-based nonlinear structural analysis
and an unsteady finite state potential flow aerodynamics model.
Previously published work on aeroelastic control has centered on
aircraft in which the elastic modes are either separated by an order of
magnitude or more from the rigid-body modes, or linear elastic
theory has been sufficient to describe the behavior of the flexible
structure. Although certain limiting assumptions are made (i.e., full
elastic and rigid-body state feedback, perfect modeling, and so on),
the paper is intended to be a first step in the development of
controllers for very flexible aircraft.

II. Theoretical Formulation

There are two fundamental approaches when developing a
controller. The first is to treat the system of interest as a black box in
which the physics of the box are not known, but rather linearized
transfer functions can be fit to input/output relationships. The second
approach is to start with the known physics of themodel and develop
the controller. The later is used here and hence requires a basic
understanding of the underlying governing differential equations.

The objective of the controller is to provide closed-loop reference
tracking of a body fixed reference frame B at point O, which in
general is not the aircraft’s center of mass (Fig. 1), while including
the effects of nonlinear aeroelasticity. Although arbitrary, the B
reference frame is chosen to be at a convenient location on the elastic
aircraft in which linear and angular velocities are tracked (e.g., the
location of an inertial measuring unit). Elastic members are then
modeled as beams that propagate from the B reference frame origin
O or with rigid offsets from the origin. Typically, the y axis is chosen
to be tangent to the undeformed longitudinal axis of the fuselage. The
x axis is chosen to be positive out the right wing. In this way, the
undeformed aircraft planform will be on a plane parallel to the x–y
plane defined by the inertial frame G. The z axis is simply the cross
product of the x and y axes. The tracking will consist of maintaining
desired linear and angular velocities of the B reference frame. The
means for propagating the reference frameB, forward in time is done
by deriving and integrating a series of first-order differential
equations of the form

_x� f�x; u� (1)

where x represents the states of the reference frame B, and u
represents control surface and external inputs. Depending on the
fidelity of the analysis, these first-order differential equations vary in
their complexity from simple linear time invariant to nonlinear time-
varying differential equations. For the classic rigid-body analysis
[26], the first-order differential equations take the form

_vB � fvB�vB; !B; �; pB; g0; m; Fext�

_!B � f!B�!B; IB; �; pB;Mext� _�� f��!B; ��
_pB � fpB��; vB�

(2)

where theB reference frame linear and angular velocity variables are
represented by vB and !B; Fext and Mext are, in general, state-
dependent external forces andmoments;m is the aircraftmass, and IB
is the aircraft’s inertia matrix about the origin of the B reference
frame. The orientation of the B reference frame is accomplished in a
variety of ways, from a minimum representation using three
nonorthogonal Euler angles to nonminimum four-parameter
quaternion representation to a nine-parameter set corresponding to

Bx

B z

By

V

w

B

O

PB

B

Inertial
   Frame (G)

Fig. 1 Basic body reference frame and vehicle coordinates.
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the nine components of the set of unit vectors defining the triad at B.
Phillips et al. [27] provide a summary of different methods used in
the aerospace industry. In this paper, all three techniques are used to
simplify the equations where necessary. In Eq. (2), � is the vector of
four-quaternion elements used to determine the orientation of the B
reference frame, and pB is the inertial position of the B reference
frame. The gravitational field effects are represented by g0.

A. Summary of Governing Differential Equations

The rigid-body formulation has three key assumptions that render
invalid when dealing with very flexible vehicles:

1) Inertia properties are constant or, at best, slowly time-varying.
2) The coupling inertial force because of a rotating coordinate

frame and relative velocity of flexible members is negligible.

3) External forces and moments Fext andMext, which come from
aerodynamic loading, are based upon afixed aircraft geometry. In the
rigid-body case, Eq. (2) presents only inertial and external forces and
moments.

For the flexible aircraft, a set of elastic equations ofmotion (EOM)
is also introduced, which, in the context of this study, results in

M �q� C _q� Kq� R�q; _q; �� (3)

q�
(
�
pB
�B

)
_q�

(
_�
vB
!B

)
�q�

(
��
_vB
_!B

)
(4)

where M represents generalized mass properties; q is a set of
generalized coordinates containing both strain �, associated with the
flexible vehicle and the inertial position pB, and an arbitrary
orientation vector �B of the B reference frame. The matrix C
contains both structural damping and nonlinear terms associatedwith
relative position and velocity terms associated with a rotating
coordinate frame (!B � vB, etc.), K is the stiffness matrix, and
R�q; _q; �� represents generalized forces (including aerodynamic
forces), which are a function of the finite state inflow [28,29]
velocities, �. Coupling of the rigid-body and flexible dynamics
occurs through the dependency of M, C, and R. Typically, the B
reference frame linear and angular velocities are represented by

��
�
vB
!B

�
(5)

The present work uses a constant strain-based formulation
[30,31], which allows for airframe nonlinear geometric deformation
and accounts for geometry-dependent inertia properties of the
aircraft.

To develop the nonlinear governing differential equations for
slender elastic structures, a systematic approach is used in which the
rigid-body and elastic EOM are developed about the B reference
frame. The differential equations for the orientation and displace-
ment of the B reference frame are appended based upon a four-state
quaternion representation. Unsteady aerodynamic modeling is
included and, if required, algebraic equations for absolute or relative
constraints are appended (an example of which is a joined wing

aircraft in which relative constraints are needed at the joint of the two
wings).

The derivation of the EOM is based upon the principle of virtual
work. Themethod accounts for the virtualwork associatedwith theB
reference system, flexible aircraft slender (beam) structural
members, and rigid bodies attached to the flexible structures. The
virtual work of a beam and rigid bodies attached to a beam are
initially written in terms of dependent displacement vectors. Then,
the kinematic relationship between beam-dependent position vectors
and the associated strains is developed. The components of virtual
work are summed, and the resulting set of equations is transformed
from a set of dependent position vectors and a nonminimum set of B
reference frame components to an independent set of strain variables
and body linear and angular velocities.

Thefinal virtual work expression, which includes bothB reference
frame and flexible body contributions, is written

�W � � ��T �bT 	T 
 MFF MFB

MBF MBB

� �
��
_�

� �

 CFF CFB

CBF CBB

� �
_�
�

� �
�
 KFF KFB

KBF KBB

� �
�
b

� �
� R

� �
(6)

where the generalized mass and damping matrices are given by

MFF � JTh�MGJh� MFB � JTh�MGJhb MBF � JThbMGJh�

MBB� JThbMGJhb �MB CFF � JTh�MG
_Jh� �CG

CFB � JTh�MGHhb � 2JTh�MGHh _� _� CBF � JThbMG
_Jh�

CBB� JThbMGHhb � 2JThbMGHh _� _� �CB KFF �KG
KFB � 0 KBF � 0 KBB� 0 (7)

andMG,CG, andKG are the assembled flexible-element generalized
mass, damping, and stiffness matrices, respectively. The matrices
MB andCB represent the mass and dampingmatrices associated with
the B frame rigid-element portion as described in [32,33]. The
Jacobian matrices Jh� and Jhb provide relationships between flexible
position and orientation vectors and the independent coordinates of
strain � and B reference frame linear and angular velocities, �.
Additional matricesHhb andHh _� _� capture the dynamics of a rotating

coordinate frame. Complete details of the derivation are provided in
[32,33]. Note that the traditional aircraft rigid-body EOM can be
recovered from theflexible EOM(6) by assuming the elasticDOFare
constant. The resultant force vector R is

R�
n
RF
RB

o
� KFF

KBF

� �
�initial �

BgF
BgB

� �
gB � BFdstF

BFdstB

� �
Fdst

� BMdstF
BMdstB

� �
Mdst � BFpF

BFpB

� �
Fpt � BMpF

BMpB

� �
Mpt

where �initial is an initial strain vector, gB is the body-frame B-
resolved gravity vector, and Fdst, Mdst, Fpt, and Mpt are body-
resolved distributed and point forces andmoments. The aerodynamic
forces and moments, Faero andMaero, which are functions of control
surface inputs, u, are included in Fdst and Mdst. The influence
matrices are derived as [31]

BFdstF � J
T
p�BF BFdstB � J

T
p�BF (8)

BMdstF � J
T
��BM BMdstB � J

T
��BM (9)

BFpF � JTp� BFpB � JTp� (10)
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BMpF � JT�� BMpB � JT�� (11)

where the matrices BF and BM are constant matrices defined by an
elastic element’s undeformed length. For more details, please see
[31]. For simplicity, the initial strain �initial and point moments Mpt

will be assumed to be zero. The finite strain formulation [28,29] for
aerodynamic forces and moments is linear in the discrete trailing
edge surface deflections. These assumptions and formulations,
combined with a point force representing a simplistic engine model,
allow the generalized force to be expressed as [30]

R�
h
Bg

i
gB �

h
BFdst

i
Faero �

h
BMdst

i
Maero

�
h
BFdst

i @Faero

@uflap
uflap �

h
BFp

i
uthrust (12)

From the principle of virtual work, Eq. (6) yields

MFF MFB

MBF MBB

" #
��

_�

" #
�

CFF CFB

CBF CBB

" #
_�

�

" #

�
KFF KFB

KBF KBB

" #
�

b

" #
�
(
RF

RB

)
(13)

This set of equations contains the ones given in a compact form by
Eq. (3). Note that M �M���, C� C��; _�; ��, and K is the
generalized stiffness. All the other nonlinearities are contained in the
generalized force R. When the EOM (13) are augmented with the B
reference frame orientation, position, and unsteady aerodynamics,
the complete set of governing differential equations is

MFF ���
MFB
_� 
 CFF _� 
 CFB� 
 KFF�� RF

MBB
_��
MBF �� 
 CBB� 
 CBF _�� RB _��
1

2
���

_pB � �CBG 0 	� _�� F1 �q� F2 _q� F3�

(14)

where � is a vector of four quaternion parameters used for the
orientation of theB reference frame, _pB is the inertial position vector
of the B reference frame (Fig. 1), CBG is a transformation matrix
between aB reference frame vector and an inertialG vector, and� is a
set of unsteady aerodynamic inflow velocities with associated
differential equation matrices F1 through F3. For complete details,
please see [32,33].

B. Aircraft Trim Solution

Trimming is performed for both zero thrust and thrust required for
1-g-level flight based upon techniques outlined in[26,34]. A cost
function is defined as

Jtrim � fT � f (15)

where for the zero thrust or gliding cases,

f�
�
pitching moment about the origin of the B frame

lift weight

�
(16)

For the case of 1-g-level flight, the longitudinal B reference frame
linear and angular accelerations are used, such that

f� f _vBy _vBz _!x gT (17)

The cost function J is then minimized over the solution space using
the elevator deflection angle �e, the body angle of attack �, and thrust
�t. A simple numerical Newton–Raphson method is used to find the
local minimum of the search variable; that is,

�Sk �

�
@f

@S

�
1
k

fk (18)

where

S k � f �e � �t gTk (19)

The search variable S is updated by

S k�1 � Sk ��S (20)

and fk�1 and �
@f

@S

�
1
k�1

are recomputed using Sk�1. The process continues until the cost
function J reduces to some prescribed tolerance. To prevent
divergence of the solution, Sk�1 is checked at each iteration step and
kept within a prescribed set of bounds. The Jacobian

Jtrim �
@f

@S
(21)

is computed numerically through finite differences.

C. Solution of EOM

To solve the nonlinear differential equations (14), a high-
frequency dissipative time-stepping approach was implemented. A
modified Newmark method was used and is described in [35]. The
modified Newmark method was selected based upon its ability to
accurately integrate large systems of equations, including ones with
repeated eigenvalues, its relative ease of implementation with the
current EOM modeling, and the derivation of both a first- and
second-order method [36,37].

III. Trajectory Control

A. Challenges

Because of the nature of the very flexible aircraft construction, the
wings will typically have a lower stiffness than the fuselage,
generating stronger coupling of the rigid-body and structural
motions in the lateral axis than in the longitudinal one. This creates a
variety of challenges to be overcome by controllers. The first is the
requirement of an integrated controller that handlesflexibility aswell
as rigid-body motion. Typically, the first wing-bending mode of this
class of aircraft is less than 10 rad=s, creating direct interaction with
classic lateral and longitudinal rigid-body aircraft modes (spiral, roll,
dutch roll, and phugoid). The second major challenge is a time delay
between control inputs and B reference frame movement because of
the flexibility of the aircraft. This time delay creates a nonminimum
phase (NMP) system when the governing differential equations are
linearized. The thirdmajor challenge is the introduction of additional
NMP behavior because of adverse yaw from aileron inputs. The
adverse yaw problemmay be avoided through the use of spoilers for
roll control, but that is not addressed in this work. The fourth
challenge is the location of the linearized structural eigenvalues near
the imaginary axis. And finally, the generalized mass and damping
matrices are state-dependent.

B. Requirements and Assumptions

Before designing any controller, a set of performance objectives
should be established. Currently, despite operational requirements
[4], there are no published performance specification requirements
for very flexible aircraft either from the military, civilian,
government, or industry authorities. Given this void, it is worthwhile
to refer back to the piloted aircraft military standards, MIL-STD-
1797A [38]. Although very flexible aircraft do not have the safety
requirements inherent in piloted aircraft, minimal control perform-
ance requirements are necessary for both manned and unmanned
aircraft to complete the various missions and potentially fly in the
National Airspace System. For classification purposes, a very
flexible vehicle will be considered a large land-based transport type
aircraft, class III-L, as in Table 1. From MIL-STD-1797A, Table 2
summarizes the desired roll requirements for level-2 flying qualities
(Table 3) during takeoff, climb, loiter, and landing flight conditions.
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Furthermore, the maximum bank angle required shall be determined
by the bank angle required tomake a standard 2-min turn (turn rate of
3 deg =s or 0:05236 rad=s). Because MIL-STD-1797A does not
provide specific guidance for climb rates, a maximum climb rate of
2000 ft=min (10:16 m=s) at sea level at maximum gross weight
shall be used. This rate is based upon reasonable climb rates of
aircraft similar in size and weight.

Three basic maneuvers will be used to study controller
performance. The first maneuver is a wings-level altitude change.
The second maneuver is a steady level turn starting from a zero bank
angle. And the third maneuver is a climbing turn.

Finally, the assumption will bemade that the aircraft will be flying
well below any divergence, flutter, or limit cycle oscillation
boundaries. Whereas this assumption is restrictive for an aircraft
dominated by aeroelastic effects, it is an important first step in the
development of controllers for performing basic aircraft maneuver-
ing. Future research should focus on extending the controller(s)
beyond aeroelastic boundaries.

C. Control Architecture

As discussed in Sec. III.A, very flexible aircraft, and particularly
HALE ones, present unique challenges to the design of a controller.
This section details the specifics of a proposed very flexible aircraft
controller.

1. Traditional Controller Design Difficulty

Traditional methods of modern aircraft control [6,26,39] have
relied upon the state vector

x

��vBx vBy vBz !Bx !By !Bz � � � pBx pBy pBz 	T

(22)

or variations of x, in which the B reference frame linear and angular
velocities are vB and!B, the classic Euler angles of roll (positive right

wing down), pitch (positive nose up), and yaw (positive nose right)
are given by �, �, and �, respectively, and the inertial position is
given by pB. Linearizing the rigid body governing differential
equations about this state vector and determining a constant gain
matrix K has been shown in numerous papers and books to yield
satisfactory results when applied to nonlinear flight dynamicmodels.
However, the current problem with additional aeroelastic effects has
rendered this to be ineffective for trajectory control. In the process of
developing a stabilizing controller architecture for very flexible
aircraft, traditional controller designs were initially applied to a
statically deformed rigid aircraft model. This controller architecture
was shown to have difficulties in providing closed-loop stable
trajectory tracking [33].

2. Heuristic Approach Mimicking a Human Pilot

Because of the difficulty in finding a stable controller for the rigid
body using traditional techniques, the method was not attempted
with additional elastic states. A method of decoupling the linear and
nonlinear effects of the aircraft response was designed based loosely
upon aircraft pilot training. A well-trained human pilot has been
taught to commandflight path angle �, bank angle�, and their rates _�
and _� when changing altitude or heading �, through a fast-loop
(inner) and slow-loop (outer) process. The fast loop consists of
commanding pitch rate, pitch angle, roll rate, and sideslip angle.
These changes are commanded by the pilot, typically through the use
of four controls: elevator �e, aileron �a, rudder �r, and throttle �t.
Once an angle and its rate have been satisfactorily set, the pilot then
performs a slow-loop (outer-loop) function of cross checking
altitude, rate of climb, and other states. Heffley et al. [40] have
described this type of inner- and outer-loop control as an implicit
inner-loop and explicit outer-loop tracking task. Additionally, for
level turns, altitude changes, and landing flair maneuvers, Heffley
and Schulman [41] have provided pilot models for outer-loop
control.

In similar fashion, this work proposes building a stable inner loop,
using both linear and nonlinear theory, in which the states are the
linear and angular B reference frame velocities � [Eq. (5)], and
augmented error states. The outer loop or slow loop is then controlled
through a nonlinear transformation and traditional proportional,
integral, derivative (PID) control techniques [42]. Conceptually, the
entire system is shown in Fig. 2. In the figure, �0 are the initial
trimmed B reference frame linear and angular velocities. For the
outer loop, a commanded B reference frame velocity, �com, and
differences are generated

��com � �com 
 � (23)

and used to excite inner-loop integrator error states. Also, as
indicated in Fig. 2, the subscripts des and com are the desired and
commanded values, respectively. For the inner loop, the difference
in �

��� � 
 �0 (24)

is required to generate differences in the control vector from the
initial control deflections u0, such that

u� u0 ��u (25)

and �u is a function of the gain matrix K and the augmented error
states e:

�u� K���; e� (26)

3. Nonlinear Transformation from Flight Path and Bank Angles to Body

Velocities

The classic rigid-body aircraft kinematic equations used for the
nonlinear transformation are [26,39,43]

V �
����������������������������
u2 � v2 � w2

p
(27)

Table 2 Final roll performance objectives for very flexible aircraft

Flight phase Bank angle change/
seconds to achieve

Roll mode time
constant

Climb and loiter Ba 30 deg =3:9 s 3.0 s
Takeoff and landing Ca 30 deg =4:0 s 3.0 s

aDenotes the letter designator from MIL-STD-1797A for the particular flight phase.

Table 3 Qualitative degrees of suitability and levels as defined inMIL-

STD-1797A

Level Description

1) Satisfactory Flying qualities clearly adequate for the mission flight
phase

2) Acceptable Flying qualities adequate to accomplish the mission
flight phase

3) Controllable Flying qualities such that the aircraft can be controlled
in the context of the mission flight phase; workload
is excessive or mission effectiveness is inadequate

Table 1 Aircraft classes as defined in MIL-STD-1797A

Class Type of aircraft Example

I Small light aircraft Primary trainer, light utility
II Medium weight, low-to-

medium maneuverability
Search and rescue, ISR

III Large, heavy, low-to-medium
maneuverability

Heavy transport, ISR

IV High-maneuverability aircraft Fighter, attack
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�s � sin
1�v=V� (28)

� � sin
1��cos� sin� 
 sin� cos� cos�� cos�s

 cos� sin� sin�s	 (29)

�

�sin
1
�
cos�sin�cos�s��cos�sin�
sin�cos�cos��sin�s

cos�

�
(30)

_�� P� tan��Q sin�� R cos�� (31)

_��Q cos� 
 R sin� (32)

where V is the total airspeed, and the classic aircraft longitudinal,
lateral, and vertical velocity components areupositive out the nose, v
positive out the right wing, and w positive down. Further, � is the
flight path elevation angle, � is the aircraft angle of attack, � is the
flight path bank angle, and�s is the sideslip angle. The classic aircraft
angular rates are roll rate P, pitch rate Q, and yaw rate R. The
dynamic equations of interest are

L� 1
2
	V2SCL�� (33)

_v�
Ru� Pw� g0 sin� cos��
Fy
m

(34)

where L is the aircraft lift, 	 is the atmospheric density, S is the
surface area of thewing,CL� is the equivalent aircraft lift curve slope,
g0 is the magnitude of the gravity vector, Fy is the lateral force
because of aerodynamic and control inputs, and m is the aircraft
mass. Equation (33) is a steady-state lift approximation and will be
used to develop an angle-of-attack � dynamic relationship.
Equation (34) is the rigid-body lateral acceleration EOM and will be
used to develop relationships for the B reference frame angular
velocities. The angle of attack and sideslip are related to the
longitudinal velocities as(

u
v
w

)
�
(
V cos��� cos��s�

V sin��s�
V sin��� cos��s�

)
(35)

such that the angle of attack may be written as

�� tan
1�w=u� (36)

Before Eqs. (27–36) can be used in the current formulation,
transformations of the linear and angular body velocities and
quaternion to classic Euler angles are presented. For the linear and
angular velocities, the relationships are

( vBx
vBy
vBz

)
�

0 1 0

1 0 0

0 0 
1

2
4

3
5( uv

w

)
(37)

and

(!Bx
!By
!Bz

)
�

0 1 0

1 0 0

0 0 
1

2
4

3
5( PQ

R

)
(38)

To develop the quaternion relationship, first the body B to inertialG
rotation matrix in terms of the Euler angles is found as

CGB

�
�c�c�� s�s�s�� �
c�s�� s�s�c�� 
s�c�

c�s� c�c� s�
�s�c�
 c�s�s�� 
�s�s�� c�s�c�� c�c�

2
4

3
5

(39)

where the shorthand cos� � c� and sin� � s� is used. The Euler
angles of interest have the following relationship to the quaternions
[33]:

sin�� 2��2�3 � �0�1� (40)

cos� cos�� �20 
 �21 
 �22 � �23 (41)

cos� sin�� 2�
�1�3 � �0�2� (42)

To perform the transformation from given inputs of flight path
angle and bank angle to desired body velocities, the following
assumptions are made:

1) The angle of sideslip �s is zero.
2) The Euler bank angle � will be used in place of bank angle �.
3) Total velocity V is prescribed and typically assumed constant.
4) The angle of attack � is proportional to cos�.

Error Dynamics

Nonlinear
Plant Dynamics

K

β 0

β

β∆

-

-
u0

∆u
u

-

β

Nonlinear
Transformation

β  to Φ

Nonlinear
Transformation

β com = f (Φ,Φdes )

Φdes

Φ

Φ β

β

ββ com ∆ com

Inner Loop (Fast Loop)

Outer Loop (Slow Loop)

Fig. 2 Controller concept mimicking a human pilot.
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5) Lateral side forces are only a function of cross coupling of linear
and angular velocities and gravity component because of Euler bank
and pitch angle, and lateral velocity is constant.

Whereas zero sideslip, assumption 1, is typically a requirement of
manned aircraft for comfort reasons, it is also desired to minimize
coupling of the lateral and longitudinal aircraftmotion.Assumption 2
is justified by applying small angle assumptions to �, Euler pitch
angle�, and angle of attack�. Using these assumptions andEq. (30),

��� (43)

Further, if a navigational loop is wrapped around the architecture
described in Fig. 2, the Euler roll angle would be convenient as an
input. Assumption 3 is made to simplify the resulting nonlinear
transformation equations. Assumption 4 has two significant effects.
The first is that unsteady aerodynamic effects presented in [32] are
neglected. This is done because one of the goals of this work is to
develop an initial control architecture for very flexible aircraft,
without consideration of aeroelastic boundaries. Additionally, the
controller is designed to maintain aircraft velocities well below these
aeroelastic boundaries, preventing destabilization of the controller
through unmodeled dynamics (within the controller). The second
significant effect of assumption 4 is that an increase in angle of attack
to generate additional lift for a wings-level climb is not considered.
This is reasonable approximation used in most rigid-body aircraft
performance equations [43], where

rate of climb � excess thrust

weight
(44)

Assumption 4 is derived from the steady level-turn performance
equation [43]:

nload �
1

cos�
(45)

where the load factor nload is the nondimensionalized acceleration of
gravity. Assuming linear three-dimensional lift theory and a level
turn,

L� � nloadL� � 0 (46)

Using Eq. (33) in Eq. (46), it can be shown that

�� �
1

cos�
�0 (47)

where �0 is the angle of attack corresponding to a wings level at
steady level flight. Finally, assumption 5, which simplifies the lateral
EOM (34), provides one of three resulting equations used to
determine the B reference frame angular velocities.

Using Eqs. (27–47) and the five assumptions, the resulting set of
equations are as follows:

1) Angle-of-attack relationships:

�� 1

cos�
�0 _�� tan� sec��0 _� (48)

2) Linear body velocity relationships:

vBz �
V sin� _vBz �
V cos� _� (49)

vBy �
������������������
V2 
 v2Bz

q
_vBy �


vBz _vBz
vBy

(50)

3) Flight path angle, Euler pitch angle, and angle-of-attack
relationships:

sin � � cos� sin� 
 cos� sin� cos� (51)

_�� cos � _� � �sin� sin�� cos� cos� cos�� _�
cos� cos�� cos� sin� sin�


 sin� sin� cos� _�

cos� cos�� cos� sin� sin�
(52)

4) Body angular velocity relationships:

_�� �tan� sin��!Bx � !By 
 �tan� cos��!Bz (53)

g0 sin� cos�� vBz!By 
 vBy!Bz (54)

_�� cos�!Bx � sin�!Bz (55)

Given the flight path angle and rate � and _� and the Euler roll angle

and rate� and _�, Eqs. (48–55) are used to solve for the commanded
B reference velocities, �com.

To close the outer loop of Fig. 2, the actual flight path angle �,

Euler bank angle �, and their rates _� and _� are determined.
Differences are then found:

�� � � 
 �des � _� � _� 
 _�des (56)

���� 
�des � _�� _� 
 _�des (57)

The commanded flight path elevation angle and Euler roll angle are
computed using a traditional linear technique of PID control:

�com � �des ���com _�com � _�des ��_�com (58)

�com ��des ���com
_�com � _�des �� _�com (59)

where

��com � k��� � kI�
Z
t

0

���� d
 � kII�
Z
t

0

�Z
t

0

���� d

�
d


� kd��_� �_�com � k _��_� � kI _��� � kII _�
R
t
0���� d


� kIII _�
Z
t

0

�Z
t

0

���� d

�
d


��com � k���� kI�
Z
t

0

���� d
 � kd�� _�

� _�com � k _��
_�� kI _���� kII _�

Z
t

0

���� d
 (60)

The outer-loop feedback gains, k� , kI� , and so on, of Eq. (60), are
initially determined using the single-input/single-output heuristic
guidelines of Ziegler and Nichols [44,45], where

u� kce� kI
Z
e dt� kd _e (61)

For PID and PI controllers, Ziegler and Nichols’s recommend values
are given in Table 4, in which ku is the closed-loop gain required to
make the system marginally stable, and tu is the corresponding
period between oscillations. The gains are then adjusted to meet
desired performance. Because of the potential instability of integral
feedback [42], the additional integral gains (kII, kII _� , kIII _� , etc.) are

Table 4 Ziegler and Nichols [44,45] PID and PI tuning

parameters

PID PI

Proportional gain kc � 0:6ku kc � 0:45ku
Integral gain kI � kc=0:5tu kI � kc=0:85tu
Derivative gain kd � 1

8
kctu ——
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chosen to be at least an order or more of magnitude less than the first
integral gains (kI� , kI _� , and so on).

D. Modification of Proposed Control Architecture

This section presents a method for extending the control
architecture previously introduced to a flexible aircraft. First a
separation of the lateral and longitudinal motion is presented. Then
control techniques are applied to the lateral and longitudinal motion
separately. Finally, coupling between the lateral and longitudinal
motion is shown to be handled in an outer-loop strategy.

Section III.C outlined a control strategy for very flexible aircraft.
The philosophy of this approach is to provide a systematic method in
which the dominant coupling of lateral and longitudinal motion is
handled in a slower outer loop, and B reference frame linear and
angular velocities are handled in a faster inner loop. The six states
(linear and angularB reference frame velocities) of the inner loop are
typically easily separated into longitudinal and lateral motion with
corresponding control effectors. This allows individual control
schemes to be applied to each set of the inner-loop dynamics
(longitudinal and lateral). The outer loop controls the required
longitudinal and lateral motion necessary for trajectories when this
motion is coupled (i.e., steady level turns and climbing turns).
Additionally, the outer loop handles coupling of the lateral and
longitudinal motion because of gravitational effects. Although this
idea is not new and has been applied to high angle-of-attack flight
[46–48], it typically has not been applied to low-to-moderate angle-
of-attack flight regimes [47]. This is due largely to traditional aircraft
control design assuming relatively small to moderate amounts of
nonlinear cross coupling. With very flexible aircraft, the large
potential movement of the center of mass from the origin of the B
reference frame can create a significant nonlinear coupling.

1. Separation of Lateral and Longitudinal Motion

As shown by Shearer and Cesnik [32] and Shearer [33], for this
class of vehicles with relatively stiff fuselages, longitudinal motion
does not appear to be significantly affected bywingflexibility. So it is
assumed that wing flexibility is a secondary and minimal
contribution to aircraft longitudinal motion. Using this assumption
and the previous assumptions of Sec. III.C, a separation between
longitudinal and lateral/elastic motion is made. Additionally, an
examination of the rigid-body LTI state matrices [33] supports this
assumption of minimal cross coupling between the lateral (vBx , !By ,

and !Bz ) and the longitudinal (vBy , vBz , and !Bx ) states. An

eigenvalue analysis of a representative HALE aircraft further
supports this assumption.

The lateral and the longitudinal eigenvalues and eigenvectors of
the B reference frame for a static and elastically deformed wing at a
given (heavy) fuel weight are presented in Tables 5 and 6. As can be
seen by examining the eigenvectors, there exists a fairly distinct
separation of lateral and longitudinal motion.

When the elastic wing states are included, a distinct change in the
lateral eigenvalues and eigenvectors occurs, as seen in Table 5. The
sideslip and sideslip/yaw-rate modes experience a significant change
in the eigenvalues and changes in the sign of the eigenvector
components. However, the real change is in the roll mode, as it no
longer has any significant contribution from the rigid-body roll rate
!By . Rather, !By now contributes to various elastic strains and rates

(not presented). Because of this, the elastic states are assumed to be
tightly coupled with the rigid-body lateral motion. The longitudinal
eigenvalues and vectors also experience a change as seen in Table 6,
with a major change in the vertical/longitudinal eigenvalue. This
eigenvalue now has contributions of about 2% from several of the in-
and out-of-plane bending strain rates (not presented). However, from
Table 6, over 94.5% of the contribution comes from the B reference
frame longitudinal states. Because of this significant contribution, it
assumed that the longitudinal states are decoupled from the elastic
states. Although this strong coupling of lateral and elastic modes
cannot be generalized for all very flexible aircraft, the analysis does
hold for the representative aircraft used here at different loadings
(fuel) conditions (not shown). In general, an eigenvalue and
eigenvector analysis should be performed at nonlinear equilibrium
conditions of a very flexible aircraft configuration to determine the
coupling of elastic states withB reference framemotion. Based upon
the outcome of the analysis, various linear and nonlinear control
schemes could be used. For example, Gregory [22–25] has
developed filtered nonlinear control techniques and optimum sensor
placement for longitudinal control with coupled aeroelastic effects.
In this paper, an LQR formulation is developed for the lateralmotion,
and a nonlinear dynamic inversion is developed for the longitudinal
motion.

2. Lateral Motion Inner-Loop Controller

Because of the inherent NMP zeros present in the lateral
dynamics, most nonlinear control schemes are not sufficient
for controlling it. Because of this, a traditional LQR controller is
used for the inner-loop lateral motion. For the lateral controller,
full state feedback was assumed, in which the states to be controlled
are

xlat � � �T _�T vBx !By !Bz 	T (62)

Table 5 Lateral eigenvalues and eigenvectors for flexible aircraft with a rigid fuselage

Type Eigenvalue, rad=s, statically/elastically
deformed wing

Normalized eigenvector statically/elastically
deformed wing

Sideslip 
2:508 � 10
4=
 1:549 � 10
1

9:973 � 10
1= 
 9:957 � 10
1 vBx

4:075 � 10
12= 
 6:420 � 10
13 vBy
5:415 � 10
13= 
 1:859 � 10
13 vBz
2:988 � 10
14= 
 2:315 � 10
14 !Bx

2:303 � 10
3=4:711 � 10
2 !By

7:347 � 10
2= 
 8:022 � 10
2 !Bz

Sideslip/yaw rate 
1:013=5:305 � 10
2

9:900 � 10
1= 
 9:916 � 10
1 vBx
1:978 � 10
15=7:062 � 10
12 vBy
5:455 � 10
15=1:797 � 10
12 vBz
1:844 � 10
14=9:341 � 10
14 !Bx

5:876 � 10
2= 
 1:863 � 10
2 !By
1:280 � 10
1=1:277 � 10
1 !Bz

Roll rate 
6:7172

2:904 � 10
2 vBx

3:415 � 10
13 vBy
9:502 � 10
12 vBz

8:748 � 10
13 !Bx
9:996 � 10
1 !By
4:806 � 10
3 !Bz
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Although the assumption of full elastic state feedback (� and _�) may
present a practical limitation, it is used here as a starting point for very
flexible aircraft control architecture development. Linear time
invariant A andBmatrices are generated from Eq. (14) for the lateral
states of Eq. (62). Error states are then augmented to the system such
that

xlat �
h
�T _�T vBx !By !Bz eTlat

i
T

(63)

and

_e lat �

8<
:

vBx 
 0

!By 
 !Bycom
!Bz 
 !Bzcom

9=
; (64)

The augmented system can then be represented as

_x lat �
Alat 0

Clat 0

� �
xlat �

Blat

0

� �
ulat �

0


I

� �( 0

!Bycom
!Bzcom

)
(65)

where

Clat �
0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
4

3
5 (66)

The lateral control vector is found using the control law

ulat �
�Klat Kelat 	
n
xlat
elat

o
(67)

whereKlat andKelat are found using standardLQR techniques applied
to the augmented system of Eq. (65).

3. Longitudinal Motion Inner-Loop Controller

In a similar manner to Al-Hiddabi [49] and Al-Hiddabi and
McClamroch [50], partial feedback linearization or dynamic
inversion is used for development of the very flexible aircraft. Here,
dynamic inversion is applied to the longitudinal states of interest; that
is,

xlong � � vBy vBz !Bx 	T (68)

For the very flexible aircraft, a subset of the linear and angular body
velocities, �, are desired to be controlled [Eq. (68)] using dynamic

inversion. To accomplish this, � is found from the EOM for � and �.
Starting with Eq. (14),

MFF MFB

MBF MBB

" #�
��

_�

�

�

CFF CFB

CBF CBB

" #�
_�

�

�


�
KFF�

0

�
�
�
RF

RB

�
(69)

these can be solved by inverting the generalized mass matrix. Using
Fact 2.15.3 of [51],

A B
BT C

� �
1

� �A
BC
1BT�
1 
�A
BC
1BT�
1BC
1

C
1BT�A
BC
1BT�
1 C
1BT�A
BC
1BT�
1BC
1�C
1
� �

(70)

and notingMFB �MT
BF from Eq. (7), the inverse of the generalized

mass matrix of Eq. (69) is

MFF MFB

MBF MBB

" #
1

�
QM 
QMMFBM


1
BB


M
1BBMBFQM M
1BBMBFQMMFBM

1
BB �M
1BB

" #
(71)

where

QM �
�
MFF 
MFBM


1
BBMBF

	
1
(72)

Therefore, �� and _� are given by

���
C11 _� 
 C12� 
QMKFF�� RF1 (73)

_��
C22� 
 C21 _�� RB1 (74)

where

Table 6 Longitudinal eigenvalues and eigenvectors for flexible aircraft with a rigid fuselage

Type Eigenvalue, rad=s, statically/elastically
deformed wing

Normalized eigenvector statically/elastically
deformed wing

Vertical 
3:1402= 
 2:5686

2:280 � 10
14= 
 1:229 � 10
12 vBx
1:103 � 10
2=2:053 � 10
1 vBy

9:908 � 10
1= 
 9:717 � 10
1 vBz
1:351 � 10
1=7:443 � 10
2 !Bx

5:510 � 10
13= 
 3:255 � 10
13 !By
6:980 � 10
15= 
 3:828 � 10
13 !Bz

Vertical longitudinal 
7:023 � 10
2= 
 3:2479

5:391 � 10
13=3:062 � 10
12 vBx

5:921 � 10
1= 
 2:581 � 10
1 vBy
8:033 � 10
1=9:091 � 10
1 vBz
6:423 � 10
2=2:319 � 10
2 !Bx

1:998 � 10
13=1:254 � 10
12 !By

3:378 � 10
14=9:382 � 10
13 !Bz

Longitudinal 1:8195 � 10
2=4:7465 � 10
2

2:296 � 10
13= 
 5:570 � 10
12 vBx
9:733 � 10
1= 
 9:701 � 10
1 vBy
2:288 � 10
1= 
 2:424 � 10
1 vBz
1:806 � 10
2= 
 1:284 � 10
2 !Bx
2:382 � 10
14= 
 8:663 � 10
14 !By

1:734 � 10
14=6:631 � 10
13 !Bz
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C11�QMCFF 
QMMFBM

1
BBCBF

C12�QMCFB 
QMMFBM

1
BBCBB

C21�
M
1BBMBFQMCFF�
�
M
1BBMBFQMMFBM


1
BB�M
1BB

	
CBF

C22�
M
1BBMBFQMCFB�
�
M
1BBMBFQMMFBM


1
BB�M
1BB

	
CBB

RF1�QMRF 
QMMFBM

1
BBRB

RB1�
M
1BBMBFQMRF�
�
M
1BBMBFQMMFBM


1
BB�M
1BB

	
RB

(75)

The generalized force vectors RF and RB can be further expanded
into a control affine form:

RF � RFu�0 ��; _�; �; �; �� � RFu ��; _�; �; �; ��u (76)

RB � RBu�0��; _�; �; �; �� � RBu��; _�; �; �; ��u (77)

The body velocity equation (74) can then be written in the
generalized form:

_�� f� � g�u (78)

where

f� �
C22� 
 C21 _� 
M
1BBMBFQMRFu�0

�
�
M
1BBMBFQMMFBM


1
BB �M
1BB

	
RBu�0 (79)

and

g� �
M
1BBMBFQMRFu �
�
M
1BBMBFQMMFBM


1
BB �M
1BB

	
RBu

(80)

Stability of dynamic inversion requires the so-called internal or zero
dynamics [52] to be stable. For the partial dynamic inversion scheme
proposed, the internal dynamics consist of the controlled lateral
states and the uncontrolled inflow states [32]. The assumption is
made that the internal dynamic states are stable. This assumption is
valid provided the linear controller of Sec. III.D.2 yields closed-loop
stability, and the inflow states� are not driven unstable because of the
aeroelastic boundaries of flutter and divergence. Although avoiding
the aeroelastic boundaries is a limitation of the current design, it is a
necessary requirement in the developing stages of controller design
for very flexible aircraft.

The longitudinal outputs to be tracked [Eq. (68)] can be written as

ylong � Clong� (81)

where

Clong �
0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

2
4

3
5 (82)

The linearized form is

_
 long � vlong (83)

where

ulong � g
1� �vlong 
 f�� (84)

The system is then augmented with longitudinal error states

_e long �
( vBy 
 vBycom
vBz 
 vBzcom
!Bx 
 !Bxcom

)
(85)

and the final linearized system is

� _
long

_elong

�
�

0 0

Clong 0

" #�
long

elong

�
�

I

0

" #
fvlongg

�
0


I

" #8<
:
vBycom

vBzcom

!Bxcom

9=
; (86)

The control variable vlong is then computed using full state feedback
as

vlong �
�K
long Kelong 	
n
long

elong

o
(87)

where the gains K
long and Kelong are computed using the LQR

technique. The actual control signal ulong is computed using Eq. (84).
Finally, because dynamic inversion becomes unstable with the

introduction of NMP zeros [53], flight path angle is tracked, instead
of altitude, in the outer-loop design to prevent the introduction of
NMP zeros into the inner-loop longitudinal dynamics. This is
necessary because in traditional wing/body/tail aircraft, an increase
in altitude is accomplished by deflecting the trailing edge surface of
the elevator upwards. This creates a downward force which
temporarily decreases the overall aircraft lift and a subsequent
decrease in altitude. However, this downward force also creates a
nose up pitching moment, which increases the angle of attack. Once
the airflow adjusts to this increase in angle of attack, overall lift is
increased, and the aircraft begins to climb. In mathematical terms,
this behavior represents a NMP system. To control altitude, a first-

order approximation of the rate of climb _h is used:

_h� V� (88)

By prescribing the altitude and total velocity V, trajectories _h, �, and
_� can be commanded to the outer loop.

IV. Numerical Simulations

In this section, trajectory control studies are performed on the
proposed controller architecture. The control architecture is initially
applied to an elastic aircraft at a heavyweight condition. A simulated
climbing and turning trajectory is presented and discussed. The
controller is then applied, without changes to any of the gains, to a
lightweight condition with the same commanded climbing and
turning trajectory. Finally, a representative mission profile segment
is developed and simulated.

A. Representative HALE Aircraft

For the aircraft simulation studies, a representative HALE type
aircraft was created, as shown in Fig. 3. The relevant physical
properties are summarized in Table 7. The vehicle was designed to be
statically stable for moderate wing deflections in both the
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Fig. 3 Representative HALE aircraft model (units are in meters).
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longitudinal and lateral axes. Table 8 also includes the trimmed
longitudinal controls and state (elevator angle, thrust level, and angle
of attack) for both gliding and 1-g-level flights. Additional details of
the vehicle’s mass, structural damping, and stiffness parameters are
provided in [33].

The vehicle is a conventional wing/body/tail configuration with
twin vertical tails. It is representative of a HALE aircraft concept
being considered by the USAF. The aircraft has the conventional
control surfaces of elevator, aileron, and twin rudders. The elevator is
such that a positive elevator control input �e results in a negative
pitching moment (nose down). The left and right ailerons have a

1:1 gearing ratio, such that a positive aileron control input �a results
in a roll to the left (left wing down). The twin rudders have a 1:1 gear
ratio such that a positive rudder control input �r produces a positive
yawing moment (nose left). Recall that the B reference frame
orientation is x positive out the right wing, y is positive out the nose,
and z is positive up. Thrust is accomplished using a simple point
force applied at the origin of the B reference frame and in the y

direction, such that a positive thrust input �t results in an acceleration
in the positive y direction.

B. Representative Flexible Aircraft Trajectory Tracking

A single controller is presented and was applied to trajectory
control for climb only, bank only, and simultaneous climb and bank
all at a given (heavy) fuel state. For brevity only, the simultaneous
climb and bank results are presented here (see [54] for additional
results). The controller is then applied at an alternate (empty) fuel
state, demonstrating its robustness to significant mass and inertia
changes. Finally, a representative mission profile is simulated.

1. Flexible Aircraft Controller Design

The two separate inner-loop controllers for a flexible aircraft were
presented in Sec. III.D.1. For the longitudinal motion, a dynamic
inversion approach was developed in which the longitudinal states
used in development of the controller were longitudinal and vertical
velocity (vBy and vBz ) and pitch rate !Bx . The corresponding control

inputs were elevator �e, and throttle �t. Initially, all three longitudinal
states were attempted to be controlled through the use of a
pseudoinverse of the resulting control effector matrix
function,��@h=@x�g�x�	. The use of the pseudoinverse resulted in a
stable inner-loop longitudinal controller, but it had poor tracking
performance. A significant improvement is achieved by only
controlling vBy and!Bx . The resulting set of error states are modified

from the proposed set [Eq. (85)] to

_e long �
n vBy 
 vBycom
!Bx 
 !Bxcom

o
(89)

The resulting inner-loop longitudinal state vector is


long � f vBy !Bx elong gT (90)

A standard LQR controller is applied to the resulting LTI state-space
system (see Sec. III for details), in which the weighting matrices are

Qlong � diag� 1 1 102 104 	 (91)

Rlong � diag� 1 1 	 (92)

For the lateral inner-loop controller, the error states are also modified
from Eq. (93) to

_e lat �
�

vBx 
 0

!By 
 !Bycom

�
(93)

This was done for two reasons. First, because of the addition of the

Table 7 Geometric properties of the very flexible aircraft model

Model parameters
Property Value Units

Fuselage length 26.4 m
Wing span 58.6 m
Wing area 196.3 m2

Root chord 4.5 m
Tip chord 2.2 m
Aspect ratio 17.5 ——

Wing incidence angle 3.0
 ——

Horizontal tail span 18.0 m
Horizontal root chord 3.5 m
Horizontal tip chord 2.45 m
Horizontal tail incidence angle 
4:5 deg ——

Vertical tail span 4.0 m
Vertical root chord 2.45 m
Vertical tip chord 2.0 m
Wing/horizontal tail airfoil NACA 4415 ——

Vertical tail airfoil NACA 0012 ——

Aileron location 16.3–22.8 m
Aileron, elevator, rudder chord 0:2clocal ——

Elevator span location 1.8–9.0 m
Rudder span location 0.8–3.2 m
Elements per wing 9 ——

Elements per horizontal tail 5 ——

Elements per vertical tail 5 ——

Elements in fuselage 10 ——

Total no. of elements 48 ——

No. of second-order states 192 ——

No. of first-order states 241 ——

Table 8 Control and aircraft states and inertia properties of the very flexible aircraft model

Model parameters
Property Value Units

Light, no thrust Heavy, no thrust Light, thrust for level flight Heavy, thrust for level flight

Elevator deflection angle �e 4.51 deg 
16:80 deg 
6:89 deg 
13:68 deg ——

Thrust required �t 0 0 3:21 � 104 1:12 � 105 N
Aircraft angle of attack � 0.80 deg 7.62 deg 1.93 deg 7.30 deg ——

Fuel mass 0 32,000 0 32,000 kg
Total mass 2:10 � 104 5:38 � 104 2:10 � 104 5:38 � 104 kg
Fuel fraction 0.0 59.5 0.0 59.5 %
Issxx

a 1:48 � 106 1:75 � 106 1:49 � 106 1:75 � 106 kg �m2

Issyy 8:20 � 105 2:93 � 106 8:19 � 105 2:93 � 106 kg �m2

Isszz 2:27 � 106 4:46 � 106 2:26 � 106 4:47 � 106 kg �m2

Issxy 0 0 0 0 kg �m2

Issxz 0 0 0 0 kg �m2

Issyz 1:82 � 104 9:20 � 104 2:06 � 104 9:00 � 104 kg �m2

xc:m: 0 0 0 0 m
yc:m: 3.13 4:33 � 10
3 3.14 5:64 � 10
3 m
zc:m: 0.29 0.79 0.34 0.77 m

aIss are the inertia properties in a deformed steady-state configuration. All aircraft simulations are begun at sea-level conditions and 65 m=s level flight.
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strain � and strain-rate _� states to the lateral inner-loop state vector
[Eq. (63)], it is difficult to find weighting matrices Q and R, which
provide solutions to the algebraic Ricatti equation of the LQR
technique. Removal of the yaw rate state assisted this problem.
Second, it was found that commanding the states of lateral velocity
vBx and roll rate!By provided stable tracking of the removed yaw rate

!Bz . As described in Sec. III.D.2, an LQR controller is applied to the

lateral motion inner-loop states. The weighting matrices are

Qlat � diag�Q� QvBx
Q!By

Q!Bz
Qelat 	 (94)

Rlat � diag� 1 1 	 (95)

where

Qlat � diag� 10
3 0 10 0 � 102 103 � 	T (96)

The outer-loop gains, described in Sec. III.C.3, are loosely
designed using the guidelines of Ziegler and Nichols [44,45]. The
final chosen values are

k� � 0:9 kI� � 0:225 kd� � 0:45 (97)

k _� � 0:9 kI _� � 0:225 kII _� � 0:0225 (98)

k� � 0:5 kI� � 0:5 kII� � 0 kd� � 0:05 (99)

k _� � 0:5 kI _� � 0:5 kII _� � 0:1 (100)

Finally, because of the high frequency of numerical errors
occurring during the first few time steps of the simulations, a third-
order low-pass Butterworth filter [55] was applied to the difference
equations of flight path angle, �, and Euler bank angle, �, and their
rates given in Eq. (58). The filtered equation for the commanded
flight path elevation angle difference is

_x �com � Afx�com � Bf�com��com�f � Cfx�com (101)

For the third-order 2-Hz low-pass Butterworth filter used, the state-
space matrices are

Af �

� 0 0

� 
� 
�
0 � 0

2
4

3
5 Bf �

8<
:
�
0

0

9=
; Cf � � 0 0 1 	

(102)

The resulting outer-loop flight path and Euler bank angle commands
are modified from Eq. (60) to

��com � k�����f � kI�
Z
t

0

���� d


� kII�
Z
t

0

�Z
t

0

���� d

�
d
 � kd���_��f

�_�com � k _���_��f � kI _�����f � kII _�
Z
t

0

���� d


� kIII _�
Z
t

0

�Z
t

0

���� d

�
d


��com � k�����f � kI�
Z
t

0

���� d
 � kd�� _�f

� _�com � k _��� _��f � kI _�����f � kII _�
Z
t

0

���� d


(103)

2. Climbing and Turning Trajectory

A combined climbing (100-m altitude change) and turning (20-
deg bank angle change) trajectory was commanded at a heavyweight
fuel condition. The flight path angle, altitude, and bank angle change
trajectories are seen in Fig. 4. The overshoot in flight path angle is
because of the coupling of the lateral and longitudinal motion. The
overshoot in bank angle between 10 and 25 s is because of an initial
lag (because of wing flexibility) between 2 and 5 s, and then an
excessive bank angle rate between 5 and 10 s as the controller tried to
compensate for the initial lag. The B reference frame linear and
angular velocities are shown in Figs. 5–7. The adverse effects of the
strong lateral and longitudinal coupling of this maneuver are
diminished because of the overall good control on total velocity
[Eq. (27) and Fig. 5 (between 64.8 to 65:2 m=s)] and acceptable
control on the flight path angle [Fig. 4]. This results in less than a 5-m
steady-state error in altitude and excellent steady-state tracking of the
Euler bank angle [Figs. 4b and 4c]. For this simulation, elevator
deflections are between 
19:5 and 
10:5 deg, aileron deflections
between 
5:25 and 3:75 deg, and rudder deflection between 
19:5
and 
10:5 deg.

3. Banking and Climbing Trajectory at Empty Fuel State

To investigate the robustness of the proposed controller
architecture, the same banking and climbing trajectory of the
previous section is repeated here, but at an empty fuel condition.
Figure 8 shows the desired and actual response in flight path angle,
altitude, and bank angle. Whereas the bank angle response is similar
to heavy fuel condition (Fig. 4c), there are greater excursions in the
flight path angle and altitude. These excursions are attributed to the
outer-loop controller. The B reference frame linear and angular
velocity trajectories (actual, commanded, and desired) are shown in
Figs. 9–11. An examination of the vertical velocity (Fig. 9b)
highlights a problem with applying the controller designed for the
heavyweight to the lightweight condition. In the outer-loop nonlinear
transformation, Sec. III.C.3, the body angle of attack � is a derived
and required parameter, based upon a steady-state wings-level zero
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Fig. 4 Commanded a) flight path angle, b) altitude, and c) Euler angle for the heavyweight condition; bank/climb command.
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angle of attack �0 given in Eq. (48). The heavyweight controller was
designed using a trim body angle of attack �0 of 7.30 deg, presented
in Table 8 and applied to the lightweight condition here. Note, for a
lightweight condition, the trim body angle of attack �0 is 1.93 deg.

Despite the resulting large discrepancy in �0 and vertical velocities
between the light and heavyweight conditions, the controller
performs adequately for the significant change in mass; see Table 8.
This is because vertical velocity is not actively controlled, and the
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Fig. 8 Commanded a) flight path angle, b) altitude, and c) Euler angle for lightweight condition; bank/climb command.
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otherB reference frame velocities are not as significantly affected by
�0. For this simulation, elevator deflections are between 
14 and

9:5 deg, aileron deflections between 
5 and 2.5 deg, and rudder
deflection between 
1:2 and 0 deg.

4. Mission Profile Segment Case

A representative mission profile segment simulation is presented
here. The aircraft is commanded to perform the following sequence
of maneuvers: climb and turn, roll out of turn and continue climbing,
level off, level turn, descent and turn, roll out of turn and continue
descending, and level off as seen in Fig. 12. The altitude and
associated flight path angle along with the Euler bank angle desired
and actual trajectories are seen in Figs. 13 and 14. Altitude tracking
presents a maximum overshoot of 46 m following the commanded
climb. This overshoot occurs while the bank angle is settling to its
commanded 0-deg angle. The overshoot in altitude is acceptable
given that this class of aircraft is expected to fly in the National
Airspace System. Typical piloted aircraft flying under instrument
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flight rules (IFR) are required to maintain less than about 30-m
steady-state altitude deviations and are allowed up to 60-m
temporary deviations. The corresponding longitudinal and lateral
control inputs are seen in Fig. 15. During the second portion of the
commanded climb, an increase in throttle and decrease in elevator are
seen (between 50 and 75 s) corresponding to the greater commanded
climb rate (6:67 m=s at 25 s and 13:33 m=s at 65 s). There is a steady-
state altitude error of less than 2 m at 250 s and 4 m at 400 s. Bank

angle overshoots are less than 7.2 deg with excellent steady-state
tracking. The B reference frame desired, commanded, and actual
velocities are seen in Figs. 16–18. There is excellent tracking of the
commanded longitudinal velocity (Fig. 16b) and pitch rate
(Fig. 18a). Tracking error between the desired and commanded
values in the longitudinal motion are attributed to outer-loop
controller architecture. For the lateral motion, the sideslip velocity
(Fig. 16a) is seen to be below 0:04 m=s or 0.05 deg of the total
velocity, V. Additionally, the roll rate (Fig. 18b) has acceptable
tracking, and the yaw rate (Fig. 18c), although not directly
controlled, has relatively good and stable tracking of the desired
trajectory.

V. Conclusions

This paper presented a proposed two-level control architecture to
address coupled nonlinear flight dynamics and nonlinear aeroelastic
responses found in very flexible aircraft. The inner- and outer-loop
architecture demonstrated an effective means for accomplishing
trajectory control of this class of aircraft. Although more complex
than previously developed linear aeroelastic controllers, the
proposed architecture was necessary to achieve stable tracking as
compared with traditional linear methods. Furthermore, the
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Fig. 13 Commanded a) flight path angle and b) altitude for the heavyweight condition.
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Fig. 15 Longitudinal and lateral flight controls for the heavyweight condition.
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separation of longitudinal and lateral motion control handled by
separate controllers proved to be very effective. Finally, although not
presented here, the general trends of increased integral gain
destabilizing system response and increased derivative gain
stabilizing and slowing system response were seen in the
development of the outer-loop nonlinear gains. The control
architecture was shown numerically to track altitude and bank angle
changes in the presence of smooth air, full elastic state feedback, and
perfect sensors. The purpose of these studies was not to design a
perfect controller, but rather to demonstrate the viability of the
proposed method. In such, there is more tuning that could be
accomplished for tighter trajectory control.
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