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Abstract

Mechanical efficiencies are calculated for a
human doing work in a standing and stooping cycle
while enclosed in 2 cage. An unsteady force is
generated which does useful work in oscillating the
capge on its suspension system. Such a vertical
pumping motion has been proposed for a man-pow-
ered ornithopter. The theorem of virtual work
provides the efficiency expression. Analog simula-
tion reveals that square wave force exitation is
more efficient than sinusoidal or triangular, De-
sign curves show some unexpected requirements
for matching man and machine, and very poor effi-
ciency if care is not taken. Losses are due to
gravity and human inability to store energy in un-
loading portions of the cycle. A spring-dashpot
suspension allows efficiencies of up to 88% in cases
involving sinusoidal exitation. A freely-floating
suspension [(the flight situation} allows only 64%
efficiency for harmonic exitation. Some improve-
ment can be made by adding toe siraps to the human
and/or by forcing the cage in a sguare wave. The
novel feature, making this work differ from ordi-
nary vibration work, is the "switching” logic needed
to distinguish loading and unloading portions of the
cycle,

Symbols
B half amplitude of nondimensional leg
extension
< ' equivalent viscous damping coefficient

of suspension
F half amplitude of leg force

external force on cage

=W

t) dimensionless periodic function

k spring constant of suspension
M cage mass

m human mass

P power

5 half amplitude of stroke

T period of oscillation

W work

x(t) cage position

y{t) human ¢.g. position
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z{t) arbitrary function

o phase lag, Equation 19

W virtual work

8Wyuman irternal work by human during virtual
displacement

€ biological penalty factor

L damping ratio, 2 NEM

M efficiency

¢ phase lag, Equation 12

« circular frequency

w. natural frequency of cage alone m

Introduction

Humans use rotary and reciprocating cycles of
motion in many work and play situations including
rowing boats, riding bicycles and bouncing on tram-
polines. Power production and efficiency of some
kinds of motion have been carefully studied, espe-
cially the rotary motion used in pedalling a bicycle
or flying a man-powered plane and particularly in
the British literature. (1){2} In 1972, Grant Smith
proposed a rigid wing ornithopter propelled by a
pilot moving in a standing and stooping cycle with-
in the fuselage. (3) It was believed that this is a
highly efficient method of transmitting energy to
the fuselage and then to the airstream. The ques-
tion of how efficiently energy can in fact be trans-
mitted from pilot to fuselage in such a caged situa-
tion is by no means trivial, however, and may be
the critical part of the power cycle.

The purpose of this paper is to study the effi-
cency and power generation of a "caged' human
being moving in a vertical, closed cycle of motion,
The direct application is to man-powered flight,
but a general approach will be taken in terms of
the suspension of the cage so that other man/cage
situations can be covered,

The human is enclosed in a rigid cage and
isolated from the outside world (Figure 1). The
cage position x(t} and the human's c.g. y(t) are
measured from an inertial frame. The external
force on the cage would be found from the air-
craft's stability derivatives or from a given sus-
pension system.
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Figure 1. Man in Caged Situation

The novel thing making this problem different
from a standard vibration problem is that the hu-
man does work in a irreversible way. He cannot
absorb work on the portions of the ¢ycle where the
cage and gravity do work on him (the so called
"unloading" portion). The cage and gravity can
accelerate the human and create kinetic energy,
but any portion of a leg stroke where cage forces
and gravity tend to further this stroke must release
energy in heat. One must be careful in analyzing
the cycle, then, to net consider this component of
work as useful mechanical energy.

The role of gravity is important in this study.
Gravity can cause a loss of efficiency because it
creates a dead weight which must be cycled through
all motion. Gravity never does any net work over
a closed cycle, but provides a bias force which does
affect the division of the cycle into loading and un-
loading portions., Physiologists and engincers have
realized that gravity represents a loss term in hu-
man motion, such as running a race, and can ac-
count for the portion of energy lost when a vertical
cycliec motion is performed on a hard surface. {1)
Gravity's role in the man/cage combination is more
subtle, but still must be regarded as the chief cul-
prit in the energy loss.

Equations of Motion

Assume that the mass of the human is concen-
trated at his c.g., and that the loading passes
entirely througn his legs, (The analysis is also
valid if hand supports are available, but is concep-
tually easier without thermn.) The motion studied
here is periodic because best measures of energy
production and efficiency of operation are derived
from a closed cycle of motion.

Forces due ip cage suspension, whether me-
chanical or an aerodynamic equivalent for unsteady
motion, will be Fix, %, X) = ex + kx. Any apparent
mass effects due to fluid forces on the cage would
be included in the cage inertial term M¥. The
force F{t) in the human leg is defined positive in
compression and has a gravitational bias F(t) =
F{{t) + mg, where f(t) is periodic with half ampli-~
tude of unity and F is the measure of force ampli-
tudec. The coordinates x and y are defined so that

my

\/gmg

f(t)

gz?xm

y{ty —

T

x(1)
Figure 2. Equilibrium of Human
¥ - ¥ = 0 when the human is half crouched. The
equations of motion are simply
my = - F1{{t) {1
M3 4+ ck + kx = Fi{t}+ (M+m)g (2)

The steady state, oscillatory solutions to these
equations are easily found.

Efficiency

The system efficiency will be at first defined
in purely mechanical terms. Eificiency is the ratio
of useful mechanical work done by the human on the
cage to the total mechanical work done by the hu-
man. Work is defined in reference to the inertial
frame.

The useful work done by the man on the cage
per cycle is

T
FLy %t} dt {3}

Wuse{ul h f
0

One might be tempted to include as useful work that
which the man does against gravity, on the grounds
that it will be returned to the cage at some later
time in the cycle. This is fallacious because all
work done by the man on the cage must be accom-
plished through his legs (his only peint of contact)
and is hence already included in Equation 3.

The total mechanical work done by the man can
best be seen by applying the principle of virtual
work and D'Alembert's principle. Consider the
human, acting upon by gravity and the cage, during
a virtual displacement.

bW = OW

hurman LY

+ mg by - my by - Fit) bx =

The internal wotk §Whyumap Mmust be supplied
to maintain the energy balance at any instant, It
docs not include any wasted energy {e.g., blood
circulation, flapping arms) that dees not contribute
to vertical equilibrium, Adding force equilibriurm,
F{t}) = mg - m¥, onc obtains
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bW uman = {mg - my} {(6x - &y} (5)

In retrospect, this energy argument gives the
correct results, since the work increment {as seen
by the human) is logically the force in his legs
times the extension of his legs. Note that this work
is done against gravity as well as against the cage.

There is a problem of interpretation if the in-
crement of work in Equation 5 is negative. The
loading and unloading portions of the cycle depend
on the signs of the factors:

(g - m¥y) (6x - by) case

+ + loading
+ - unloading
- + unloading
- - loading

The latter two cases correspond to tension in the
legs and are obtainable only if straps hold the feet
to the floor, In purely mechanical terms, there is
ne penalty to the system during the unloading cycle,
since the human does no mechanical work in re-
jecting the heat. When comparing this reciproeca-
ting cycle with a rotary pedalling cycle {which
usually has no unloading stroke}, one might want to
include a biolegical penalty factor for making the
hurnan pass through an unloading portion of a cycle,
This could be done by defining the total human work
on a cycle as
T
Whyman = f é(mg ~ my) (% - w;’}% dt {6)
0

where the curly brackets are defined for an arbi-

trary function:
z(t) z({t) 20
sz(t)f = { } (7)

€ lz{t)l z(t) <0

A choice of biological factor ¢ = 0,33, say, would
then allow a fairer comparison between the current
cycle and a rotary cycle. In the long run, however,
human experiments should be run on the vertical
reciprocating cycle to find the true physiological
penalty for unloading., This would reduce, for in-
stance, the useful long time horsepower output of

a human, which is approximately ¢, 45 for a rotary
cycle, (1)

when

when

The efficiency is now obtained by the ratio of
useful to total work

T -
fo Fit) x dt

n = T (R)
f %(mg - my) & - y)iclt
0
This expression is evaluated analytically for sine
wave fercing and by analog simulation for sine,
square and triangle forcing.

Analysis of Spring-Dashpot System

Consider the system of Figure } where both
spring and dashpot external forces act. A harmonic
forcing function {{t) = sin wt is chosen, The oscilla-
tory, steady state solutions of Equations 1 and 2 are

desired. Transients and static deflections are
neglected. The solution is simply
x{t) = X sin {wt - ¢} {9)
and
yi{t}) = Y sin wt {(10)
where
X 1
- = = o
S - w/en)?1? + 2tw/wy)

2L w/wn

TW 0<¢ €£180°(12)
n

¢ = tan=~!

2

Y——?—-ﬂ- = 1 (13)
k
o e JE 0o
n
- C
P i (1%)

Note that the cage motion x{t) lags the force f(t) by
angle ¢ and the human c. g. y(t} is in phase with the
force (by virtue of the opposing sign conventions
chosen for F(t) and v(t) ).

The velocity difference x - y appears in the

expression for work done by the human. A non-
dimensional velocity difference is defined
XY = B cos (bt - &) (16)
Xw
which implies
Y o B osin (ot - a) {17}

X

and o is seen as the phase angle by which the leg
expansion x - y lags the force. This angle plays
a very important role in the efficiency results.
From Equations 8-12, one finds

B = 4fsin®¢ 1 (cos ¢ - Y/X)? (18)

1 sin ¢ & o
C05¢-Y/X 0\0‘\ 180 (19)

a = tan”

Y/X = (o fw)? (M/oI D - (of o )T + (28 w/wy)? (20)

Using the dynamic results above, one caleulates
the useful work per cycle

(W JFX) = r sin ¢ (21)

useful



The total human werk per cycle requires some
algebraic work., By limiting the foreing to F/mg <
1.0, however, the cycle consists of only one loading
and one unloading portion and the integration is
tractable, The case I'/mg 2 1.0 will not be
attempted analytically.

(Wiuman/mgX)=2(14€¢)B + % (1-¢)B(F/mglsina (22)
The sinusoidal cycle efficiency for F/mg € 1,0 is
hence
useful
23)
human
n (F/mg) sing

B {2(1+¢)+ g {(1-¢) (F/mg) sin o]

n

{24)

which can be viewed as
7 = function (w/cun. L, F/mg, M/m , ¢, f(t}) (25)

The problem has been solved to this point in
terms of dimensionless ratics and needs to be dis-
cussed in those tecrms, On the other hand, we must
scale the problem to human dimensions to see which
ranges of efficiency can bhe reached. Many opera-
ting conditions are inaccessible because of human
power or leg stroke limitations. The useful power
developed by the human is

1

Puseful =5 FXwsing (26)
and the half stroke S is defined in Equation 17.
$=XB (27}

Analopg Simulation

The analog computations were performed on
the Applied Dynamics/Four Analog-Hybrid computer
located in The University of Michigan Simulation
Research Center. Generally, conventional program-
ming techniques were emploved. The equations
were written and programmed in terms of dimen-
sionless variables by normalizing with respect to
either mg or Mg. In addition, time scaling was
utilized to run the problem in either 100 or 1000
times real time. In principle, the differential
equation for the human requires two open-ended
integrations to compute the c.g. position. In prac-
tice, this kind of programming is very sensitive to
any amplifier drift or D.C. offset voltages. Hence
very light damping and spring forces were incorpo-
rated to stabilize the position of the human, The
values of the damping and spring constants employed
were approximately .1 1b/f{t/sec and .1 1b/ft,
tespectively.

The wavy bracketed function in the denominator
of the efficiency expression was programmed using
diode networks which were both biased to compen-
sate for diode break-over voltage and calibrated to
determine and correct for diode conduction resis-
tances. The integrations in the efficiency quantity

were computed by integrating over a time much
longer than a cycle, rather than integrating over a
single closed cycle. Generally, the period of inte-
gration was greater than two hundred times the
characteristic period of oscillation of the system.
Also, all transients were allowed to decay out be-
fore any efficiency measurements were performed.

For those aznaleg results which can be directly
compared with digital calculations (f{t) = sin wt,
F/mg £ 1,0}, agreement within 2% was typically
found, Thus the analog results can be considered
as a check on the digital calculations as well as a
means of extending f(t) to nonharmonic cases,

Numerical Results for the Spring-Dashpot System

In spite of the simplicity of the dynamical sys-
tern, the efficiency expression, Equation 25, shows
complex dependence on some of its parameters,
notable w/w_ and L. Apparently the "switching"
behavior in the denominator of the efficiency ex-
pression causes the interesting results,

A. Reference Case

Results will be presented in detail for a refer-
ence, or bascline, case. This case will bring out
the complexity of the w/w, and { dependence. The
more moderate effects of F/mg, M/m, ¢ and {(t)
will be discussed later. The refercnce case is

n = function {w/w_, L, 1.0, 0.3333, 0., sinut) (26)

The force ratio F/mg is unity, which is the highest
value possible without causing negative g forces on
the pilot and requiring toe straps. The mass ratio
M/m = 0.3333 is chosen as a typical for a 150 1b
man flying a 50 1b ultralight aircraft. The biclogical
penalty factor is set at zero, concentrating attention
on the mechanical aspects of the problem,

Figure 3 is a contour chart showing constant
elevation lines of efficiency. The maximum
efficiency reached for this baseline case is 88%,
cccurring on a horseshoe shaped curve. For a
given cage/man configuration, at low damping,
there are two frequencies for which efficiency is
maximum. The lower intercept of this curve on
the ordinate corresponds to resonance of the cage
and man locked together and moving in phase on the
spring support at w = «/k/M+m, The upper inter-
cept is the resonance of the cage aleone on the
support at w =4/ k/M. (Later calculations will show
that the higher branch of the horseshoe is not physi-
cally obtainable for a human in a ultralight aircraft.}
The phase angle o is 90° at all points on this opti-
mum efficiency horseshoe, and this appears to be
the general criterion for maximum efficiency.
Elevation contours for less than .50 effiency are
not given in this figure.

To study the reference case further, cuts of
the efficiency surface will be made parallel to the
frequency and damping axes. Figures 4 and 5 are
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frequency "sweeps' and contain some analog data
{the points} as well as analytical results. The
analog data confirms the nature of the horseshoe
curve for the sine wave exitation. One also sees
that the square wave exitation is more efficient
over most of the operating range. The case of

L =0.4in Figure 5 shows a rather high, broad
plateau of efficiency for sinusoidal exitation which
wauld provide desirable operating characteristics.
Figure 6 gives various cuts of the efficiency sur-
face parallel to the damping axis. The value of

n is discontinuous at w/w,_=1.0and L = 0. This
point is not physically accessible because infinite
power is needed to operate there.
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Figure 6. Typical Variation of Efficiency with

Damping. (F/mg=1.0, ¢ =0, M/m =
0.3333, Sine Wave Force}.

B, General Case

Having developed some intuition about the
efficiency surface for the reference case, one can
now do parameter studies, Figure 7 indicates that

1.0
//‘D‘""__D-—;‘,__..
0.8f
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:: D./o\)so\ /
. &G
"2’ 0.6 :’&ﬁ/ //
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/
/U
0.2} ///
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0 i 1 1 1 1 i d
&) 0.2 04 0.6 08 1.0 1.2 1.4

FORCE RATIO, Frmg

Figure 7. Comparison of Sinusoidal, Square, and
Triangular Forcing Functions. (¢ = 0,
L =1.0, w/ow, =1, M/m = 0,3333}.
Analog Computer Results,
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s ite wave is the most efficient forcing func-
~1ihy sine wave next and triangular wave least
al, 'T'his seems to be the general rule, with
~ainer exceptions where the sine and square
vuverse positions of supremacy., Figure 7
Jwws that large F/mg causes high efficiency.
wuaang that as the unsteady force in the
aw's legs tends to dominate the gravitational
the cycle becomes more efficient. Gravity
. by viewed as the loss factor. If this cyeclic
.vwss were done in a horizontal plane, one would
v ¥/mg -t with n— 1,0, at least for the sine
..ovv. {The square wave may not reach this limit.})

The biclogical penalty factor € is studied in
cyyure 8. It has an adverse affect on sine, square
ol triangular {not shown) cases, with a monotonic
dverease in efficiency as € is raised.
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Figure 8. Effect of Penalty Factor ¢ on Square and
Sine Wave Cases. w/w,=1.0, M/m =
0.3333, F/mg = 1.0. Analog Data,

The remaining parameter is mass ratic M/m.
1t will be studied through its effect on the optimum

efficiency contour, in the next section.

C. Optimum "Horseshae!!

Digital results have shown optimum efficiency
to occur for motion where o = 90°. Since
1 sin ¢

= tap~! —— T
@ an cosp - Y/X

this occurs at
cos ¢ = Y/X (27)

and the maximum efficiency reached is

g
1 {F/mg) '
Mnax ~ T F (28)
Z(HE)”}"E)E r-n“g

This 1 x is not a function of w/w,, L or
M/m, For example, the value of 7,,,, for the
reference case (Figure 3} is

P, A
Mmax ~ 2 +n/2
{(29)

0.7988

It was earlier found that the optimum value of &,
and hence Mypaxt W28 obtained on the horseshoe
shaped curve in Figure 3. If the mass ratio is
changed, the same My, = 0. 7988 is obtainable,
but on a different frequency horseshoe. Figure 9
consists of a family of horseshoe curves as would
be found from efficiency elevation charts for
different mass ratios. These frequencies were
actually found by solving Equation 27 for w/w, as a
function of M/m and [ .
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Figure 9. Optimum Frequency, Leading to 88%
Efficiency. {€ = 0, F/mg = 1.0, Sine
Wave Force)

Finally, Wypax from Equation 28 is plotted in
Figure 10. This gives the maximum efficiency
possible for all sinusoidal forcing without toe straps.
These values may or may not be dynamically obtain-
able for specific values of w/wn, L and M/m.
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Figure 10. Maximum Efficiency Kinematically
' Possible
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P. Scaling of Sydstem to Human Capabilities

For a human, the half stroke S has an upper
limit of roughly 1.5 feet and any cycle requiring
motion greater than this is unrecalizable. Also, the
human is limited to power output of less than 1500
ft Ib/sec, even for short periods of time. (1) Apain,
cycles calhng for more power than this are unattain-
able, : :

Assume a humar weight of 150 1k, and a fre-
guency of operation of 1 ¢cps. Power generation and
stroke required can be calculated for the reference
case (Figures 11, 12). Useful power generated is

200 400 600 800
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Power Contours for Sinusoidal Loading.

Figure 11.
€ =0, F/mg=1.0, M/m = 0,3333)
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Stroke Contours for Sinusocidal L.oading.

Figure 12.
€ =0, F/mg=1.0, M/m = 0,3333)

presented, rather than total human power gener-
ated. The area near w/w, = 1,0 and L=0isa
forbidden area for reasons of both power and stroke
required. Combining results of Figures 3, !l and
12, one can see that for continuous power output in
the half-horsepower range, the human/cage system
with spring-damper suspension should operate in
the vicinity of £ = 0.4 and w/wn = 0.55-0.70. This
also allows a range of horsepower and siroke at
efficiencies near 88%. One could better this effi.
ciency only by using toe straps (and negative g
loading) while trying to excite the cage with a
square wave leg force, both of which would be un-
comfortable over a perioed of time, These extra-
ordinary measures would be used only to improve
efficiency and would not improve power or stroke
characteristics.

Freely Floating Cage

All work to this point has dealt with a cage
suspension containing a spring. ¥or a rigid flight
vehicle such as the pseudo-ornithopter{3)
there is nec spring, although there
will be apparent mass and equivalent viscous
damping forces. If we remove the spring from the
¢age suspension, and reanalyze the system, one
less dimensionless ratioc is needed to describe the
systemm. This is because one less characteristic
time exists in the problem (the period « M/k has

been lost),
The choice of f{t) = sin {wt) leads to

#(t) = X sin (wt - @)

y(t) = Y sin wt

Xwe 1
F J(wl‘v‘[) o
C

- -1 o [}
¢ = tan (mM) 90 ¢ < 180
“toe
Y m o 1
= =
Y _ M c 2
X m 14 ‘Mw)

and the expressions for B, o, and n are as before
in Equations 18, 19, 24. We now can view 10 as
F/mg, f(t} }

n = function {(wM/c, M/m, €,

A. Reference Case

The solution in terms of dimensionless ratios
is given in Figure 13. Again a mass ratio typical
of 2 human and an ultralight aircraft is assumed.
The maximum efficiency gained for harmonic os-
cillation, without toe straps, is 0.64. SBquare
wave exitation, also at F/mg = 1.0, has a peak
efficiency of 0.74. Equaticn 28, for maximum
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Figure 13. Efficiency of a Man in a Floating Cage
(Zero Spring Stiffness) M/m = 0, 3333

efficiency, does not hold for the {loating case,
because the optimum phase lag of & = 0% is un-
obtainable dynamically. These peak efficiencies
may vary somewhat with mass ratio, then. Effi-
ciency could be raised slightly with toe straps, and
the penalty factor € would lower it.

B. Freely Floating Cage Scaled to Human
Capabilities

Again choose a human weighing 150 1b. and
oscillating at 1 cps (Figure 14). The freely floating
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Figure 14, Useful Power and Half Stroke for Man in
Floating Cage. (Zero Spring Stiffness)
M/m = 0,3333, F/mg=1.0

cage has some problems with the impedance match
between human and cage. The cage is too "soft" for
the human. To operate at peak efficiency at wM/c

= 0.5, the human would have to use a half stroke of
1.62 ft. which is not attainable, This means opera-
ting at smaller stroke with slightly lesser efficiency
Nevertheless, the cycle does useful work, and fig-
ures such as 13 and 14 can be used to optimize per-
formance for the individual involved. The best
operating frequency is w = 0.5 ¢/M and so the nu-
merical value of ¢, the equivalent viscous damping
caefficient should be found early in the design cycle.

Conclusions

A complete analysis has been done for the
dynamics and efficiency of 2 man performing a
vertical work cycle in an enclosed cage. The cage
was given an idealized suspension, which in the
freely floating case is related to the flight of an air-
plane. The definition of total work done by the hu.
man was the only difficult part of the formulation,
with due care taken to handle the unloading portions
of the mechanical cycle. The dimensiconless vari-
ables describing the cyclic process are now well
defined. The efficiency of the process can be
stated in purely mechanical terms, or the viewpeint
can be slightly enlarged to include a biclogical
penalty factor for requiring the human to use a
cycle with unloading segments.

The efficiency calculations show that there are
definite losses in this work cycle. These are due
to gravity and the inability of the human to store
energy during unloading portions of the cycle, The
efficiency depends in an involved way on the opera-
ting frequency and the damping of the cage suspen-
sion. Increasing the force ratie F/mg increases
efficiency. Increasing the penalty factor ¢ de-
creases efficiency. Square wave exitation is in
almost all cases more efficient than sine wave,
and sine wave is always better than triangular
exitation.

Optimum efficiency is reached when the leg
force f(t) leads the leg extension x(t) - y{t)
by 90°. ¥or a given cage suspension with low
damping ratio L, this condition is met at two fre-
quencies. The lower corresponds to the resonance
of the human and cage locked together and oscilla-
ting on the spring. The higher-corresponds to the
cage alone reseonating on the spring. Operation at
the bigher frequency is not attainable for humans
because of the large stroke and power requirements.
Operation at neither of these resonant frequencies
is attainable for the free flight case, making it less
efficient,

An carth-bound man/cage system can operate
at up to 88% efficiency in a realistic situation using
sinuscidal forcing and no toe straps. The compar-
able case for the flight vehicle yields 64% efficiency.
{Ncither case is here penalized for the tiring effect
of the unloading portions of the cycle.} The lower



efficiency of the flight vehicle poses a difficult
challenge to the practicality of rigid wing ornithop-
ter flight.

For the caged human, efficiencies vary wide-
ly with operating conditions. It is very important
to match the characteristics of human and machine
using the dynamics considerations discussed here,
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