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Rarefied Background Flow in a Vacuum Chamber
Equipped with One-Sided Pumps
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Spacecraft propulsion systems, such as Hall thrusters, are designed and tested in large vacuum chambers.
The pumping capacity of modern facilities makes it possible to maintain pressures as low as 10−−3–10−−4 Pa
with thrusters in operation. For these vacuum chambers, a fundamental concern is the facility effects on the
chamber performance. Several free molecular models are proposed to analyze the rarefied background flow inside
a vacuum chamber equipped with one-sided vacuum pumps located at one chamber end. These models lead to
various sets of analytical expressions linking several facility effects, such as pump sticking coefficient, pump area,
and wall effects. These expressions can be used to estimate the pump sticking coefficient, to evaluate performance
of vacuum chambers, and to aid constructing proper background flow for particle simulations. About 70 numerical
simulations of background flows inside a vacuum chamber validate these models. These numerical simulations
and analytical results indicate that these models are capable of predicting average background pressure and flow
velocities. Depending on specific parameters, the background flow can have a significant nonzero mean velocity
and cannot be considered to follow a Maxwellian velocity distribution.

Nomenclature
d = atomic diameter
f (C) = velocity distribution function
K n = Knudsen number
k = Boltzmann constant
m = atomic mass
ṁ = mass flow rate into chamber
n = number density
nin = number density for flux into vacuum chamber
nX+ = number density for particles passing station

X from one side
nX− = number density for particles passing station

X from other side
Pb = chamber backpressure
R = gas constant
S = surface area
Sc = chamber cross-sectional area
Sp = pump surface area
s = area ratio, Sp/Sc

Tp = pump temperature
Tw = chamber wall temperature
T̃wp = temperature ratio, Tw/Tp

U = mean velocity
V = chamber volume
Vp = thermal velocity characterized by pump temperature,

[2kTp/(πm)]1/2

Vw = thermal velocity characterized by wall temperature,
[2kTw/(πm)]1/2

α = pump sticking coefficient
β = particle transportation percentage from one chamber

end to other end
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γ = ratio of specific heats
ε = particle transportation percentage from chamber

sidewall to one chamber end
λ = mean free path
ρ = background gas density
ρ0 = initial background gas density
τd = semidecaying period

I. Introduction

V ACUUM chambers have wide applications for a variety of
purposes such as materials processing and spacecraft elec-

tric propulsion experiments. The general goal of vacuum chambers
is to maintain a low pressure. For example, in experiments test-
ing a cluster of high-power electric plasma thrusters inside vac-
uum chambers,1−3 the backpressure was maintained at about 10−3–
10−4 Pa. In such experiments, a high backpressure will distort the
exhaust plume flow and affect the width of the ion energy distri-
bution function through collisions between beam ions and neutral
background particles. The presence of a high backpressure does
not reflect the real situation in space and may adversely affect the
experiments.

One primary concern regarding vacuum chambers is the facility
effects on the chamber performance. There are several facility effects
that have a significant impact on the vacuum chamber backpressure.4

The most significant effect is the pump sticking coefficient. The very
low pressures obtained when testing electric thrusters are maintained
using cryogenic pumps that employ gaseous helium. In such exper-
iments, propellant frost will build up on cryopump surfaces and
eventually will limit the pumping speed5; hence, even though the
nominal sticking coefficient for gas–steel pump plates is high, in
operation the pump sticking coefficient may be much lower. Vac-
uum pump area has an important effect as well. A typical vacuum
chamber capable of testing the lifetime for electric plasma thrusters
has a cylindrical shape with a minimum diameter of 6 m and a min-
imum length of 9 m (Ref. 4). For these long chambers, wall effects
have an important influence on chamber performance.

In Ref. 1, a series of experiments was performed to test Hall
thrusters in the Large Vacuum Test Facility (LVTF) at the University
of Michigan. Different backpressures were measured with different
numbers of pumps in operation and different mass flow rates from
one or two thrusters. Several free molecular flow models have been
proposed in Ref. 6 for analyzing these data and for studying the
facility effects on this background flow. The general conclusions
from these models and analysis are as follows:
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1) The pump sticking coefficient for the LVTF is close to 0.40
on average, though this value can vary within a small range under
different operation conditions.

2) The background flow is composed of three groups of particles.
The first group comes from the chamber end facing the thruster, the
second group comes from the pump plate close to the other chamber
end, and the last group comes from the end with a pump but not from
pumps.

3) The velocities of the background flow do not follow a zero-
centered Maxwellian distribution.

The pumps in the models of Ref. 6 are two-sided cyrogenic pumps
where both sides of the pump are equally exposed to the back-
ground flows, and these models are essentially constant density
models without detailed consideration of wall effects. The purposes
of the present study are to investigate analytically and numerically
the background flow inside a vacuum chamber equipped with one-
sided pumps at one chamber end. Compared with the models6 for
two-sided pumps, one-sided pump models are simpler, hence, it is
more convenient to investigate chamber sidewall effects in this case.
Unlike the previous work in Ref. 6, which is based on available ex-
perimental measurements1 and three series of simulations,7 there
are no data available for chambers equipped with one-sided pumps
yet. Hence, the validity of the models in the present study will be
compared with numerical simulations. In Ref. 8, the work regarding
the facility effects for chambers equipped with one-sided pumps or
two-sided pumps is summarized.

The rest of this paper is organized as follows: In Sec. II, the
background and several general modeling assumptions are briefly
reviewed; in Sec. III, three molecular flow models with discussions
of results are presented; in Sec. IV, numerical simulations and com-
parisons with the models are presented; in Sec. V, the impact on
numerical simulations are discussed; and the study is concluded in
Sec. VI.

II. Background and General Assumptions
In Ref. 6, the background flow inside the LVTF, which is a vacuum

chamber equipped with two-sided pumps that are located close to
one chamber end, was studied. As stated earlier, the present study
is focused on another type of chamber equipped with one-sided
vacuum plates on one chamber end. The physical situation is quite
similar to the background flow in the LVTF, hence, the conditions
in the LVTF are briefly reviewed. The LVTF is used for testing
plasma thrusters, and it is a cylindrical chamber with a diameter of
6 m and a length of 9 m. Pumps are located on one chamber end,
with seven cryopump plate surfaces. The pumps are maintained
at an estimated temperature of 15 K using gaseous helium. When
particles such as xenon atoms or ions hit the pumps, a fraction of
the particles stick to the plates and the rest rebound diffusely with
a thermal speed characterized by the pump temperature of 15 K. A
low-density plasma flow is exhausted from the thruster toward the
other chamber end. Though there are ions in the plume flowfield,
the ion number density is far lower than the neutral number density,
and when these ions hit the chamber wall, they lose their charge and
rebound diffusely as neutrals with a thermal speed characterized
by the wall temperature of 300 K. It is reasonable to assume that
background neutrals move slowly from one chamber end toward the
other end where the pumps are located.

Suppose that the gas flow is highly rarefied, it is reasonable to
separate the chamber gas pressure into two parts: a universal back-
ground pressure and a plume pressure that only exists inside the
plume. The study of the background pressure is the primary con-
cern in this paper.

In the LVTF experiments,1−3 the backpressure of xenon is es-
timated using the ideal gas law Pb = nkTw , where n is the xenon
number density measured using an ionization gauge and Tw is the
chamber temperature. In this study, the same formula is used to
calculate the backpressure.

Several assumptions can be reasonable made based on the cham-
ber operation conditions. First, pumps work effectively and cre-
ate a low-density environment. This assumption results in a free
molecular flow at the final steady state. With a typical final xenon

backpressure of 10−3 Pa in the chamber, the mean free path of
xenon atoms is about 2.86 m. Second, the chamber wall temper-
ature is 300 K. Third, the background flow is one-dimensional.
Fourth, the plume flow is neglected. The reflection of plume parti-
cles from one chamber end can be treated as entering neutral xenon
gas through the chamber end with an area Sc at the thruster mass
flow rate ṁ and wall temperature Tw . This end of the chamber is
considered a source. Fifth, all pumps have the same sticking co-
efficient α, the same pump temperature Tp , and a total pump area
Sp . For the sake of simplicity, the total pump area Sp is smaller
than the chamber cross-sectional area Sc. When xenon atoms and
ions hit the pump surfaces, by a probability of α, they stick to the
pumps and, by a probability of 1 − α, they rebound with a ther-
mal speed characterized by Tp . Hence, the pumps can be treated
as a sink with a temperature Tp and an area Sp that is smaller than
Sc. Because the flow is highly rarefied without many collisions be-
tween particles, the particles reflected from the pumps cannot hit
the same pumps immediately without the necessary change of di-
rection by collision with the other chamber end or the chamber
sidewalls.

With the preceding assumptions, the background flow in the vac-
uum chamber can be simplified as one free molecular flow with two
sources at both chamber ends and a sink for the pumps on or close
to one chamber end.

In contrast with Ref. 6, in this study, the pumps are located on one
chamber end and they are one-sided; hence, there is no postpump
region and this greatly simplifies the analysis.

For any gas flow in equilibrium, the velocity distribution in any
coordinate direction can be described as a full Maxwellian distri-
bution. For a temperature T , the velocity distribution function for a
stationary flow in one direction is

f (C) dC = [m/(2πkT )]
1
2 exp[−(2kT )−1mC2] dC (1)

The mass flux in one direction across an area S is

ṁ = mnS

∫ ∞

0

C f (C) dC

= mnS
√

(8kT )/(πm)
/

4 = mn+S
√

(2kT )/(πm) (2)

where n+ = n/2 is the number density of particles moving in one
direction.

Another important relation for this study is the number density
after a group of particles reflect from a plate with a different tem-
perature. Directly from Eq. (2), to preserve the flux, the following
relation must hold:

n1

√
T1 = n2

√
T2 (3)

where the subscripts 1 and 2 represent the incoming and reflected
groups of particles, respectively. Equations (1–3) can be found in
general textbooks on kinetic theory.9−11

III. Free Molecular Flow Models
A. Model 1: From Mass Conservation Law

Given a constant density distribution, the mass conservation law
for the gas inside the vacuum chamber is

dρ

dt
= d

( ∫
ρ dv

)
dt/V

=
[
ṁ − αSpρ

√
(8kTw)/(πm)

/
4
]

V
(4)

By the use of one initial condition, ρ(t = 0) = ρ0, and one steady-
state condition, dρ/dt (t → ∞) = 0, the solution for this equation
can be obtained, which consists of one unsteady term and one steady
term,

ρ(t) = [
ρ0 − (2πm)

1
2 (kTw)− 1

2 ṁ(αSp)
−1

]
exp

{−[
αSp(kTw)

1
2

× (2πm)− 1
2 /V

]
t
} + (2πm)

1
2 (kTw)− 1

2 ṁ(αSp)
−1 (5)
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The mean velocity is

U (t) = ṁ[Scρ(t)]−1 (6)

The pressure corresponding to the experimental measurements is

pb(t) = [
ρ0 RTw − (2π RTw)

1
2 ṁ(αSp)

−1
]

exp
{−[

αSp(kTw)
1
2

× (2πm)− 1
2 /V

]
t
} + (2π RTw)

1
2 ṁ(αSp)

−1 (7)

At steady state, the normalized pressure and the speed ratio are

Pp Sc

(
ṁ

√
γ RTw

)−1 = (2π/γ )
1
2 /(αs) (8)

U
/√

2RTw = αs
/

(2
√

π) (9)

If the backpressure is known, then the pump sticking coefficient
can be calculated using

α = ṁ(2π RTw)
1
2 (Pb Sp)

−1 (10)

This crude model, especially Eq. (7), relates many properties from
the chamber, the pumps, the thruster, and the propellant, although
the pump temperature is not included. Three conclusions can be
drawn from this model:

1) It is evident from Eq. (7) that if the pumps work efficiently,
the pressure will decrease and reach a final steady state. However,
it also indicates that the unsteady term will take a finite time to
decay significantly. For example, with the following LVTF param-
eters: V = 280 m3, Tw = 300 K, Sp = 7.26 m2, and an assumption
of α = 0.40, the decaying term is

Pb(t) = Ce−0.57t = Ce−t/1.75 (11)

The significant term in this expression is the semidecaying period
τd = 1.75 s. In experiments, the pumps usually operate for at least
several hours, and steady background flows are well established.
However, in particle simulations of the rarefied plasma plume flow
inside a vacuum chamber, usually it is modeled as an unsteady pro-
cess with a time step of approximately 1 × 10−7 s. This requires
over 50 million time steps for three semidecaying periods to reach a
steady flow state. This presents a computational challenge to numer-
ical simulations, and usually a full three-dimensional simulation of
the whole chamber flow is too expensive.

2) The background gas flows toward the pump, and the highest
speed is over 100 m/s for xenon with the parameters α = s = 1.

3) No matter how efficiently the pumps work, there is a certain
amount of finite backpressure in the vacuum chamber. This back-
pressure is represented by the second term of Eq. (7). The same
expression also indicates that for a specific chamber with fixed pa-
rameters, at the final steady state, the background pressure is pro-
portional to the mass flow rate from the thrusters. Although this is
a crude approximation, experimental measurements1 support this
conclusion. Reference 6 gives the details for the analysis of the
experimental measurements of LVTF.

The background pressure can be calculated using Eq. (8) with a
known sticking coefficient and a given mass flow rate. In general, for
this model, the steady-state background pressure decreases as the
sticking coefficient increases. At small values of α, a 1% difference
in the coefficient may result in a significant backpressure difference,
whereas for large values the normalized pressure is not very sensitive
to this parameter. For a numerical simulation of flows inside vacuum
chambers, a correct sticking coefficient is critical.

B. Model 2: From Kinetic Relations, Without Wall Effects
In this model, a vacuum chamber is equipped with pumps on one

end and only one side of the pumps is exposed to the background
flow, as shown in Fig. 1. This model represents a practical and well-
defined free molecular flow problem.

In the first step, model 2 still assumes a constant density distri-
bution without strict treatment of wall effects, which is valid for a

Fig. 1 Model 2.

short chamber assumption. In the next model, this assumption will
be relaxed.

When the flow reaches a final steady state, the flux must be bal-
anced everywhere along two directions, and this condition leads to
several number density relations. Analysis of these flux and number
density relations is the key step to analyze this problem.

At end A, a group of particles moves from A to B with a number
density n A+ = nin + n A1+ + n A2+. At end B, there are three number
density relations from the flux relations:

1) Particles are reflected at end B but not from the pumps,

nB2− = n A+(1 − Sp/Sc) = n A+(1 − s) (12)

2) For the mass flux relation, flux out of the chamber through the
pumps at B equals the flux into the chamber at chamber end A,

ṁ = αmn A+Sp Vw = mnin ScVw (13)

3) Particles are reflected from the pumps,

nB1−
√

Tp = (1 − α)n A+(Sp/Sc)
√

Tw = (1 − α)sn A+
√

Tw (14)

The preceding relations yield the following expressions:

n A1− = nB1− = [(1 − α)/α]
√

Tw/Tpnin (15)

n A2+ = n A2− = nB2− = (1 − s)/(αs)nin (16)

n A1+ = nB1−
√

Tp/Tw = [(1 − α)/α]nin (17)

n A+ = nin/(αs) (18)

With the preceding relations, the full solutions for this model are

n A = nB = n A+ + nB1− + nB2− =
(

2 − s + s(1 − α)
√

Tw/Tp

αs

)
nin

= ṁ

Sc

√
π

2kmTw

(
2 − s + s(1 − α)

√
Tw/TP

αs

)
(19a)

f (C) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2nin

αs

(
m

2πkTw

) 1
2

exp

(
− m

2kTw

C2

)
, C > 0

2(1 − α)s
√

Tw/Tpnin

αs

(
m

2πkTp

) 1
2

exp

(
− m

2kTp
C2

)

+ 2(1 − s)nin

αs

(
m

2πkTw

) 1
2

exp

(
− m

2kTw

C2

)
, C < 0

(19b)
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The normalized mean velocity, the pressure corresponding to ex-
perimental measurements (P = nkTw), and the pump sticking coef-
ficients are as follows:

U√
2RTw

= sα√
π
(
2 − s + s(1 − α)

√
Tw/Tp

) (20a)

Pb Sc

ṁ
√

γ RTw

= nkTw Sc

ṁ
√

γ RTw

=
√

π

2γ

(
2 − s + s(1 − α)

√
Tw/Tp

αs

)
(20b)

α = 2 − s + s
√

Tw/Tp

s
√

Tw/Tp + Pb SP

/(
ṁ

√
π RTw/2

) (20c)

It is appropriate to discuss the range of validity for the preceding
formulas. These expressions are based on a free molecular flow
assumption; hence, for a specific mass flux and a specific propellant,
it is not difficult to evaluate whether the assumption is correct. The
number density n A from Eq. (19a) and the chamber end radius are
selected as the characteristic quantities for the evaluation of the
Knudsen number,

K n = λ√
SC/π

= 1√
2πd2

√
SC n A

= αsm
√

RTw SC

πd2ṁ(2 − s + (1 − α)s
√

Tw/Tp)
(20d)

where the sticking coefficient in this formula should be computed
with Eq. (20c) if not given as a known quantity.

Model 2 leads to exact solutions to a classical free molecular
flow problem. Generally, a vacuum system consistent with model 2
works less efficiently than a vacuum chamber equipped with two-
sided pumps, which was studied in Ref. 6, because only the particles
moving toward end B have a chance to be absorbed.

Relation (19b) indicates that there are three groups of particles
moving inside the chamber. One group of particles travels toward
the vacuum pump, whereas the other two groups travel from the
pump direction, one of which is directly reflected from the pumps.
Figure 2 shows several velocity distributions with different combi-
nations of parameters. It is evident that the background flow cannot
be described as a Maxwellian distribution, and the average velocity
is not zero.

Figure 3 shows results obtained with Eq. (20b), which links the
normalized average backpressure inside the chamber with the pump
area and pump sticking coefficient. The temperature ratio is set to
TP/Tw = 15/300. An increase in the pump area or pump sticking
coefficient results in a lower background pressure. Figure 4 shows

Fig. 2 Velocity distribution examples from Eq. (19b).

Fig. 3 Normalized backpressure contours for model 2, PbSc/
[ṁ

√
(γRTw)].

Fig. 4 Speed ratio, U/
√

(2RTw), contours predicted by model 2.

results obtained with Eq. (20a), which links the average speed ratio
in the chamber with the pump sticking coefficient and the pump
area. The temperature ratio set to TP/Tw = 15/300. The mean flow
direction is always toward the pump, and the mean velocity increase
as α or s increases.

It is critical to consider the wall effects because many vacuum
chambers are quite long and almost all particles hit the sidewall
while they travel from one chamber end to the other end; hence,
chamber wall effects are dominating. In vacuum chambers, there
are two groups of particle diffusing back into the chamber center
from the two chamber ends. The existence of a long chamber wall
will impede slow particles diffusing back from the cold pump. From
Eq. (3), after these slow particles reflect from a chamber wall, they
resume a fast speed and the number density drops significantly.
Hence, it is reasonable to conclude that the existence of a long
chamber wall confines the pump effect to a small region close to the
pump. Based on this observation, it may be proper to consider the
effects of the chamber wall by setting the ratio Tp/Tw in Eqs. (19a)
and (20a) to 1,

n A = nB = (ṁ/Sc)
√

π/(2kmTw)(2 − sα)/(αs) (20e)

U
/√

2RTw = sα
/[√

π(2 − sα)
]

(20f)

Note that this is an approximation, and later numerical simulations
are used to test its validity. A final comment is that model 2 is a
constant density model and a special case of the next general model.
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C. Model 3: Kinetic, One-Sided Pumps with Wall Effects
In contrast with the earlier treatment of considering sidewall ef-

fects by dropping the temperature ratio, the following nonconstant
density model considers sidewall effects more generally. Figure 5
shows this model.

First, from the relation of the mass flow into the chamber at cham-
ber end A and that out of the chamber through the pump at chamber
end B

ṁ = mnin ScVw = αmnB+Sp Vw (21)

the following relation is obtained:

nB+ = nin/(αs) (22)

At chamber end B, the following relations exist for the mass flux
toward the pumps and other regions of end B,

nB1− = (1 − α)s
√

Tw/TP nB+ = (1/α − 1)
√

Tw/Tpnin (23)

nB2− = (1 − s)nB+ = (1 − s)nin/(αs) (24)

At both ends, the incoming particles are composed of two groups:
One group of particles travels from the other end without any colli-
sions with the sidewalls, whereas the other group of particles travels

n A =
[
βs(1 − α)(β + 1)

√
Tw/Tp + 2 + 2β + αs − βs − β2s − 2αβs + αβ2s

]
nin

αs(β + 1)
(27a)

nB = [(1 − α)s
√

Tw/Tp + (2 − s)]nin

αs
(27b)

nav = n A + nB

2
=

[
s(1 − α)(β + 1)2

√
Tw/Tp + 4 + 4β + αs − s − 2βs − β2s − 2αβs + αβ2s

]
nin

2αs(β + 1)
(27c)

f (A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(1 + β + αs − αβs)nin

αs(β + 1)

(
m

2πkTw

) 1
2

exp

(
− m

2kTw

C2

)
, C > 0

2βs(1 − α)(β + 1)
√

Tw/Tpnin

αs(β + 1)

(
m

2πkTp

) 1
2

exp

(
− m

2kTp
C2

)

+ 2(1 + β − βs − β2s − αβs + αβ2s)nin

αs(β + 1)

(
m

2πkTw

) 1
2

exp

(
− m

2kTw

C2

)
, C < 0

(27d)

f (B) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2nin

αs

(
m

2πkTw

) 1
2

exp

(
− m

2kTw

C2

)
, C > 0

2s(1 − α)
√

Tw/Tpnin

αs

(
m

2πkTp

) 1
2

exp

(
− m

2kTp
C2

)
+ 2(1 − s)nin

αs

(
m

2πkTw

) 1
2

exp

(
− m

2kTw

C2

)
, C < 0

(27e)

The normalized mean velocities, the normalized pressures corresponding to experimental measurements, and the Kundsen number are

U (A)√
2RTw

= αs(1 + β)√
π
[
βs(1 − α)(β + 1)

√
Tw/Tp + 2 + 2β + αs − βs − β2s − 2αβs + αβ2s

] > 0 (28a)

U (B)√
2RTw

= αs√
π
[
2 − s + (1 − α)s

√
Tw/Tp

] > 0 (28b)

Pb(A)Sc

ṁ
√

γ RTw

=
√

π

2γ

[
βs(1 − α)(β + 1)

√
Tw/Tp + 2 + 2β + αs − βs − β2s − 2αβs + αβ2s

αs(β + 1)

]
(28c)

Pb(B)Sc

ṁ
√

γ RTw

=
√

π

2γ

[
2 − s + (1 − α)s

√
Tw/Tp

αs

]
(28d)

K n = λ√
Sc/π

= 1√
2πd2

√
SC n A

= αs(1 + β)m
√

RTw SC

πd2ṁ
[
βs(1 − α)(β + 1)

√
Tw/Tp + 2 + 2β + αs − βs − β2s − 2αβs + αβ2s

] (28e)

from the sidewall. Denote these two transportation factors β and ε.
Under the further assumption that the particles close to the sidewall
may drift to both ends with equal probability because of the diffuse
wall reflection assumption, the following equations are obtained:

nB+ = βn A+ + εnw (25a)

n A+ = nin + εnw + βnB2− + βnB1−
√

Tp/Tw (25b)

Equations (22–25) yield the following intermediate results:

n A+ = (1 + β + αs − αβs)nin

αs(1 + β)
(26a)

n A− = βnB1− + βnB2− + εnw =[
βs(1 − α)(β + 1)

√
Tw/Tp + 1 + β − βs − β2s − αβs + αβ2s

]
nin

αs(1 + β)

(26b)

Note that the percentage parameter ε is totally canceled in the
final results. The complete solutions for this model involve an extra
geometry parameter β, which is another percentage number com-
pletely determined by the chamber length and the chamber base
radius,
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Fig. 5 Model 3.

Fig. 6 Normalized backpressure contours at end A Pb(A)Sc/
[ṁ

√
(γRTw)], from model 3, β = 0.05.

There are several significant observations from the preceding
relations:

1) The formulas for chamber end B with pumps are the same as
the results from model 2.

2) Generally, the number densities for A and B are different, and
a nonconstant density distribution occurs. Either chamber end can
have the higher density with a proper combination of parameters.

3) The background gas flows toward the pump.
4) This model can be considered as a finite chamber length model

for consideration of the pump. The constant density model 2 is a
special case of this model. When β = 1, Eq. (28) degenerates to the
constant density distribution of model 2.

5) The highest speed ratio is the same as that of model 2 and
happens at both ends with α = β = s = 1.

The number density in the chamber varies spatially and may be af-
fected by various effects from the chamber, the pumps, the thruster,
and the propellant. Figures 6 and 7 show results of normalized pres-
sure and speed ratio for end A. For both cases, the parameter β is
set to 0.05, representing a long chamber situation. Mathematically,
∂ P/∂s ∝ (−s−2) and ∂ P/∂α ∝ (−α−2); hence, P(A) is a decreas-
ing function of s and α, and Fig. 6 shows these trends. Because
the average velocity has an inverse relation with number density to
maintain a fixed net mass flow rate, Fig. 7 shows an exact reverse
trend in velocity when compared with density. Whenα is quite small,
the model is not valid because the flow is no longer free molecular.
PA and PB decrease when α increases, and an increase in pump area
always results in a lower backpressure for both chamber ends. The
velocity near the pump is always greater than zero, which means
that gas flows toward the pump. The combination of α = 1, β = 1,
and s = 1 results in n A = nB = nin and UA = UB = √

(2RTw/π). For

Fig. 7 Speed ratio, U/
√

(2RTw), contours at chamber end A from
model 3, β = 0.05.

Fig. 8 Normalized backpressure contours at end A Pb(A)Sc/
[ṁ

√
(γRTw)] from model 3, s = 0.4.

this situation, all particles hitting the pumps are absorbed. Because
no particles are reflected from the postpump region, the number
densities at chamber end A and B are equal to the inlet number den-
sity. For a short chamber situation β = 0.63, the trends in pressure
and velocity are the same as Figs. 6 and 7, though there are some
difference in values.

Figures 8 and 9 show contours of normalized pressure and speed
ratio for end A using α and β as variables. For both cases, the
parameter s is set to 0.4. Mathematically, ∂ P/∂β has different signs
depending on α. Hence, the wall effects have different roles in the
effects of the final average stage. A small α results in a large amount
of slow particles reflected from the pumps; within a long chamber
where β is small, these particles cannot reach the other chamber end
without collisions with the chamber wall, and particle accumulations
are present at both chamber end. For a short chamber where β is
greater, these particles are capable of reaching the other end; hence, a
higher average density results. With a large α, very few particles are
reflected back toward the other end, and a short chamber is effective
in absorbing slow particles; hence, a lower average density occurs.
In Fig. 8, the condition ∂ P/∂β = 0 occurs close to α = 0.65, and
this result will be tested later by the numerical simulations. Average
velocities shown in Fig. 9 share the same contour line shapes but
reverse trends as in Fig. 8 to maintain a fixed net mass flow rate.
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Fig. 9 Speed ratio, U/
√

(2RTw), contours at end A from model 3,
s = 0.4.

Fig. 10 Distribution of β along chamber length.

D. Evaluation of Transport Coefficient β
A key parameter for this model is the transport coefficient β,

which controls the probability that a particle traveling from one
chamber end can reach the other chamber end without any collisions
with the chamber sidewall. The evaluation of this parameter involves
two steps: First, calculate the solid angles at one specific point on
one chamber end subtended by the other chamber end. The solid
angle formula is

� =
∫

s

r · n dS

r 3
=

∫ 2π

0

H dϕ

∫ R

0

η′2 dη′

(r 2 + H 2 − 2rη′ cos ϕ + η′2)
3
2

(29)

The final format of this integral involves the Heuman’s lambda func-
tion and the complete elliptic integral of the first kind (see Refs. 12
and 13). The second step is to average the solid angles over all points
on this chamber end. Though there is an analytical result for the first
step, it is quite difficult to obtain an analytical expression for the sec-
ond stage, which is required to evaluate the analytical results from
model 3. In this study, the transportation coefficient β is evaluated
numerically. Figure 10 shows the numerical results of β for differ-
ent chamber stations at different distances from one chamber end.
It shows that as x/L increases, the percentage of particles reaching
the planes from one chamber end drops rapidly. For a chamber with
L/R = 0.9/3, about 63% of the particles starting from one cham-
ber end reach the other chamber end; for L/R = 9

3
, only about 5%

of particles starting from one chamber end arrive at the other end

without hitting the chamber sidewall. Hence, for a 9-m-long and
6-m-diam (LVTF) chamber, the sidewall effect is significant.

E. Comments on Models
Among these three models, model 1 is the crudest one-

dimensional model without any consideration of sidewall effects.
Model 2 is a relatively accurate model in which two chamber ends
and pumps and a sidewall effect is considered by setting the ratio
Tp/Tw to 1. This model is actually a one-dimensional model with
a constant density distribution. Model 3 is the most advanced and
complete model, in which wall effects are considered, and it can
predict a nonconstant density distribution along different chamber
stations. Model 2 can be considered as one special case of model 3.

In experiments, it is not desirable to accumulate a large amount
of particles at the chamber end equipped with pumps. Model 3 can
predict a threshold value for the sticking coefficient that results in
an accumulation around the chamber end equipped with pumps. For
example, to satisfy n A > nB , from Eqs. (27a) and (27b), it can be
shown that

α >

[
β2 − 1 + (1 − β2)(Tw/Tp)

1
2

][
1 − 2β + β2 + (1 − β2)(Tw/Tp)

1
2

] (30)

A parameter combination of β = 0.05 and Tw/Tp = 300/15 results
in α > 0.65. Note that this relation is independent of s.

Another interesting factor is the temperate ratio Tp/Tw . Usually,
the cryopumps in large vacuum chambers are maintained at low
temperature, for example, the pump temperature in LVTF is ap-
proximately 12–15 K. Generally, this temperature ratio does not
have significant effects. As mentioned earlier, the large amount of
slow particles reflected from the cold pumps concentrate around the
pumps. Once these particles hit the chamber side wall, these parti-
cles resume a faster speed and diffuse quickly. Hence, the majority
of practical long chambers is dominated with faster particles, and
the pump temperature effects are not significant. Another reason ac-
counting for the unimportance of the temperature ratio is that, in the
formulas obtained in this study, the temperature ratios are usually
offset by square roots and in front of these square roots there are al-
ways small coefficients. Hence, in this study, the pump temperature
is set to 15 K and no further investigations are performed.

IV. Numerical Simulations and Discussions
For vacuum chambers equipped with one-sided pumps, there are

no experimental measurements available; hence, the validity of these
models depends on comparisons with numerical simulations.

In this study, about 70 simulations using the direct simulation
Monte Carlo (DSMC) method9 are performed to compare with
the analytical results. A special DSMC code called MONACO14

is adopted for these simulations. In these simulations, xenon gas
flows through a cylindrical chamber with a fixed base radius of 3 m.
In all of the simulations, the mass flow rates into and out of the
chamber ends are set to 6.17 mg/s, which is the mass flow rate out
of four Hall thrusters in Ref. 2. All of the simulation results are care-
fully examined to confirm that the mean free path in the flowfield is
over 3 m; hence, the flow is close to free molecular for each case.

These simulations are physically accurate by including collisions,
even though collisions occur very infrequently. The DSMC method
simulates collision effects in rarefied gas flow by collecting groups
of particles into cells. Pairs of particles inside a cell are selected at
random and a collision probability is evaluated that is proportional
to the product of the relative velocity and the collision cross section
for each pair. The probability is compared with a random number to
determine if that collision occurs. If so, some form of collision dy-
namics is performed to alter the properties of the colliding particles.
The no time counter method9 is adopted to determine the collision
rate. In this study, momentum collisions, or elastic collisions involv-
ing the exchange of momentum between the participating particles,
are included in the DSMC method. The variable hard sphere9 model
is employed, and the collision cross section of xenon is

σel(Xe, Xe) = 2.12 × 10−18g−2ωm2 (31)
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Fig. 11 Simulation domain.

where g is the relative velocity and ω = 0.12 is related to the viscos-
ity temperature exponent for xenon. In all elastic interactions, the
collision dynamics is modeled using isotropic scattering, together
with the conservation of linear momentum and energy to determine
the postcollision velocities of the colliding particles.

A. Boundary Conditions
Figure 11 shows the axisymmetric simulation domain used in this

study. It is a cylindrical chamber with a length of 9 m or 0.9 m and
a radius of 3 m. These simulations with a long chamber sidewall
and a short chamber sidewall provide numerical results to test the
performance of the analytical results obtained in this study.

There are four kinds of boundary conditions adopted in these
simulations:

1) The first boundary condition is OO1, the axis of symmetry.
2) The second boundary condition is OA, a mixed inlet and diffuse

wall boundary condition. When particles hit this boundary from the
inner domain, they reflect diffusely with a speed characterized by
a wall temperature Tw = 300 K. Usually, large vacuum chambers
are exposed to air; hence, a room temperature is reasonable. At the
same time, this side also serves as an inlet boundary condition, and
a fixed mass flow rate of 6.17 mg/s into the chamber is maintained.
A uniform inlet at this side is consistent to the treatment in models
2 and 3.

3) The third boundary condition is AB, a diffuse wall boundary
condition with Tw = 300 K.

4) The fourth boundary condition is BO1, a mixed outlet and
diffuse wall boundary condition. When particles hit this wall, by a
probability of 1 − SP/SC , they reflect diffusely with a speed char-
acterized by the wall temperature of 300 K. By a probability of
αSP/SC they are absorbed by the pumps and, hence, removed from
simulation. By a probability of (1 − α)SP/SC they reflect diffusely
with a speed characterized by the pump temperature of 15 K. These
simulations are attempts to remove the effect of pump location;
hence, there is no exact pump location are specified on this simula-
tion domain. Whether a particle sticks to the pump or reflects on the
wall or pumps is decided by comparing two random numbers and
given parameters. This treatment is effective to simulate pumps of
all sizes, including very small pumps.

A mesh of 45 by 15 cells along the axial and radial directions
is adopted in this study. In this study, the flows are free molecu-
lar, there are very few collisions happening inside the domain, and
such a mesh size provides enough resolution while minimizing the
simulation cost. The time steps adopted in the final stages of these
simulations vary from 1 × 10−4 s to 1 × 10−6 s to reduce multiple
reflections for a particle in one time step. Typically, a simulation
starts with quite a large time step, and a small number of parti-
cles reaches a steady state. Then the time step is reduced, and the
particle number increased. For all simulations cases, approximately
1 million particles are preserved in the final sampling stage and each
case takes less than 30 min on a Sun workstation.

B. Evaluation of Average Quantities
Models 1, 2, and 3 are essentially one-dimensional models with

constant distributions at all stations, and model 3 can give variations
at different stations if combined with a proper interpolation of the

properties at both chamber ends. The primary concern of the numer-
ical simulations is to compute the averaged properties throughout
their flowfields. At each time step, an average density and an average
velocity for the whole domain are computed by counting all parti-
cles in the simulation domain and averaging all particle velocities
in the domain

ρ(t) =
[∑

(wi Ni )

]
m

/
V (32a)

U (t) =
(∑

U j

)/
N (32b)

where Ni and wi are the total number of particles and particle weight
in the i th cell, V is the whole chamber volume, and U j and N are
the j th particle velocity and total number of particles in the domain.
The flow evolution history can be computed through the preceding
expressions.

C. Comment About Accuracy
The major purpose of this study is to provide several analytical ex-

pressions to evaluate the average background pressure and average
background flow velocities. Because the flow is free molecular, the
DSMC is an accurate simulation method to provide accurate flow
solutions. When all particles in the chamber are counted and their
velocities averaged, Eqs. (32a) and (32b) provide accurate average
results in the whole chamber. By the inclusion of collisions, these
DSMC simulations are expected to provide more accurate results
than the analytical results. Hence, these particle simulation results
will be used to compare the effectiveness of the analytical mod-
els. The detailed distributions in these two-dimensional simulations
may be effected by subtle changes in boundary treatments, but the
average number density and average velocity in the chamber are not
sensitive to these changes in boundary treatment.

Though the detailed two-dimensional distributions are not the ma-
jor focus of this study, observations of these results may be helpful.
Figures 12 and 13 are contours of number density and velocity at a
steady flow state for the case of L/R = 9

3
, Sp/Sc = 0.4, and α = 0.4.

Figure 12 shows clearly that for this case there is a large amount of
particles reflected from the pump toward the other end. However,
after colliding with the long chamber wall, these particles resume
a faster speed and the density drops. Hence, the slow diffusion is
confined to a small location around the two ends. Figure 13 shows
that the velocity does not change significantly throughout the flow-
field, and an overall average velocity can represent the velocity field
quite well. Though there is an approximately 10% difference in the
velocity distributions in the flowfield, the major focus of this study
is to provide some analytical results for the average background
properties. For other simulation cases, the flowfields are quite sim-
ilar; but, with a higher pump area or a higher sticking coefficient,

Fig. 12 Contours of number density: L/R = 9
3 , Sp/Sc = 0.4, and α= 0.4.
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Fig. 13 Contours of velocity distribution in meters per second L/R = 9
3 ,

Sp/Sc = 0.4, and α= 0.4.

Fig. 14 One-dimensional density, normalized by ṁ/(mSc)√
[2π/(RTw)], and speed ratio distribution along different stations in

chamber: L/R = 9
3 , Sp/Sc = 0.4, and α= 0.4.

the diffusion from the chamber end with pumps decreases, and, for
the short chamber cases, gradients are distributed more evenly.

Note that model 3 can be used to study the one-dimensional varia-
tion of density or velocity distribution at different chamber stations.
Model 3 provides two different values at the two chamber ends. With
the aid of β, which is shown in Fig. 10, it is possible to construct
a nonlinear distribution of density or velocity at different cham-
ber stations. However, this will introduce a numerical distribution
into analytical results, and this is not the major concern of this study.
Numerically, the one-dimensional density and velocity can be calcu-
lated by averaging particles at different chamber stations. Figure 14
shows variations of steady one-dimensional density and speed re-
sults for the case L/R = 9

3
, Sp/Sc = 0.4, and α = 0.4. For this case,

the diffusion from the chamber end with pumps is more significant
than from the other chamber end. This indicates that the diffusion
effect is confined closely to both ends; hence, a lower value of den-
sity results for this long chamber case. The velocity varies inversely
with the density to maintain a fixed net flow rate.

D. Comparison of Numerical and Analytical Evolution History
Model 1 provides the average number density evolution history

through Eq. (5). The semidecaying period for a cylindrical chamber

Fig. 15 Average density evolution history, L/R = 9
3 , SP/SC = 0.4, and

α= 0.4.

Fig. 16 Average density evolution history, L/R = 0.9/3, SP/SC = 0.4, and
α= 0.4.

is

τd = V (2πm)
1
2

αSp(kTw)
1
2

= L(2π)
1
2

αs(RTw)
1
2

(33)

With a xenon mass flow rate of 6.17 mg/s, Sp/Sc = 0.4, α = 0.4,
and Tw = 300 K. With a chamber radius of R = 3 m and a chamber
length of 9 m or 0.9 m, the semidecaying periods for the unsteady
term are τd = 1.0 and 0.10 s, respectively.

The density evolution process can be compared with numerical
simulations. Figures 15 and 16 show two comparisons of analyti-
cal and numerical simulation results for the cases of L/R = 9

3
and

L/R = 0.9/3, respectively. Several comments can be made based
on these results:

1) The periods required to reach a steady state from the nu-
merical simulation and analytical results are quite close. For all
cases, it takes approximately four semidecaying periods to reach
a steady state. There is some subtle difference between the ana-
lytical results and numerical simulation results. The analytical re-
sults assume that the backpressure is homogenous and that there
is no prefered direction for gas to enter the chamber; however,
in numerical simulations, at time zero, through one chamber end,
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gas begins to enter the chamber where there is already an ambi-
ent pressure or vacuum. Hence, both simulations results include
a short startup time that can be estimated as by L/

√
(γ RTw) = 9/√

(5/3 × 8314/131.25 × 300) = 0.05 s. However, even with this ex-
tra startup time, the numerical simulations converge a little faster
than theoretical results, possibly because of collisions between par-
ticles and chamber walls.

2) For situations that start with a dense initial ambient environ-
ment and a vacuum initial ambient environment, the decay times are
the same.

3) The long chamber case results in a lower steady-state density
for the reason mentioned earlier when discussing Figs. 8 and 14.

E. Comparison of Averaged Density
The pump sticking coefficient has an important effect on the final

steady state. Figures 17 and 18 show the comparison of analytical
results from models 1–3 and 34 numerical simulations with a varying
α and with fixed Sp/Sc = 0.4 and 0.8, respectively. The number
density is normalized by [ṁ/(mSc)]

√
[2π/(RT )]. There are two

series of simulation results and two cases of analytical results from

Fig. 17 Average number density inside chamber, normalized by
ṁ/(mSc)

√
[2π/(RTw)], SP/SC = 0.4.

Fig. 18 Average number density inside chamber, normalized by
ṁ/(mSc)

√
[2π/(RTw)], SP/SC = 0.8.

model 1 with β = 0.05 and 0.63, corresponding to the situations
L/R = 9

3
and L/R = 0.9/3. In Fig. 17, the analytical result from

model 1 with β = 0.05 is equivalent to a horizontal intersection from
Fig. 8. The simulations are divided into two groups of a long chamber
wall (L = 9 m) and a short chamber wall (L = 0.9 m), providing two
bounding lines. Because models 1 and 2 do not consider wall effects
at all, and all models do not include the particle collision effects, the
analytical results are less accurate than these numerical simulations.
Several observations can be made from these results in Figs. 17 and
18:

1) For fixed Sp/Sc, the difference between analytical results
decreases and the analytical results fit the simulation better as α
increases.

2) The two series of numerical simulations yield an intersec-
tion point close to α = 0.60, which has been shown in Fig. 8.
Hence, model 3 has some superiority in predicting the trends of
backpressure.

3) The Sp/Sc = 0.8 case gives a better comparison between the
numerical and analytical results than Sp/Sc = 0.4.

4) Model 2 with Tp/Tw = 1 gives the best performance.
The pump area has an important effect on the final steady state

as well. Figures 19 and 20 show the comparison of analytical re-
sults and another 34 simulations with a variation of Sp/Sc and
fixed α = 0.4 and 0.8, respectively. In Fig. 19, the analytical re-
sult β = 0.05 from model 3 with α = 0.4 is equivalent to a vertical

Fig. 19 Average number density inside chamber, normalized by
ṁ/(mSc)

√
[2π/(RTw)], α= 0.4.

Fig. 20 Average number density inside chamber, normalized by
ṁ/(mSc)

√
[2π/(RTw)], α= 0.8.



534 CAI, BOYD, AND SUN

intersection line in Fig. 8. From the results in Figs. 19 and 20, the
following can be observed:

1) For fixed α, when s increases, the difference among analytical
results increases, the analytical results fit the simulation better, and
the difference between the two series of numerical simulation results
is more pronounced.

2) The two series of numerical simulations do not have a cross-
point that is quite consistent with Fig. 8.

3) The Sp/Sc = 0.8 case shows better agreement between analysis
and simulation than Sp/Sc = 0.4, the difference among the analytical
results decrease, and the performance of model 2 improves greatly
with less particles reflected from the chamber wall.

4) The Sp/Sc = 0.8 case is more comparable to the no-wall as-
sumption for model 2.

5) Model 2, with a modification of Tp/Tw = 1, has the best
performance.

F. Comparison of Averaged Velocity
Figures 21 and 22 show the comparison of average speed ratios

with a variation of α and fixed Sp/Sc = 0.4 and 0.8, respectively.
Compared with the average number density, the agreement of aver-
age velocity results is more difficult to obtain because velocity is a
higher-order momentum of the velocity distribution function. From
the results in Figs. 20 and 21, the following can be observed:

1) Models 1 and 2 with Tp/Tw = 1 have the best performance.
2) The performance of model 2 improves greatly for Sp/Sc = 0.8.

Fig. 21 Average speed ratio, U/
√

(2RTw), inside chamber, SP/SC = 0.4.

Fig. 22 Average speed ratio, U/
√

(2RTw), inside chamber, SP/SC = 0.8.

Fig. 23 Average speed ratio, U/
√

(2RTw), inside chamber, α= 0.4.

Fig. 24 Average speed ratio, U/
√

(2RTw), inside chamber, α= 0.8.

3) In Figs. 21 and 22, two series of numerical simulations inter-
sect at α = 0.6 as indicated in Fig. 9. Again, model 3 predicts this
intersection point successfully.

Figures 23 and 24 show the comparison of the average speed ratios
with a variation of Sp/Sc and fixed α = 0.4 and 0.8, respectively. The
following can be observed:

1) When α = 0.4, the long chamber has higher average velocities,
whereas for α = 0.8 the short chamber has higher average velocities.

2) Models 1 and 2 with Tp/Tw = 1 give the best performance.
3) Model 2 improves significantly with larger α.

V. Effects on Particle Simulation
To simulate a rarefied plume flow inside a vacuum chamber,

the DSMC method is usually adopted and an axisymmetric sim-
plification substitutes in place of an expensive full-scale three-
dimensional simulation. Traditionally, the background flow effects
are either omitted or approximated by a few static background parti-
cles in each cell. The velocities of these static background particles
are randomly assigned from a zero-centered Maxwellian velocity
distribution.

However, from the preceding discussions, it is demonstrated that
there are essentially three groups of particles inside a vacuum cham-
ber: two groups diffuse from the end with the vacuum pumps,
whereas the last group diffuses from the other chamber end. The
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velocities for the background particles are highly affected by var-
ious factors. The plasma plume flow inside a vacuum chamber is
more like firing a plume flow into another uniform background flow
toward the pump. The velocity distribution for the rarefied back-
ground flow can be far from a full Maxwellian distribution, and the
mean velocity of the background flow can be far from zero and can
reach over 100 m/s for xenon.

The influence on numerical simulations varies with parameters.
For example, in a simulation of electric plumes firing from four
Hall thrusters inside the LVTF, with a combination of parameters
of α = 0.39 and s = 0.1460 (four pumps in operation), the average
background velocity inside the chamber is only 6.0 m/s, and the
background number density calculated with formulas for two-sided
pumps is only slightly lower than the number density calculated
by n = Pb/(kT ). For this situation, the traditional approximation of
background flow by using static particles with velocities sampled
from a zero-centered Maxwellian distribution is quite acceptable.
However, for other situations where α or s is quite large, the back-
ground flow may have a significant effect. Hence, before performing
a simplified simulation of gas flow inside a vacuum chamber, it is
quite important to first evaluate the facility parameters and estimate
the background flow in the chamber.

To account accurately for the rarefied background flow, there are
several options:

1) Represent the backpressure by static background particles, but
assign the background particles with velocities sampled from the
complete analytical velocity distribution functions obtained in this
study.

2) Consider the background flow with inflow boundary condi-
tions. The front and backsides of the simulation domain use different
branches of the Maxwellian distributions obtained in this study.

3) Consider the background flow with a general inflow bound-
ary condition for all sides. This approach will require calculation
of a new number density, a new mean velocity, and a new temper-
ature from the velocity distributions obtained in this study. A new
Maxwellian distribution must be constructed with the preceding
information.

VI. Conclusions
In this study, three different free molecular flow models were

presented for the rarefied background flow inside a vacuum cham-
ber equipped with one-sided pumps, and four series of numerical
simulations were performed to test the validity of these analytical
models.

The first model was a crude model with a strong assumption of a
constant density distribution inside the vacuum chamber, and it led
to a set of crude but important relations. The second and the third
models were free molecular flow models considering chamber ends
effects. Analyzing the flux relations and number density relations
led to detailed velocity distributions for the background flow, and,
based on these distributions, the mean velocities and pressures were
obtained.

About 70 numerical simulations were performed to test the cor-
rectness of the analytical results. Generally, the performance of these
analytical models improved greatly as Sp/Sc or α increased. Model
2 with Tp/Tw = 1 yielded the best performance for average density.
Model 2 with Tp/Tw = 1 or model 1 yielded the best performance in
predicting the average velocities inside the chamber. Model 3 gen-
erally gave relatively poorer performance, although it is the most
complete model because it involves the complex factors of α, β,

and s; it predicted the correct trend change for a long chamber and a
short chamber, and it can create a nonconstant distribution between
two chamber ends, which is more physically reasonable.

These models indicated that the background flow in a chamber
was different from vacuum and that it cannot be simply treated as
a static gas field. The highest speed reached is over 100 m/s for
xenon, and the velocity distribution function can deviate far from a
Maxwellian distribution.

The formulas for the background gas obtained from this study
can be used to not only evaluate or predict the performance of a
vacuum chamber, but also establish a correct background flowfield
for numerical simulations.

Note that in the literature, there are no previous, similar reports
about how to estimate these average background properties. Mean-
while, these models and formulas are applicable to other vacuum
chambers with different cross sections and different applications
such as materials processing.
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