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Abstract

A validation study is presented for a numerical code
which calculates a two-dimensional steady-state solu-
tion for inviscid hypersonic flows in the presence of
strong surface blowing. A higher-order Godunov-type
finite-volume approach is used to discretize the inviscid ~
Euler equations. Interface values of the state quanti-
ties are reconstructed using a monotone Interpolation
technique suggested by Koren, based on Van Leer’s
kappa scheme. The interface fluxes are computed using
Roc’s upwind-biased flux-difference splitting technique.
The time-differencing algorithms used are a locally im-
plicit, linearized Gauss-Seidel iteration scheme and an
explicit multi-stage scheme with optimized short-wave
damping. The results of the numerical calculations are
compared with analytical solutions obtained for strong
blowing along a flat plate and a wedge with an inverse-
squarc-root injection-velocity distribution,

Introduction

The recent revival of interest in hypersonic vehicles has
rencwed interest in the study of hypersonic flow. Cne
suthject of study is the use of surface blowing to influ-
ence an external hypersonic flow field. Understanding
of the interaction between the injected gas and the high-
speed outer flow is critical Lo applications of blowing in
propulsion, surface cooling, and control-force genera-
tion. Experiments in hypersonic flows, however, are
difficult to perform; thus a heavy reliance on computa-
tional predictions has resulted. In the absence of ex-
perimental results, the only recourse is to validate the
computational codes on the hasis of flow cases for which
analytical solutions exist. This can help to distinguish
between physical and numerical effects in cases where
only numerical results are available.

A generic problem is that of hypersonic flow over a
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flat plate with distributed blowing off the surface. The
displacement effect of the blowing causes a shock wave
to form ahead of the blowing region. If the blowing is of
sufficient strength, the boundary layer is blown off; this
is called “strong blowing”. It results in a viscous free
shear layer separating an essentially inviscid rotational
blown layer next to the wall from an inviscid shock layer
extending from the shear layer to the shock (Figure 1).
For sufficiently high Reynolds numbers, the free shear
layer can be assumed to have negligible thickness and
be regarded as a slip-stream. This fully inviscid limit-
ing case was considered two decades ago by Cole and
Arcesty [1], and by Wallace and Kemp [2]. Recently,
Messiter and Matarrese {3] have obtained similarity so-
lutions that take into account the viscous interaction
for an inverse-square-root distribution of the injection
velocity along a flat plate and along a thin wedge, in
two dimensions.

The present paper is a validation study for an Euler
code for hypersonic flow with surface blowing developed
by the authors. Numerical solutions obtained with a
discretization of the Euler equations are compared with
analytical solutions for the inviscid strong-blowing case.
The numerical method used is a finite-volume technique
for finding steady solutions to the two-dimensional Eu-
ler equations with boundary conditions consistent with
the assumptions made in the analytical work. Com-
parisons for blowing off a flat plate and a wedge are
presented.

-Summary of Analytical Work

In the inviscid case to be considered, the flow field over
a flat plate or a wedge in the presence of strong blowing
can be separated into two different layers:

1. The blown layer next to the wall, made up of the
injected gas.

2. The shock layer between the blown layer and the
shock, made up of free-stream gas that has passed
through the shock.
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Figure 1: Schematic of the various layers present for strong blowing off a flat plate,
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Figure 2: Schematic showing the inviscid case. The inviscid blown layer and the inviscid shock layer meet in a
slip-stream along the separation streamline.



The two layers meet in a slip-stream along the sep-
arating streamline (Figure 2). TFlow in these layers
can be characterized by three different regions along
the plate or wedge. Far enough downstream, the rel-
ative pressure changes are small, and the interaction
between the blown layer and the shock is described
as weak (weak-interaction region). Further upstream,
the curvature of the shock increases, and the relative
pressure changes become large; here the interaction be-
tween the blown layer and shock is described as strong
{strong-interaction region). Still further upstream, the
thickness of the shock layer, blown layer, and free shear
layer (whose thickness has been considered negligible
up to this point) all become of the same order and no
real distinction between them can be made. This re-
gion is referred to as the merged-layer regime. Similar
flow classifications have been defined for viscous hyper-
sonic flow in the absence of blowing and are discussed
in books by Hayes and Probstein [1} and by Stewartson
[5].

In the strong-interaction region, the flow in the shock
layer is described by hypersonic small-disturbance the-
ory. The flow in the blown layer is compressible, and
is described by the so-called “inviscid boundary-layer
equations”. For flow on a flat plate, the results of Cole
and Aroesty [1] and Messiter and Matarrese [3] may
be used to show that an inverse square-root injection
velocity distribution of the form
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for ¥ = 1.4, results in a separating streamline of the
shape
2
Yss = 073,

the corresponding pressure distribution along the plate
is

Pu _ 1119M2 6%
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Here & << 1 is the blown-layer thickness at z = 1, and
1w 18 the ratio of the blown-gas density to the free-
stream density, assumed to be constant with a magni-
tude of O(1). The coordinates z and y and thickness
§ are non-dimensionalized with respect to the length of
the plate. The strong-interaction results are appropri-
ate for regions in which the parameter A2 6% is large

In the weak-interaction region, pressure changes are

small and linearized supersonic flow theory can be ap-

plied. The pressure perturbations (L;Rm) are propor-

tional to the local slope of the effective body created by
the blown layer (y;,). The flow inside the blown layer
1s assumed incompressible. Again, for a flat plate with
an inverse square-root blowing distribution of the form
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(1] and [3] show that the resulting separating streamline
has the form
Fs
Yss = b3,
the pressure distribution along the plate is
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These results are valid in regions where the parameters
Yss and M, are such that

z
Yes << Eo—

t.e., the thickness of the blown layer (y,,) is small in
comparison with the thickness of the shock layer, so
that linearized supersonic flow theory is applicable,

These results have been extended in [1] and [3] to
blowing along a slender wedge in hypersonic flow, In
the strong- interaction region, the solution is the same
as that for a flat plate since the wedge thickness is as-
sumed to be small in comparisen with the blown-layer
thickness in this region. This requires that y,, >> ra,
where o 1s the wedge half-angle.

The solution for the weak-interaction region is differ-
ent for wedge flow. For the case of an inverse square-
root injection velocity distribution of the form
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the separating streamline retains its shape, i.e.,

Yos = 623,
but the pressure along the wedge becomes
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The key parameter in this region is the ratio of the
blown-layer thickness § to the wedge half-angle «. This
ratio is assumed to be small. Also, as for the flat plate,
the thickness of the blown layer is assumed to be small
in comparison with the thickness of the shock layer.

Numerical Strategy

A higher-order Godunov-type [6] finite-volume ap-
proach was used to discretize the inviscid Euler equa-
tions. This requires a spacial interpolation routine,
a numerical flux function, and a time-marching tech-
nique.

e State quantities in cell centers were interpolated at
cell interfaces using a formula introduced by Van
Leer [7][8):
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This type of interpolation is at most second order
accurate (for £ = i), and may lead to spurious
oscilations in the solution in the neighborhood of
flow discontinuities. To avoid this while maintain-
ing the high order of accuracy in smooth flow re-
gions, a limniter may be employed (Sweby [9]); the
limiter adopted was one introduced by Koren [10]

which is consistent with k = :,1; It has the form
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In order to apply Koren’s interpolation formula
uniformly, state quantities at the boundary were
calculated first using an appropriate boundary pro-
ceedure, as explained below. The finite differences
across the boundary were then replaced by twice
the finite difference from the cell center to the
boundary.

Roe’s approximate Riemann solver [11] was used
to caleulate the flux across each cell interface,

Two different marching procedures were employed
to reach the steady state solution.

1. On scalar machines, a locally implicit, lin-
earized Gauss-Seidel iteration scheme was
used. In order to avoid non-physical states
(i.e. negative pressure) in the evolving flow,
the time-step used was based on the ratio
of the magnitude of the state vector to the
magnitude of its rate of change. This is the
Switched Evolution/Relaxation approach of
Van Leer and Mulder [12].

2. On vector machines it appeared advantageous
to use an explicit time-marching scheme.
Multi-stage schemes developed by Van Leer,
Tai, and Powell [13] with optimized short-
wave damping vectorize well and are effective
in avoiding non-physical transicnt states,

In order to make accurate comparisons with the an-

outward through the boundary. Along this upper
boundary the flow is nearly uniform, so that the
entropy 1s locally constant and derivatives along
the boundary can be neglected. In a coordinate
frame normal to the boundary one can define the
Riemann invariants

2a
¥—1
transported normal to the boundary along charac-
teristics with speed

RYf=u, +

u) xa

Here u, is the component of the flow velocity nor-
mal to the boundary, and a is the local sound
speed. Since the flow is subsonic inward, infor-
mation from the interior propagates out along the
1y + a characteristic. Thus the value of the R
Riemann invariant should be extrapolated toward
the boundary in & manner consistent with the or-
der of the spacial discretization. The inward flux
is then completely determined by the Rt Riemann
invariant and three other flow quantities specificd
on the boundary according to the free-stream state.

Along the boundary where the flow exits the grid,
both supersonic and subsonic outflow exists. For
the supersonic exit flow, no information can propa-
gate in from outside the computional domain, thus
the flux across the boundary is completely deter-
mined by the state quantities in the interior. For
boundary cells where the flow is subsonic outward,
information from outside can propagate in along
the u; — a characteristic. Thus, some value of
the B~ Riemann invariant should be specified; the
problem is that the exterior flow conditions are
not known here. Values from a known exact solu-
tion could be specified, but this would be incorrect
when considering arbitrary blowing distributions.
Hedstrom [14] proposed the time-dependent non-
reflecting characteristic boundary condition
Gp Hu,

P 0

alytical solutions, it is crucial to implement numerical
boundary conditions that are consistent with the ana-
lytical ones (Figure 3).

This type of boundary condition has the disad-
vantage that it produces a steady state dependent
upon the initial conditions. An order-of-magnitude

e Along the inflow boundary of the grid, the flow nor- analysis of the governing equations shows that the

mal to the boundary is supersonic inward, so there
are no out-going characteristics. Thus, the flux
into the cells along this boundary can be specified
explicitly according to the free-stream state,

Depending upon the shape of the grid chosen, the
flux normal to the top boundary may be either
supersonic or subsonic inward. If the flow is sub-
sonic inward, disturbances from inside the com-
putational domain must be allowed to propagate

pressure is constant across the blown layer; this
condition can be enforced at the exit by using Hed-
strom’s boundary condition with the pressure gra-
dient as a source term. The exit boundary condi-
tion then becomes

op aau n

ac " at
This enforces the correct behavior of the pressure
along the subsonic part of the outflow boundary.

:—K(uJ_—a)—g-g-,K>0.
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Figure 3: Schematic indicating the various types of boundary conditions encountered.

Typically values of A between 0.1 and 1.0 were
used. If K is taken too smal! or too large, conver-
gence to a steady state is delayed.

e Along the plate or wedge, the injected flow is sub-
sonic inward, except very close to the nose where
the flow can become supersonic for an z~ % blowing
distribution. Thus one can specify the normal ve-
locity v,,, the tangential velocity (equal to zero for
the cases considered), and the ratio of the injection
density to the free-stream density fy, {assumed
constant along the wall). The wall pressure can
then be determined by the R~ Riemann invariant
extrapolated from the interior back toward the wall
with the proper order of accuracy. Near the wall,
the flow may not be locally isentropic; therefore,
the approximate incremental form of the Riemann
invariant

Ap —paduy

should be used for extrapolation; barred quantities
refer to quantities averaged across the cell inter-
faces. The pressure then follows from

Pu = Pig ~ PG iuie —uLi;) =

1 -
3 (AP = pAAUL) oz1rap,

The analytical solutions were employed in generating
grids that would adequately resolve regilons of nterest
in the flow field. Using the analytical predictions, grid
points were clustered about the wall, the free shear layer
and the shock (Figure 4). The clustering was based on
an exponential spacing in the y direction, and an al-
gebraic spacing in the x direction. Once a converged

solution was obtained, this adaptive procedure was it-
erated on to achieve an optimal grid-point distribution
for the case considered.

Numerical Experiments

Numerical experiments were conducted to obtain finite-
volume solutions of the Euler equations for comparison
with the analytical predictions for three different cases:

e Strong interaction on a flat plate.
e Predominantly weak interaction on a flat plate

e Predominantly weak interaction on a slender
wedge

The case of strong interaction on a wedge was not con-
sidered since the theory assumes that the wedge thick-
ness 1s small in comparison to the blown layer thickness.
Thus to lowest order, the sclution for strong interaction
on a flat plate is recovered.

For the case of strong interaction on a flat plate. good
agreement has been obtained. The parameters chosen
for this case are;

& = 0.09,
M., =20,
M2 8% = 3.24,

ﬁ{w — p:'n.jected =1

Pfrec—stream

Early results on a rectangular grid showed poor agree-
ment with the analytical solution. Cross-sectional pro-
files of the flow varibles indicated the presence of a

viscous-like shear layer where the numerical code was



Figure 4: Computational grid.
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trying to model the free slip-stream. This is due to
the artificial dissipation associated with the numeri-
cal scheme. Restructuring the grid to better fit the
flow field, and clustering grid points near the numerical
shear layer resulted in a reduction in the thickness of
this layer. As the thickness of the layer decreased, the
numerical solution approached the analytical solution.

A converged second-order solution on a (83x91) grid
shows good agreement between the numerically deter-
mined blown-layer shape and the analytical prediction
(Figure 5). The pressure distributions along the plate

Figure 6: Strong interaction pressure distribution along
a flat plate.
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also compare well with each other (Figure 8). Fucther
grid refinements were attermpted to verify that the nu-
merical solution continued to approach the analytical
solution as the mesh spacing decreased. Tt was found,
however, that by refining the grid too far, the numer-
ical d19s1pat1on can become so gmall that the solution
becomes unstable and exhibits features similar to those
of a physically unstable shear layer (Figure 12).

Fair agreement with the analytlca} solution was ob-
tained for the case of weak interaction on a flat plate.
In this case, the blown layer thickness is thin in compar-
ison with the shock layer. The shock is very weak, and
lies roughly along the Mach lines. This case presents
two difficultics. The magnitude of the blowing is much
smaller so high resolution of the singular blowing dis-
tribution and flow featurés at the nose is even more
important. Also, the thinnéss of the blown layer makes
the seliution more sensitive to the existence of a numer-

ical shear layer whose thickness is grid dependent. The

parameters chosen for this case are;

§ =0.01,
Mo = 10,
ﬁlw =1

A comparison between the analytical and the computa-
tional separating streamline shapes shows shows a dis-
erepency of about five percent in the thickness of the
blown layer (Figure 7). This discrepancy is also ap-
parent in the pressure profiles along the plate {Figure
).

The last case considered was that of weak interaction
on a wedge. For this case the parameters were chosen
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Figure 8 Weak interaction pressure distribution along
a flat plate.

to be;
§
— = (.1,
o
o = 8%,
M = 20,
ﬁ]wzl-

Figure 9shows good agreement between the analytical
and numerical separation streamline shapes, but Figure
10 shows that the numerically calculated pressure is
kigher than that predicted analytically. The analytical
work assumes an infinite value of (Mg a)?. If large but
finite values of M.« are considered in the analysis, the
resulting analytical pressure distribution,

é+_,_),

compares well with the numerically determined values
(Figure 11).

RATRERY Vi % (1.94(5 +2.084 %2
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Further Work

With the validation study completed, the code will be
used to obtain flow sclutions in cases where no ana-
lytical predictions exist. Of particular interest is strip
blowing as a practical means to control the pressure

" distribution along the surfaés. The code has been ex-

panded to include the effects of physical viscosity and
heat conduction, i.e. to approximate the Navier-Stokes
cquations. For validation of the code in viscous cases,
analytical solutions are again avaiable [3]. A future pa-
per will include some comparisons in the viscous regime.
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