AIAA-90-0942-CP

THE STABILITY OF HIGH SPEED
AXTALLY MOVING MATERIALS

N. C. Perkins!
S.-J. Hwang }

Mechanical Engineering and Applied Mechanics
2250 G. G. Brown Laboratories
University of Michigan
Ann Arbor, MI 48109-2125

Abstract

This paper focuses on the stability of axially moving
beam-like materials (e.g., belts, bands, paper and webs)
which translate at speeds near to and above the so-called
“critical speed stability limit.” A theoretical model for
an axially moving beam is presented which accounts for
geometrically nonlinear beam deflections and the initial
beam curvature generated by supporting wheels and pul-
leys. Analysis of steady response reveals that the beam

possesses multiple, non-trivial equilibrium states when trans-

lating at super-critical speeds. The equations of motion
are linearized about these equilibria and their stability is
determined from the eigensolutions of a discretized model.
This analysis leads to new conclusions regarding the stabil-
ity of axially moving materials. In particular, it is shown
that the critical speed behavior commonly associated with
axially moving material problems represents an idealized
phenomenon which does not exist when imperfections, such
as initial curvature, are present.

1. Introduction

Axially moving material problems consider the dy-
namic response, vibration and stability of long, slender
members which are in a state of uniform translation. Ix-
amples of systems employing axially moving materials in-
clude magnetic tape recording devices, belt and chain drives.
thread and fiber winders, band saws, paper and web han-
dling machinery, and cable pay-out/reel-in systems. Prin-
cipal developments in the literature on axially moving ma-
terials are reviewed by Mote' and, more recently, by Wick-
ert and Mote®.

Traditional models of axially moving materials’ rep-
resent the translating element as either a taut string or
an BEuler-Bernoulli beam that is drawn perfectly straight
under large tension. The analysis of such geometrically
perfect systems leads to the prediction that the stability of
axially moving materials is limited to translation speeds
below a theoretical critical speed. At the critical speed,
the translating element experiences a divergence-type in-
stability.
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Recently however, studies have demonstrated that crit-
ical speed behavior for a class of axially moving materi-
als is an idealized phenomenon that does not occur when
imperfections are correctly accounted for in the model.
Perkins and Mote® found that initial sag due to gravity
creates a stabilizing speed-tensioning effect that permits
the sagged equilibrium to remain stable at very high trans-
lation speeds. In addition, the initial sag creates the possi-
bility of a second arch-like equilibrium which becomes sta-
bilized at high translation speeds®. These studies®* focus
on flexible axially moving materials (e.g., threads, fibers,
chains and cables) and they do not consider the flexural
rigidity important in the modeling of translating beam-
like elements (e.g., bands, belts, paper and webs). Since
the stability of a translating beam is essentially a buckling
problem®, it is also potentially very sensitive to imperfec-
tions.

This paper investigates the stability of beam-like el-
ements at translation speeds which exceed the classical
“critical speed stability limit”. A model for an axially
moving beam is presented which accounts for imperfections
described by initial beam curvature and geometrically non-
linear beam deflections. The equations of equilibrium are
examined first and the possible equilibrium states of the
translating beam are described. The equations of motion
are then linearized about these equilibria and stability is
assessed through the eigensolutions of a discretized model.

2. Theoretical Model

A theoretical model is presented which governs the
planar motion of a translating beam with initial curva-
ture. Figure 1 defines the problem of interest and shows a
translating beam which is initially held in equilibrium un-
der tension N and moments M applied at two supports.
The bending moments result from the curvature of the
supporting wheels or pulleys (not shown) and the tension
derives from an externally applied pre-load. Support flexi-
bility is included in the model by allowing the left support
to be elastically restrained in translation by a spring of
stiffness I(. The curve x* denotes the equilibrium configu-



ration of the beam centerline which has length I between
the supports and lies in X-Y plane. The planar motion the
beam centerline about its equilibrium configuration is de-
scribed by U(S,T) where S denotes the arc length coordi-
nate measured along x* and 7' denotes time. This motion,
U(S,T) = Usej + Usel describes the final configuration
x’ and is resolved into components aligned with the local
tangential, e}, and normal, e}, directions defined by x*. In
Figure 1, C represents the beam particle translation speed
relative to y' and y/.

Hamilton’s principle is used to derive the equations of
motion which are based on the following assumptions.

1. The beam is a homogeneous, one-dimensional elastic
continuum obeying a linear stress-strain relationship.

2. Extensions of the beam are described by the La-
grangian strain of the centerline.

3. The motion of the beam is restricted to the X-Y
plane.

4. The beam may undergo large static deflections, and
additional deflections from the curved equilibrium
are described using a nonlinear extension of Love rod
theory®,

5. Rotary inertia due to bending and strain energy due
to shear may be neglected assuming the beam cross-

sectional dimensions are small compared to its length.

6. Gravitational and dissipative forces may be neglected.

7. The beam mass flux is constant.

N U(S,T) = Usel + Usel,

Figure 1: Definition diagram for curved, axially moving
beam. Beam centerline is shown in three states: 1) un-
buckled configuration (dotted line), 2) buckled equilibrium
configuration x*, and 3) final configuration x/.

With these assumptions, expressions for the beam strain
energy, kinetic energy and work are derived for use in
Hamilton’s principle.

The strain energy of the beam is composed of terms
associated with the extension of the centerline and the
flexure about the binormal (out-of-plane) axis. The La-
grangian strain of the centerline ¢’ in its final configura-
tion is related to the displacements U; and U, and the
curvature K of the centerline in its initial configuration y*
through?,
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e =+ Ae, (1)

where
. 1 . R
Ne = ULS—/C’U2+5[(U2,S-I—K‘U1)2+.(ULS—)CZU2)2], (2)

and € is the Lagrangian strain of the beam centerline in
x'. In a similar fashion, the final curvature of the beam
centerline K/ is related to the initial curvature X and the
displacements U} and U, through

K/ =K'+ AK, (3)
where
AK =as, + (a1 — 1)ag,, (4)
a1 =1+ Uy, — K'Us, (5)
az = Us,, + K'U,. - (6)

The expression for AK is derived from a nonlinear exten-
sion of Love rod theory®. Using (1) and (3), the strain
energy of the beam in the final configuration is

. L . ,
mf:w;+/ [P' A e+ EIC AKdS

+ % / “IBA(DG)? + BI(AK)AS, %

where 7 is the strain energy of the curved beam in x4,
Pi(S) = EAE(S) is the beam tension in x', E is Young’s
modulus, I is the principal area moment about the binor-
mal axis and A is the beam cross-sectional area.

The kinetic energy of the curved beam in x/ is given
by
1 L
l = 5/ (V! % V1) pAdS, (8)

where the velocity,
VI=Uz+CUg+ Cel, (9)

represents the absolute velocity of a beam particle and p
is the beam density.

The total work done by the bending moments M, the
tension force N and the spring is

Tw = —M(az+8,) |§ —N[U(0, T)cos0,~Us(0, T)sinb,+ D]
+ %K[Ul(O,T)cosOo _ Uy(0,T)sind, + D), (10)

where 0(.5) is the angle of inclination of the beam center-
line in x*, 8, = 6(0), and D is the horizontal distance the
left support moves during the static deformation leading
to x*. 9(s) and D are related through

D=1L- /OLcos0(S)dS. (11)

Following Benjamin’, the correct statement of Hamil-
ton’s principle for this system with mass transport is

T2
o1, (nf = ={ 4 m)ar)-

% d B v _f L
/ PACI (R +U) + Cel]+6U [faT =0.  (12)
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Substituting (1)-(11) into (12) and taking the first varia- °

tion leads to the following nonlinear equations governing
planar motion:

tangential component, U,
[(PP+ EAA €)ay], — [(P'+ EAA €)K'ag] — EIK!K ay

+EIK (a9, + K'ar)] s = pA{(Urg + Car) o+

C(Urr+ Cay),, — CK (Usr 4 Cas))}, (13)

normal component, Uy

(P + EAA €)ag), + K'ar[P + EA A €] + EIK!K'as,

~EIK  a1) s = pA{(Uar + Ca3) 1 + C(Uzr + Cas)
+ C}Ci(Ul,T + Cal)}a

with the boundary conditions:

UI(L>T) = U?(LvT) =0, (15)
EIKay(0,T) = EIK ay(L,T) = — M, (16)
Ux(0,T) = —tanb,U;(0,T), (1n

(Pi + EA N €)(aycosl, — aysind,) —~ N + MK cosd,
—K(Uicosd, — Uysind, + D) + E])Cf(az,s + }Cial)coaﬁo
+ EI(K'ay) jsinf, =0 at S =0. (18)

The latter two boundary conditions (17) and (18) follow
from (12) after accounting for the geometric condition §U;
(0,T) = —tan®,86U,(0,T) which is required for vanishing
vertical motion of the left support.

For convenience in the subsequent analysis, the follow-
ing nondimensional quantities are presently introduced:

s . U D
s:—E,fchlC,ulzfl, uz:fz,d:f,
C_NLE ML KL AL

TEmr " T ED TR TT T
El pA(LC)? PiL?

t:T 2: = .
pALY € EI PTET

3. Equilibrium States

The model is first used to determine all possible equi-
librium states for the translating beam. The equations
of equilibrium are extracted from the equations of mo-
tion (13)-(14) and the boundary conditions (15)-(18) by
equating the dynamic displacement components U; and
U, to zero. This procedure gives the following nonlin-
ear boundary-value problem for solution of the (nondi-
mensional) equilibrium centerline curvature x(s) and beam
tension p(s):
0<s<l,

P+ ks’ =0, (19)
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(p—cHr — k" =0, 0<s<l, (20)

with the boundary conditions
K(0) = (1) = —m, (1)
p(0)cosl, + &'(0)sinl, = n + kd. (22)

Note that the linearized equilibrium problem, studied
by Chubachi‘r’, follows from (19)-(22) upon using the small
angle approximations sinf & 0 and cosf ~ 1. The elemen-

tary linear problem admits a solution provided the speed

parameter a? = ¢? — n is not an eigenvalue of the associ-

ated homogeneous problem (m = 0). The eigenvalues, o =
Jr,J =1,2..., give the critical speeds, ¢ = \/(J7)? +n,
for divergence instability in the simply-supported, per-
fectly straight beams studied by Chubachi®, Mote®, and
Simpson®.

The existence of these eigenvalues in the linearized
problem suggests the existence of multiple solutions and
solution bifurcations in the complete nonlinear problem
(19)-(22). Indeed, exact analysis of the nonlinear problem'
reveals that, in general, multiple solutions exist in the
super-crilical speed region define by ¢ > /w?+n. In ref-
erence [10], closed form expressions for these multiple so-
lutions are derived in terms of elliptic integrals. Here, key
results from [10] are briefly reviewed which are essential to
the following stability analysis.

The axially moving beam equilibrittm problem resem-
bles an elastica buckling problem® wherein the translation
speed plays the role of the buckling parameter'®. This sim-
ilarity is evident in Figure 2 which shows how 0,, the angle
of inclination of the beam centerline at the left support,
depends on the translation speed. For the simplest case
of vanishing bending moment (m = 0; see dotted curves),
the equilibrium problem is homogeneous and the trivial
solution 0, = 0 is always a solution. The trivial solution
is the only solution in the sub-critical speed region defined
by ¢ < v/7?+ n. At the first critical speed, ¢ = V7% + n,
a pair of non-trivial solutions bifurcate from the trivial so-
lution and lead to symmetric equilibrium shapes resem-
bling the fundamental buckling mode of a simply sup-
ported beam'®. Additional pairs of non-trivial solutions
appear as the translation speed passes each higher-order
critical speed, ¢ = /(Jx)2+n for J = 2,3..., where the
index J denotes the solution order. The three branches of
the fundamental solution J = 1 in Figure 2 are presently
termed the “right-branch” (0, > 0), the “middle-branch”
(0, < 0, nearest trivial) and the “left-branch” (8, < 0)
equilibria and are central to the stability analysis of Sec-
tion 4.

Multiple solutions also exist when external bending
moments are applied as shown by the cases m = .25 (solid
curves) and m = .5 (dashed curves) of Figure 2. In these
cases, the bending moments may be interpreted as an im-
perfection which leads to the unfolding of all the odd-order
bifurcations (J = 1,3...) associated with the solution for
which m = 0. By contrast, the (symmetrically applied)
bending moments have no influence on the antisymmetric



buckling modes associated with the even-order bifurcations
(J = 2,4...). Consequently, the even-order bifurcations
remain folded. Note that for m # 0, the speed first re-
quired to produce multiple solutions is always greater than
the fundamental critical speed and that it increases with
increasing bending moment. This speed and the second
critical speed play key roles in the stability of the equilib-
ria.
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Figure 2: Multiple solutions, bifurcations and unfoldings
in the equilibrium problem!® ,  Result shown in the a?—6,
plane for the cases m = .5, .25 and 0. In all cases n = 100
and k£ = 0. The index J denotes the order of the solution.

4. Linear Vibration and Stability Analysis

It is important to emphasize that all previous sta-
bility analyses of an axially moving beam have focused
exclusively on the stability of the ¢rivial equilibrium. The
existence and possible stability of the non-trivial equilibria
described above have been overlooked.

To investigate the stability of all equilibria, the non-
linear equations of motion are linearized about an arbi-
trary equilibrium having curvature x(s) and tension p(s).
The linearized, homogeneous (nondimensional) equations
governing free, planar response are:

tangential component, u;
[('Y+p‘—cz)(ul,s‘—I\TUz)]’s-i—[li(Cz—'p)][’LL215+K,U1]+I€[U2‘S+NU1] )88

= Uy + 2cfuy,, — KUz, (23)
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normal component,us
[k (yHp—cDrg o— ko) +{(p—?) (g s+ 511)] o[z, K21 55

= gy + 2cugs + K1) 4 (24)

Assuming that the left support now remains stationary
after the beam attains its equilibrium, the boundary con-
ditions become:

uy =ug =0, ugs+Ku1; =0, at s=0,L. (25)

It should be noted that the linear equation of transverse
motion for a perfectly straight translating beam®®® is ob-
tained from (24) as the special case k(s) = 0 and p(s) = n.

Motion about a specific, non-trivial equilibrium is ex-
amined after first evaluating the elliptic integral repre-
sentations of the equilibrium curvature x(s) and tension
p(s)'° These functions appear as (nonconstant) coeffi-
cients in (23) and (24). Due to the general complexity
of these equations, exact solutions cannot be determined
by known analytical methods. Here, approximate solu-
tions will be determined following discretization using the
Galerkin method.

Consider the R-term admissible series representations
for u; and u; of the form:

R
u,-(s,t) = Zqﬁij(t)Oj(s), 7= 1,2, (26)
i=1
i
where ©;(s) = /2sin(jms). Substitution of (26) into
(23) and (24), and application of the Galerkin method,

provides a set of 2R coupled, ordinary differential equa-
tions for solution of the generalized coordinates ¢7(t) =

[¢11(t)7 ¢12(t)>"'a¢2R(t)]:
M+ G+ K§ = 0. (27)

The elements of these matrices, which are given in the
Appendix, are evaluated by numerical quadrature.

The natural frequencies and mode shapes for the trans-
lating beam are obtained through the eigensolutions of the
discretized model (27). In the present formulation, the
natural frequencies of the translating beam are given by
the imaginary parts of the eigenvalues, wi,! =1,2...2R,
and the mode shapes are obtained from the eigenvectors
through (26). A divergence instability for mode [ is iden-
tified when Im(w;) — 0. In calculations, the series size
R = 10 was used and the eigensolutions described below
have fully converged.

As a primary example, consider the stability of a
translating beam subjected to the slight bending moment
m = .25. Figure 3 shows the fundamental natural fre-
quencies of vibration as functions of translation speed in
both the sub-critical and super-critical speed regions. In
the super-critical speed region, three curves are shown
which depict separately the fundamental frequencies of vi-
bration about the right-branch, middle-branch and left-



branch equilibria shown in Figure 2 for the (fundamental)
equilibrium solution J = 1. The fundamental frequency
of vibration about the trivial equilibrium is also shown
to facilitate a comparison with the model of a perfectly
straight beam®®°. In this latter case, the dotted curve
indicates that the fundamental frequency decreases with
translation speed and vanishes at the lowest critical speed
Vr?+4n. Thus, as is well known from previous studies,
the stability of a perfectly straight beam is limited to the
sub-critical speed region. Stability, however, is never lost
when any degree of initial beam curvature is introduced.
The solid curve in Figure 3, which depicts the fundamen-
tal frequency of vibration about the right-branch equilib-
rium, clearly shows that this equilibrium never loses stabil-
ity over the indicated speed range. While the fundamen-
tal frequency decreases in the sub-critical speed region, it
rapidly increases in the neighborhood of the critical speed.
This effect derives mainly from the stiffening of the beam
as its curvature markedly increases near the critical speed;
see region of rapid growth of 0, for the right-branch equi-
librium (J = 1) of Figure 2. Likewise, the left-branch equi-
librium remains stable in the super-critical speed region as
seen by the dashed curve of Figure 3. The middle-branch
equilibrium, however, does experience a divergence insta-
bility at a speed above the former first “critical speed”; see
dash-dot curve of Figure 3.

In Figure 3, the fundamental frequencies for the two
stable equilibria (right and left-branch) are nearly iden-
tical for large super-critical speeds. This results from the
fact that their respective equilibrium shapes become nearly
mirror images at large translation speeds!®; observe also
the magnitudes of 0, for the right and left-branch equi-
libria in Figure 2. In Figure 3, also note that the funda-
mental frequency associated with the trivial equilibrium
provides a lower bound to that associated with the right-
branch equilibrium for sub-critical speeds. This behavior
can again be anticipated from Figure 2 which shows that
the trivial equilibrium itself is a reasonable approximation
to the right-branch equilibrium in the sub-critical speed
region. Finally, it should be noted that the fundamental
eigenvalues computed for the higher-order equilibrium so-
lutions depicted in Figure 2 for J = 2,3... indicate that
they are unstable.

The natural frequencies of the second and higher-
order vibration modes follow trends similar to that of the
fundamental mode as illustrated by the results in Figure 4.
The first four natural frequencies for vibration about the
right, middle, and left-branch equilibria are plotted ver-
sus translation speed together with those associated with
the trivial equilibrium®®®, An important point to note
from this plot is that the fundamental frequency associated
with the middle-branch equilibrium vanishes precisely at
the second critical speed associated with the trivial equilib-
rium. Recall from Figure 2 that the bifurcation occurring
at the second critical speed ¢ = 4/(27)? + n is unaffected
by the (symmetrically applied) bending moments and re-
mains folded. Indeed, at the second critical speed, the
middle-branch equilibrium ¢s the trivial equilibrium. Be-
yond this speed, the middle-branch equilibrium solution
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Figure 3: Stability of an axially moving beam with slight
initial curvature. The fundamental frequencies of vibra-
tion are plotted versus translation speed for vibration about
the right, middle and left-branch equilibria (J = 1) of Fig-
ure 2. In this example, m = 0.25, nv= 100, and k¥ = 0.
Dotted curve represents fundamental frequency of vibra-
tion about trivial equilibrium.

300
right-branch
=== middle-branch
250 | mmmeee- left-branch

trivial

200

150

100

(84
o

12
Translation speed, ¢

20

Figure 4: Higher order natural frequencies. Plot shows
first four natural frequencies of vibration about the right,
middle and left-branch equilibria (J = 1) of Figure 2. In
this example, m = 0.25, n = 100, and ¥ = 0. Dotted
curves represent natural frequencies for vibration about
trivial equilibrium.



bifurcates (see Figure 2) and the present eigensolution,
based on the fundamental (J = 1) equilibria, is not con-
tinued for the unstable portion of the middle-branch.

The stable fundamental modes for vibration about the
right, middle and left-branch equilibria are illustrated in
Figure 5 for the case where the translation speed is 10%
greater than the first critical speed. The dotted curves
depict the super-critical equilibrium shapes and the solid
curves depict the beam at various times as it oscillates at
its natural frequency over one period. As with all axially
moving material (gyroscopic) systems, the free response
has non-uniform phase due to the existence of complex
eigenfunctions'®. Note that, even at this modest super-
critical translation speed, the right and left-branch equi-
libria are already nearly mirror images.
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Figure 5: Fundamental mode shapes at super-critical speed
¢/vn?4+n = 1.10. Results shown for vibration about a)
right, b) middle and c) left-branch equilibria (J = 1) in
Figure 2. Solid curves depict beam profile at times ¢ =
0, .257, .757, and 7, where 7 is the fundamental period
of oscillation. Dashed curves depict equilibrium beam pro-
files. In all cases m = 0.25, n = 100, and k = 0.

5. Summary and Conclusions

A dynamical model for an axially moving beam is
presented which accounts for the initial beam curvature
generated by supporting wheels and pulleys. The model
considers geometrically nonlinear beam deflections and is
therefore capable of describing the large response expected
at critical and super-critical translation speeds.

Analysis of the equations of equilibrium'® reveals that
the beam undergoes large static deflections near the first
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critical speed predicted by previous studies®®® of geometri-

cally perfect beams. Slightly above this speed, three equi-
librium states exist which are referred to here as the right-
branch, middle-branch and left-branch equilibria. For the
idealized case of no initial curvature, these multiple equi-
librium states appear as a folded bifurcation of the trivial
equilibrium at the first critical speed. When the beam
possesses any initial (symmetric) curvature, the bifurca-
tion unfolds and a larger translation speed is required to
generate multiple equilibria.

The equations of motion are linearized about the equi-
libria. and their stability is determined from the eigenso-
lutions of a discretized model. For the idealized case of
no initial curvature, the trivial equilibrium experiences a
divergence instability at the first critical speed™®®, The
beam then buckles and forms either the right or left-branch
equilibria which are both stable in the super-critical speed
region. When the beam possesses any degree of initial
curvature, however, no divergence instability exists at the
first “critical speed.” In this case, the equilibrium state
in the sub-critical speed region is a continuous extension
of the right-branch equilibrium and the beam never looses
stability. The left-branch equilibrium also remains stable
after it appears in the super-critical speed region.

In summary, the results herein indicate that critical
speed behavior in axially moving material problems repre-
sents an idealized phenomenon which does not occur when
imperfections, such as initial curvature, are present.
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Appendix

The discretized equations of motion are given by

%11 {?11 é11
¢12 ¢12 ¢12

M| © |+G| © |+K]| | =0,
€£2R (].5212 ¢2R

Letting <a, b>= [y a(s)b(s)ds, the sub-matrices My, . . .

where the 2R x 2R coeflicient matrices are

M11 0

G11 G12
0 MZZ}’G:[ }

M = [ G21 G22

K _ | K11 K12
| K21 K22 |

are
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Mll(i,j) = MZZ(i,j) =< 0,‘,0]' >
= §; (Kronecker's delta),

G11(4,) = G22(i,j) = 2 < 0,0, >,

J

G12(i,§) = —G21(j,1) = —2¢ < 0;, K0, >,

K11(i,7) =< (k0;)', (k0;) > + < 0;, k*(p — c*)0; >
+ <0, (p+v -0 >,
K22(4,j) =< 07,07 > + < 0, (p — )0} >

[RR]
¢

+ <0, 2 (p+y—cD); >,

K12(i,5) = K21(j,1) =< (x0,),07 > + < 0;,x(p—c?)0; >

+ < 0, —k(p+v—c*)b; >,

where 4,5 = 1,2,..., R and 0;(s) = 2sin(jns). The
equilibrium curvature x(s) and tension p(s) are obtained

from solution of the equilibrium problem™:



