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A b s t r a c t  

A frmdamentnl dimensionless number, 

is introduced for thermocapillary driven flows. Here Ma and 
Pr respectively denote t h r  i i s i i a l  Marangoni and Prandtl 
numbcrs. T h r  significanceof t h i s  numbcrfor past Marangoni 
instabilities is demonstrated i n  terms of a projection met,liod 
involving t,hc Godunov discrctiaation for convective terms, 
as wel l  as thr data available i n  the literature. 

_- 1. In t roduc t ion  
v 

The problem of tlrermocapillary (surface tension) driven 
flow continues t.o att,rnct i n r r r a sd  experimental, analytical 
and computational attcnt,ioii hecansc of its iinportancc to  
space explorations. Block's (1056) experimental observa- 
tions supported by Pearson's (1958) analytical study about 
four decades later t l i a i i  Raylcigh demonstrated that thermo- 
capillary rathcr than huoyanry is wrponsihlc for instability 
in some of thc Renard rxprrimmts. For example, drying 
paints arc novt known to display st,rady cellular circulatory 

FI being the inertinl force. An infinitesimal theory, reat- 
ing on linrarized governing ~qtiat~ions, ignores the nanlincar 
inertial effects and is independent of the Prandtl number. 
It is then governd hy the Marangoni numbcr alone. A 
nonlinear theory for thermocapillary driven flows past the 
Marangoni instability depends on the Prandtl number as 
well as the Marangoni nilinher. A fundam~nta l  dimcnsion- 
less numbcr including tlie effect of both Ma and Pr so far 
appears to be overlookcd i n  tlie literature. The ahjectivc of 
the present st,ridy is to introdiicc this dimensionless numbcr 
and to discuss the thermocapillary driven nonlinear flows 
in terms of this number. The study consists of four sec- 
tions. Following this introduction, Section 2 is devoted to 
some dimensional considerat.ions, Section 3 to a compnts- 
tional integration, and Section 4 to a discussion of results 
and some conclusions. 

2. Dimensional  Cons idera t ion  

For reasons to be clear latrr, consider first a flow driven 
by buoyant as well as thennocapillary forces, 

FE + Fc - FI + Fv, (4) 
flow of the " Renard t.ype " whether the free surface was a t  
the top or battoln of the paint layer, The ~ ~ ~ l ~ i ~ h  
niimber fails t,hen to prerlirt the flow initiation. l'earson 
has shown in tcrins of infinitcsimal distnrbnnccs that the 
thermocapillary f o r m  are srifirient to cause this instability 

Fa being the buoyant force. The thermal energy balance for 
this flow is 

Qr - Q K .  (5) 
Now, rearrange Eq. (4) as 

characterized by tlir Marangmi mii~i l)cr, 

and Eq. (5) as 

Note that the nmneral 1 in the denominator of Eq. 
implies an order of magnitude. Explicitly, 

Q H I Q K .  (7) Ab bciirg net. surfarr t,riision, 1 !,he thickness of the horizon- 
tal liquid layer, I L  tlir dynamic viscosit,y and CI the thermal 
diffusivity. Notr that,, by rlefiiiition, (1) 

(2) Fs - gApI3, Fv - pVl, 
Fc: Q H  

Fv Ql< 
M l '  = (-)(-), 

Fc and Fv rcspcctivcly being the t,lierrnocapillary tension Fc - A d ,  FI - pVziz 
and viscous forces, QIJ aiid QJG the enthalpy flow and con 
duction Also, hy drfinition, tlir Prandtl number is Q H  - pc,VTI', &I; - kT1, 
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where p is thc clcnsity, cp thr spccific heat a t  constant pres- 
sure, V thc velocity, T the tcinperature, 1 a characteristic 
length and A is tlir difference in surface tension or dcnsity. 

Equat,ion (6) yiclils, i n  tcrms of Eq. ( 8 )  , 

I '  , 
V /' V I  

and Eq. (7) gives, i n  terms of Eq. (9) , 

pc, ,Vi /k .  (11) 

For thermocapillary and/or buoyancy drivcn flow(s), V is a 
dcpendcnt variablr. Conseqncntly, neithcr Eq. (10) nor Eq. 
(11) is an ultimate dirncnsioiiless nombcr for tlicse flows. 
The elimination of V hctwecn Eq. (10) and Eq. (11) leads 
to this number, 

or, cxplicitly, 

01. 

Note that the niiincrnl 1 in the denominator of Eqs. (G), 
(IO), (12) and (13) implics an order of magnitndc. The 
two h i t s  of Eq. (13), respcctively corresponding to  the 
buoyancy driven and surface tension drivcn flows, are 

Although there is ahiindaiit aiialytical and experimental ev- 
idence in the litcratnrc, n ~ c  aud i t ,s  limits (n,,IIc) sur- 
prisingly rcmain o v c r l o o k d  Only, the following limits for 
F, + 0 (Pr + m),  

F,-0 lim Il" + Rn (16) 

lim IIc; Mn (17) 

and 

F,-0 

arc well known. Some of tlir literature is cited below for 
support of the iespcctivc releviincc of lla and nc given by 
Eqs. (14) and (15) for buoyancy aud t,hermocapillary driven 
flaws. 

An approximatr analysis by Squire (1938) of buoyancy 
driven laminar flow next to a vertical wall yields for heat 
transfer 

which can be rearranged as 

N,,  = o.soxn2, (18) 

'il where Nu is the Nossrlt numher, and 

An experimental study by Krisllnamurti (1973) shows 
the cascade of transitions i i i  buoyancy driven flows past the 
Benard instability (Fig. 1). Ainong tliese transitions, for 
example, the second transition can be qualitativcly rclatcd 
to  the first transition by the siinple model, 

01 

and 
(ARn,):' = (Rn,),r - ( R ~ < ) I ,  Pr + m. 

For liquid rnctals, PT << 1 and Eq. (20) is reduced to  

(21) (an,);' --t (aRn,);'rr 
which is the tangrnt of Eq. (20) between domains I and I1 
shown in Fig. 2. As Pr - 0, all transitions collapse on 
the first transition which now directly leads to turbulence 
(Domain I in Fig. 2). For gnses, Pv - 1 Eq.(20) applies as 
is. IIowevcr, because P v  of gases varies very little, Eq.(20) 
covers now a narrow band in the middle of Domain I1 of Fig. 
2 (g-band). For water, G < Pr < 30, Eq.(2O) continues to 
apply with a reduced inertial effect (but because P ro f  water 
varies more than that, of gars)  over a wider rangc than that 
of gases (w-band). For viscous oils, 10' < PI. < m , and 
Eq.(20) is redriccd to 

- 
(22) (An,);'  - (AR<'<);' 

which is indcpenrleiit of Pr Lecaiise of tlic negligible incrtial 
effect (Domain 111 in Fig. 2). 

Fig. 1 Cascade of flow regimes : I-No motion; II- 
steady 2-D motion; 111-steady 3-D motion; IV-V-unsteady 
3-D motion (from periodic to  chaotic); VI-turbulent mo- 
tion (Krishnamurti 1973). 

v' 
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Fig. 2 Second transition versus Prandtl  number: g- 
band for gases, w-band for water. 

Beginning with bfalkus and Veronis (1958) for free bound 
aries, and continuing with Srhlot,er, Lortz and Busse (1965), 
Gough, Spiegel and Toomrc (1075) and Dussc (1985) for 
rigid boundaries, a first order inertial cffect is incorporated 
into heat transfer by an expansion in powcrs of PF’ ,  

a Pr 
0.9 w x 10-2 

1.5 

N u - 1  
Rn - Ra, 

= (ci + C z P F l  + C3PF2+ ..) (23) 

0.1 1 1 10 I ~0 

12 1.6 I 1.1 I 1. 
6.2 0.98 I 0.5 I 0.45 

which can bc rearranged in view of 

(1  - Pr-’  + ~ r - *  - P1-3 + ..) 1 + Pr-’)-’ 

as 
N u - 1  

w ARa, (24) -- (1 + Pr-’)-l, 

In recent studies, Ar ari (1086, 1990) introduces the mi- 
croscalcs for hu0yaiic.y JriYcn turbulcnt flows, and in tcrms 
of these scales, proposes a hcat transfer modcl based on l l ~  

which correlates the entire Pxperimental data of the litcra- 
turc on thc turbulcnt flow originating from the Dcnard proh- 
lem. 

There is no referrnce to  llc i n  the literature on thcrmo- 
capillary driven instabilitics. Clcarly an infinitcsimal am- 
plitude theory, being indcpcndcnt of inertial forccs, neglects 
the effect of Pr number. In this case-, as is mcntioned earlier 
(rccall Eq.17), ll, is rcdurctl to Ma. Howcver, a finite ampli- 
tude or nonlinear thcory dcprnds on Pv and, conscqucntly 
, on nc. Nonlinear thcorics for laterally unbouiidcd layer 
hascd on Icading-order bifurcation methods appear to he ex- 
hausted by Cloot a n d  Lcboii (1984). For laterally hounded 
laycr, Roscnblat al. (1982 a,h) invrrtigate the problem with 
slippery sidcwalls. In thcse elaborate mat,hnnatical studies, 
the physical significance of II, on flow past the first transi- 
tion appears to remain nnnoticcd. Cloot and Lebon consider 
only the rangc of Pr> 1 (by the specific values of Pr=7, 70, 
500) for which thr inertial cffert is negligible, and llc + 
Ma. This effect hccomcs significant as Pr + 0, and the 4 

range Pr 5 1 is essential for t,he recognition of IIc. Roscn- 
blat et al. (1982a) consider t.he specific values of Pr=0.1, 
1, 10, 00 which are utilized here to demonstrate a trend- 
wise depcndencc on IIc (Arpaci 1990 illustrates the need of 
extcnsive data for accurate dependence on IIB). 

An extension of the literature on buoyancy to thcrmo- 
capillary, readily yields for heat transfer 

N u  - 1 - A’, (27) 

A being the Landau amplitude of thermocapillary fluctua- 
tions, or, in terms of Eq.(25), 

N u  - 1 - Allc. (28 )  

Noting Eq.(15), 

Ma - Ma, 
1 + Pr-1 ’ Nu - 1 - 

Co and C, hcing numerical constants. For thc Landau am- 
plitude, Rosenblat et al. (1982a) gives 

(31) 
1 A’ - -(Ma - Ma,) 
w 

by which Eq.(27) becomes 

N u - 1  - 2  
M a  - Ma, w ’  

- 

again, C being a numerical constant depending only on the 
aspect ratio. Table 1, rearranged from Table 1 and 2 of 
Rosenblat et a]., gives w for two aspect ratio n=O.9, 1.5. 

Fig. 3 shows ( N u  - 1 ) / ( M n  - Ma,) against Pr for C 
= lo2, assumed for graphical convenience. There is no in- 
formation on C in Rosenblat et al. However, an assumcd C 
affects the graphical scale but not the Prandtl dependence. 

The rest of the present study carries out a modest com- 
putational work beyond a first-order bifurcation discussed 
in Rosenblat et al. (1982a,b) analytical studies. Thc objec- 
tive is the nnmerical recognition of llc beyond the analytical 
bounds. In the selection of this numerical method, special 
attention is paid to  accurate conipot,ation of incrtial cffccts 
which are responsible for the Prandt,l number effect. To keep 
tbc computational work from being exhaustive, the flow is 
assumed to be two-dimensional in a latcrally bound horizon- 
tal layer. The side walls are adiabatic, and all boundaries 
are non-slippery except for the free top surface. Thc liq- 
uid is cooled at the frcc upper surface by heat transfer to  
ambient. 
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Fig. 3: (Nu- l ) / (Ma-Ma,)  versus Pr  for two aspect 
ratios. 

3. Numerical Method 

The maiii fcaturcs of the romputational proccduie  de^ 
scribcd hy Evreii-Scl.zniet ct n l .  (1991,1992) are summarized 
hcrr for later convenicncc. Thv projcct,ion method involving 
a Godunov~type discretization for inrrtinl terms is utilized. 
The mrthod involves two steps based on a decomposition 
of the mornentom rquations. The first stcp computes an 
auxiliary velocity field 3, 

Pr[C)V20 + (I - 0)V*U”]  (33) 
which is the mmnrntiini equation witliout pressure gradient. 
IIere U = ui + vj and 0 is a weighting factor between 0 and 
1. The discretization of the 1,aplncian of the diffusion t a m s  
is done by a staridald finite diKrrrnrc approxiination. In the 
solution of Eq. (33),  t,lie convrct,ive term is calculated by a 
Godunov 11iscretizat.ion including the solution of a Riemann 
prohlmr as dcfincd by Dell atid Glnz (1087). In thc second 
step, 0 ohtaincil from Eq. (33) is corrected for a divrrgence- 
free velocity field including tlic cffcct. of pressure gradient. 
The spatial discretization is basrrl on the staggered grid sys- 
tcm. A n  advantngc of using tlic staggered mesh is that the 
houndnrp conditions only for t,cmpernture and velocity coin- 
poncnts arc nccdrd, while those for pressure are not. The 
bottom boundary rondition on t,rmperature is 

O = l  a t , y = O  

Tlrr t.op bonnrlary rondition, in dimt.nsionless form, is 

(34) 
a0 a20 a 0  2 - = -  t (- -EO)- 
at a1-2 ay ay ’ 

where Ay is the grid size i n  y direction, Bi=hll/k the Biot. 
number ; k t1ierrri;tl conduclivit,y of tlie fluid and h heat. 
transfer coeficirnt on npprr surfarc  The sidc walls arc 
insnlatd. 

(35) 
ao 
ax - = 0 at x = 0 and z = n 

where n is the asprct, rat,io (Imgt,h/lieiglit). On rigid walls 
both components of velocit,y are taken to he zero. For free 
top surface only the normal component is taken to be zrro. 
Thc condition for horizontal romponcnt by considcriiig the 
shear stress in this direction is 

W 

or, in dimcnsionle-ss for111 [ser Diikstrn and van dc Vooren 
1080) 

(37) 

and Ma is thc Marangoni niiniber dcfined hy Eq. (1). The 
upper surface of the liquid is assumed to have large-enough 
surface tension .which allows t lw surface deformation he ne- 
glected. 

4. Results and Discussion 

A fundamcntal dirnensionless nnmbcr, 

Ma nc - ___ 
I + Pr-‘ ’ 

is introduced for thermocapillnry drivcn flows. llerr M a  and 
P r  respectivcly denote t.lr risrlal Marangoni and Prandtl 
numbers. The significance of t h i s  number for past Marangmi 
instabilities is demonstrated i11 t,crins of the analytical stud- 
ies available j n  tlip litcraturc. 

Further support for llc i s  provided by a modest com- 
putational program which is carried out on two-dimensional 
(20~29,and 29x50) regular meshes for two aspect ratios (n=1 
and 2). Figure 4 shows the veloc.ity and temperature firlds- 
for Pr=7 and Ri=lO for two Marangoni niinibers. For M a  
= N O ,  one roll rotding counter-clockwise appear with its 
center close to t o p  Isollieriiis are distorted accordingly due 
to  convcction lieat h n s f c r .  Toward the lower part of the 
container, the isotlirrnis tend to beconie parallcl to the bot- 
tom wall, as expected. Tlic rcsult for hfa=1500 is similar 
to  what Jackson anrl \Vint,rrs (1084) ohtained for Ra=lO‘ 
for the Rayleigli-l3mard problem. They found two cell (like 
ours) or one cell depending on the iiiil,ial conditions. In the 
present casc, one main roll a p p ~ a r  in tlie early stage then a 
corner roll initiates and hegiiis to grow, it reduccs the size 
of the main roll, anrl event,ually hrroines identical in size 
to hut rotating i n  the opposite direct,ion of the main roll. 
The fluid rises at tlir middle and sinks along thc container 
walls. The trmperature field is again distorted inost,ly in 
upper part of ront,niner due to ronvcrtioir lrcal transfcr. 

When t l ic asprct ratio is incirascd to 2, two rolls appear 
at the steady state for Ma=800 and 1500. Thc sti~tioiiary 
rtatc is symmetric with respect to t.he vertical centerlinc. 
The velocity vectors and isotherms for the values of hIa=800 
and 1500, which are resembling buoyancy driven convcction, 
are shown i n  Fig. The effcct of the vclocity pointing 
upward of the crntrrline is inrrrascd with increasing Ma as 

- 

5. 
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Fig. 4: The velocity Y ~ P ~ O I ’ S  with the length scales 
of 0.01 and temperature contours wi th  the increments 
o f o . ~ 6  for a=l, ni=lO, nird Pr=7. 

clearly S C C ~  in the temperature contour plot. 
Pearson gives Ma, =413.5 at Bi=lO for infinite layer of 

Auid. We obtained pure conduction solution at  this critical 
valuc of Ma for n=2. Clearly tlre criticnl Marangoni num- 
ber for the onset of surf~ce-tension-driven convection should 
be higher for bonnded layers. Tbc average Nussclt number 

c/ 

W 

which accounts for the heat transfer through tbc enclosure, 
K, is determined by the numrrical intcgration oveI the bot- 
tom wall. The history of % revpals tliat % is large at the 
beginning of the process becaiise of high temperature gradi- 
ents near the wall thrn i t  decrenses witli timeand convcrges 
to the steady state. 

Numericallyol,tained (Nu-Nu,)/(Ma-Ma,) is plottcd 
against P v  in Fig. 6 for n = 2 and %=lo.  The simultaneous 
inspection of Figs. 1, 2, 3 and 6 clearly demonstratc the 
significance of ne, and thc idelltical intrinsic dependency 
of buoyancy and tliermocnpillary driven flows on the Prandt,l 
number. 

1.5  , I 

Fig. 6 :  Vnrintioii of (Nu - Nu.:)/(h?n - Mn,.iwith 
for ri=2 and Bi=lO. 

............ .... .......-.. /zs ........................... 

Fig. 5 :  The velocity vectors wi th  the length scales 
of 0.01 and temperature enidours with the  increments 
ofo .05  for n=2, I l i = I n  n l ~ l  1 ’ ~ = 7 .  
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