ATAA 94-0239

Thermocapillary Driven Flow Past
Marangoni Instability

V. S. Arpaci and E. Evren-Selamet
Department of Mechanical Engineering
and Applied Mechanics

The University of Michigan,

Ann Arbor, Michigan

A. T. Chai

NASA Lewis Research Center,
Cleveland, Ohio

32nd Aerospace Sciences
Meeting & Exhibit
January 10-13, 1994 / Reno, NV

i o i S T G o

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
370 L'Enfant Promenade, S.W., Washington, D.C. 20024




AIAR-94-0239

THERMOCAPILLARY DRIVEN FLOW
PAST THE MARANGONI
INSTABILITY

V. 8. Arpaci and E. Evren-Selamet
Department of Mechanical Engineering and Applied
Mechanics
The University of Michigan, Ann Arbor, Michigan

A. T, Chai
NASA Lewis Research Center, Cleveland, Ohio

Abstract

A fundameutal dimensionless number,

Ma

Mg~ —
¢T3 P

is introduced for thermocapillary driven flows. Here Ma and
Pr respectively denote the usnal Marangoni and Prandtl
numbers, The significance of this number for past Marangoni
instabilities is demonstrated in terms of a projection methed
involving the Godunov discretization for convective terms,
as well as the data available in the Literature.

1. Introduction

The problem of thermocapillary (surface tension) driven
flow continues to attract increased experimental, analytical
and computational atiention because of its importance to
space explorations. Block’s (1956) experimental observa-
tions supported by Pearson’s (1958) analytical study about
four decades later than Rayleigh demonstrated that thermo-
capillary rather than buoyancy is responsible for instability
in some of the Benard experiments. For example, drying
paints are now known to display steady cellular circulatory
flow of the ” Benard type ” whether the free surface was at
the top or bottom of the paint layer. The critical Rayleigh
number fails then to predict the flow initiation. Pearson
has shown in terms of infinitesimal disturbances that the
thermocapillary forces ave sufficient to cause this instability
characterized by the Marangoni number,

Ma = éﬁ-{, (1)
jiey
Ae being net surface tension, { the thickness of the horizon-
ta! liquid layer, g the dynamic viscosity and a the thermal
diffusivity. Note that, by definition,

Fe  Qu
Ma= ("ﬁ: (a‘j('), (2)

Fz and Fy respectively being the thermocapillary tension
and viscous forces, Qy and @ the enthalpy flow and con-
duction. Also, by definition, the Prandtl number is
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Fy being the inertial force. An infinitesimal theory, rest-
ing on linearized governing equations, ignores the nonlinear
inertial effects and is independent of the Prandt] number.
It is then governed by the Marangoni number alone. A
nonlinear theory for thermocapillary driven flows past the
Marangoni instability depends on the Prandt! number as
well as the Marangoni number. A fundamental dimension-
less number including the effect of both Ma and Pr so far

appears to be overlooked in the literature. The objective of
the present study is to introduce this dimensionless number
and to discuss the thermocapillary driven nonlinear flows
in terms of this number. The study consists of four sec-
tions. Following this introduction, Section 2 is devoted to
some dimensional considerations, Section 3 to a computa-
tional integration, and Section 4 to a discussion of results
and some conclusions.

2. Dimensional Consideration

For reasons to be clear later, consider first a flow driven
by buoyant as well as thermocapillary forces,

Fg+ T~ Fr+ Fy, (4)
Fp being the buoyant force. The thermal energy balance for

this flow is
Qi ~ Qx. (5)

Now, rearrange Eq. (4) as

Fg+ Fe - FB/Fv+Fc/FV (G)
Fr4 Fy 1+ Fif{Fv
and Eq. (5) as
Qu/Qx. (7)

Note that the numeral 1 in the denominator of Eq. (1)
implies an order of magnitude. Explicitly,

Fg ~ gAplE, Fy ~ pVl,
Fo ~ Agl, Fr~ pV2
Qy ~ pe, VT, Qr ~ kTI,



and

Fo 9&pl! Fo Ao Fr  pVi (8)
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where p is the density, ¢, the specific heat at constant pres-

sure, V the velocity, T the temperature, I a characteristic

length and A is the difference in surface tension or deasity,
Equation (6) yields, in terms of Eq. (8},

gApl? eV + AoV

10
14+ pVijp ’ (10)

and Eq. (7) gives, in terms of Eq. (9) ,
pe,VIjk (11)

For thermocapillary and/or buoyancy driven flow(s), ¥V is a
dependent variable. Consequently, neither Eq. (10) nor Eq.
(11) is an ultimate dimensionless number for these flows.
The climination of V between Eq. (10) and Eq. (11) leads

to this number,

(FB/FV + F(;'/FV}QH/QK
(L4 Fi/Fe)Qw/Qu

or, explicitly,

(g/va)(Ap/pP + Adl/pa
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Note that the numeral 1 in the denominator of Eqs. (6),
{10), (12) and (13) implies an order of magnitude. The
two limits of Eq. (13), respectively corresponding to the
buoyancy driven and surface tension driven flows, are

. Ra
i, Mo = M ~ == )
Ma
_ ~ .
A Mee = Tle ~ =5 (15)

Although there is abundant analytical and experimental ev-
idence in the literature, lge and its limits (Ilg, IIs) sur-
prisingly remain overlooked. QOuly, the following limits for

Fr =0 (Pr — ),

I'Lril_l‘lnﬂg — Ra (16)
and
Pl}l_i‘lu g — Me (17)

are well known. Some of the literature is cited below for
support of the respective relevance of llp and [l given by
Egs. {14) and (15) for buoyancy and thermocapillary driven
flows.

An approximate analysis by Squire (1938) of buoyancy
driven laminar flow next to a vertical wall yields for heat
transfer

20 )_1/4[!]}1.3(71] - To)

— {5 /2 L2y 174
Nu = 0.508P"/*(Pr 4 51 T 1

which can be rearranged as
Nu = 0.508T3*, (18)
where Nu is the Nusselt number, and

Ra

o= Gosa 1 pr1- (19)

An experimental study by Krishnamurti (1973) shows
the cascade of transitions in buoyancy driven flows past the
Benard instability (Fig. 1). Among these transitions, for
example, the second transition can be qualitatively related
to the first transition by the simple model,

(ARa. )it
(Rackrr = (Ra)r + T3 Pr1’
or
(Ral)ir = (Rac); + (ATlg)Y,
where ( "
ARa.)
All I _ c/l
( B)I 1+ Pr-1° (20)
and
(ARa.)i' = (Ra.)1 — (Ra.), Pr — co.
For liquid metals, Pr < 1 and Eq. {20) is reduced to
(Allg)H = (ARa )} Pr (21)

which is the tangent of Eq. (20) between domains I and 11
shown in Fig. 2. As Pr — 0, all transitions collapse on
the first transition which now directly leads to turbulence
{Domain I in Fig. 2}, For gases, Pr ~ 1 Eq.(20) applies as
is. However, because Pr of gases varies very little, £q.(20)
covers now a narrow band in the middle of Domain II of Fig.
2 (g-band). For water, 6 < Pr < 30, Eq.(20) continues to
apply with a reduced incrtial effect (but because Pr of water
varies more than that of gases) over a wider range than that
of gases (w-band). For viscous cils, 10? < Pr < oo , and
Eq.(20) is reduced to

(Alp){ - (ARu)¥ (22)

which is independent of r because of the regligible incrtial
effect (Domain ITT in Fig. 2).
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Fig. 1 Cascade of flow regimes : I-No motion; II-
steady 2-D motion; ITI-steady 3-D motion; I'V-V-unsteady
3-D mation {(from periodic to chaotic); VI-turbulent mo-
tion (Krishnamurti 1973).
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Fig. 2 Second transition versus Prandtl number: g-
band for gases, w-band for water.

Beginning with Malkus and Veronis (1958) for free bound-
aries, and continuing with Schluter, Lortz and Busse (1965),
Gough, Spiege! and Toomre (1975) and Busse (1935) for
rigid boundaries, a first order irertial effect is incorporated
into heat transfer by an expansion in powers of Pr7l,

Nu-1
Ra — Ra,

which can be rearranged in view of

=(Cr+CoPr P+ CaPr24)  (23)

(1=Pr 4 Pr?-Pr34.)=14Pr YL

Ny~ 1
ARa,

~ (1 Py (24)
or,
Nu—1~ Allg, (25)

In recent studies, Ari)aci (1986, 1990} introduces the mi-
croscales for buoyancy driven turbulent flows, and in terms
of these scales, propeses a heat transfer model based on Ilp

ny® Ra
N N T T P DR 2
T A Y (26)

which correlates the entire experimental data of the litera-
ture on the turbulent flow originating from the Benard prob-
lem.

There is no reference to g in the literature on thermo-
capillary driven instabilitics. Clearly an infinitesimal am-
plitude theory, being independent of inertial forces, neglects
the effect of Pr aumber. In this case, as is mentioned earlier
{recall Eq.17), U is reduced to Ma. However, a finite ampli-
tude or nonlinear theory depends on Pr and, consequently
, on g, Nonlinear theories for laterally unbounded layer
based on leading-order bifurcation methods appear to be ex-
hausted by Cloot and Lebon (1984), For laterally bounded
layer, Rosenblat al. (1982 a,b) investigate the problem with
slippery sidewalls. In these elaborate mathematical studies,
the physical significance of Tig on flow past the first transi-
tion appeats to remain unnoticed. Cloot and Lebon consider
only the range of Pr> 1 (by the specific values of Pr=7, 70,
500) for which the inertial effect is negligible, and Mg —
Ma. This effect hecomes significant as Pr — 0, and the

range Pr < 1 is essential for the recognition of Ilc. Rosen-
blat et al. (1982a) consider the specific values of Pr=0.1,
1, 10, oo which are utilized here to demonstrate a trend-
wise dependence on T (Arpaci 1990 illustrates the need of
extensive data for accurate dependence on I5).

An extension of the literature on buroyancy to thermo-
capillary, readily yields for heat transfer

Nu—1~ A% (27)

A being the Landau amplitude of thermocapillary fluctua-
tions, or, in terms of Eq.{25},

Nu—1~ Allg. (28)
Noting Eq.(15),
Ma - Ma,
—_l o~ 29
Nu-~-1 T4 Pt (29)
or, o
Nu-1 o (30)

Ma — Ma, =1Fc.pr 0
Cy and €, being numerical constants. For the Landau am-
plitude, Rosenblat et al. (1982a) gives

A~ l(Ma — Ma.) (31)
w
by which Eq.(27) becomes
Nu—1 c
—_—= 32
Me—Ma, W’ (32)

again, C being a numerical constant depending only on the
aspect ratio. Table 1, rearranged from Table 1 and 2 of
Rosenblat et al., gives w for two aspect ratio «=0.9, 1.5.

a Pr 0.1 1 10 | oo
09 L 12116 [11] L
7519 * 107 51095 (05 [0.45

Table 1

Fig. 8 shows (Nu — 1)/{Ma — Ma,.) against Pr for C
= 10?, assumed for graphical convenience. There is no in-
formation on C in Rosenblat et al. However, an assumed C
affects the graphical scale but not the Prandtl dependence.

The rest of the present study carries out a modest com-
putational work beyond a first-order bifurcation discussed
in Rosenblat et al. (1982a,b} analytical studies. The objec-
tive is the numerical recognition of Il beyond the analytical
bounds. In the selection of this numerical method, special
attention is paid to accurate computation of incrtial effects
which are responsible for the Prandtl number effect. To keep
the computational work from being exhaustive, the flow is
assutned to be two-dimensional in a laterally bound horizon-
tal layer. The side walls are adiabatic, and all boundaries
are non-slippery except for the free top surface. The lig-
uid is cooled at the frec upper surface by heat transfer to
ambient.
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Fig. 3: (Nu—1)/(Ma—Ma,.) versus Pr for two aspect
ratios.

3. Numerical Method

The main features of the computational procedure de-
scribed by Evren-Selamet et al. (1991,1992) are summarized
here for later convenience. The projection method involving
a Godunov-type discretization for inertial terms is utilized,
The method involves two steps based on a decomposition
of the momentum equations. The first step computes an
auxiliary velocity field 7,

u-ur
At T

—Q[UVU* = (1 — O)(U.V)U]+

PHOVHD + {1 - ©)VEUT (33)

which is the momentum equation without pressure gradient.
Here U = ui+ vj and @ is a weighting factor between 0 and
1. The discretization of the Laplacian of the diffusion terms
is done by a standard finite diffcrenice approximation. In the
solution of Eq. (33), the convective term is calculated by a
Godunov discretization including the solution of a Riemann
problem as defined by Bell and Glaz (1987). In the second
step, I obtained from Eq. (33) is corrected for a divergence-
free velocity field including the effect of pressure gradient.
The spatial discretization is based on the staggered grid sys-
tem. An advantage of using the staggered mesh is that the
boundary conditions only for temperature and velocity com-
ponents are necded, while those for pressure are not. The
bottomn boundary condition on tempetature is

=1 aty=0

The top boundary condition, in dimensionless form, is

a0 90 oY a2
T 5;54‘(3;—}310)5. (34)

where Ay is the grid size in y divection, Bi=hH/k the Biot
number ; & thermal conductivity of the fluid and A heat
transfer coefficient on upper surface. The side walls are
insulated,

ﬁ=Data::()an(l:x::a (35)
dz
where a is the aspect ratio (length/height). On rigid walls
both components of velocity ate taken to be zero. For free
top surface only the normal component iz taken to be zero.
The condition for horizontal compeonent by considering the

shear stress in this direction is

Qu* dc8T

-a?? = ET-(QT at y' =H (36)

pH

or, in dimensionless form (see Dijkstra and van de Vooren

1989) 3 o
[ « GV
5‘3; = Ma B;L‘, (37)
+

where
1 + Bi
Ma® = Ma— :

and Ma is the Marangoni number defined by Eq. {1). The
upper surface of the hquid is assumed to have large-enough
surface tension which allows the surface deformation be ne-
glected.

4. Results and Discussion

A fundatnental dimensionless number,

Ma
1+ Ppr-U7

is intreduced for thermocapillary driven flows. Here M« and
Pr respectively denote the usual Marangeni and Prandtl
numbers. The significance of this nurber for past Marangoni
instabilities is demonstrated in terms of the analytical stud-
ies available in the literature.

Further support for Il is provided by a modest com-
putational program which is carried out on two-dimensional
(29x29,and 29x59) regular meshes for two aspect ratios (a=1
and 2). Figure 4 shows the velocity and temperature fields-
for Pr=7 and Bi=10 for two Marangoni numbers. For Ma
=800, one roll rotating counter-clockwise appear with its
center close to top. Isotherns are distorted accordingly due
to convection heat transfer. Toward the lower part of the
container, the isotherms tend to become parallel to the bot-
tom wall, as expected. The result for Ma=1500 is similar
to what Jackson and Winters (1984) obtained for Ra=10*
for the Rayleigh-Benard problem. They found two cell (like
ours) or one cell depending on the initial conditions. In the
present case, one rain roll appear in the early stage then a
corner roll initiates and begins to grow, it reduces the size
of the main roll, and eventually becomes identical in size
to but rotating in the opposite direction of the main roll.
The fluid rises at the middle and sinks along the container
walls. The temperature field is again distorted mostly in
upper part of container due to convection heat transfer.

Mg

When the aspect ratio is increased to 2, two rolls appear
al the steady state for Ma=800 and 1500. The stationary
state is symmetric with respect to the vertical centerline.
The velocity vectors and isotherms for the values of Ma=800
and 1500, which are resembling buoyancy driven convection,
are shown in Fig. 5. The effect of the velocity pointing
upward of the centerline is increased with increasing Ma as
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Fig. 4: The velocity vectors with the length scales
of 0.01 and temperature contours with the increments
of 0.05 for a=1, Bi=10, and Pr=7.

clearly seen in the temperature contour plot.

Pearson gives Ma. =413.5 at Bi=10 for infinite layer of
fiuid. We obtained pure conduction solution at this critical
value of Ma for a=2. Clearly the critical Marangoni num-
ber for the onset of surface-{ension-driven convection should
be higher for bounded layers. The average Nusselt number

which accounts for the heat transfer through the enclosure,
Nu, is determined by the numerical integration over the bot-
tom wall. The history of Nu reveals that Nu is large at the
beginning of the process because of high temperature gradi-
ents near the wall then it decreases with time and converges
to the steady state.

Numerically obtained (Nu—Nu.)/(Ma—-Ma,) is plotted
against Prin Fig. 6 for a = 2 and Bi=10. The simultaneous
inspection of Figs. 1, 2, 3 and 6 clearly demonstrate the
significance of e and the identical intrinsic dependency
of buoyancy and thermocapillary driven flows on the Prandtl
numbcr.
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Fig. 6: Variation of (Nu - Nu,}/(Ma - Ma,)with Pr
for «=2 and Bi=10.

Ma=800

"

Ma=1500

Fig. 8: The velocity vectors with the length scales
of 0.01 and temperature contours with the increments
of 0,05 for a=2, Bi=10 aud Pr=7.
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