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Abstract

Parametric engineering models of the gas dynamic
mirror (GDM) fusion propulsion systems[1, 2, 3, 4]
have produced potentially feasible systems. How-
ever, these systems are extremely large and massive
due to neutron or bremsstrahlung radiation losses for
traditional and advanced fusion fuels, respectively.
In order to explore designs beyond the simple uni-
form GDM represented by the parametric model, a
3-D complex geometry ideal magnetohydrodynamic
(MHD) modeling tool[5] based on finite volume meth-
ods and adaptive Cartesian grids was developed. The
explicit nature of the algorithm combined with the
near relativistic magneto-acoustic wave speeds lim-
ited the utility of the model. Presented here is a
new MHD implicit alorithm with embedded magnetic
fields which is capable of modeling complex, non-
uniform GDMs.

Introduction

Previous studies[1, 2, 3, 4] of gas dynamic mirror
(GDM) fusion propulsion systems for interplanetary
exploration have demonstrated that they are feasible,
see Figure 1. However, systems of large size (100-1000
meters) and mass (400-1000 tons) assembled in orbit
are required. The resulting cost barriers restrict the
practical development of GDM propulsion systems.

The need for such large systems is driven by neu-
tron and radiation losses from the plasma. Losses
need to be compensated for with longer systems to
improve containment or hotter plasmas to increase
reactivity. Of course, longer and hotter systems

have greater energy losses, producing diminishing re-
turns. Advanced fusion fuels with low neutron em-
missions have been explored, but radiation losses
from the much higher temperatures produce the same
limitations[4]. Table 1 lists potential fusion fuels with
important parameters.

Past studies have generally assumed a homoge-
neous plasma cylinder at the center of the tandem
magnetic mirror confinement system. Nonuniform
configurations of the plasma due to various injection
and heating methods have the potential to reduce
the size requirements for GDM systems. Unfortu-
nately, nonuniform systems are complex and difficult
to model.

A computational magnetohydrodynamic (MHD)
model was constructed using full 3-D Cartesian adap-
tive grids and with finite volume MHD flow solvers[5].
To address the extremely large magnetic fields in the
GDM system, the algorithm uses embedded magnetic
fields to limit errors[6]. However, these large mag-
netic fields in GDMs also produced magneto-acoustic
wave speeds approaching a few percent the speed of
light. Combined with a grid that attempted to re-
solve down to the centimeter scale, this effectively
drove the time step to zero in order to meet the CFL
condition required by the explicit algorithm.

A new implicit flow solution that includes the
magnetic source terms and embedded magnetic fields
of the original model is described below. In order
to addressed the added computational demand of the
implicit algorithm, the code uses a parallel library,
PETSci[7, 8, 9], to solve the resulting system of equa-
tions.
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Algorithm Review

Beyond the implicit flow solver, the model is
largely the same as the previous work.[5] The grid
generator is a 3-D unstructured Cartesian grid stored
in an octree format with solution-based refinement.
Current test criteria for solution adaptation include
velocity gradients (∇v), flow vorticity (∇ × v), nu-
meric entropy wave strength (∇p − a2∇ρ), and cur-
rent flux (∇×B). See Figure 2 for a sample solution
adaptive grid.

The GDM is modeled using standard ideal mag-
netohydrodynamic equations. Continuum flow, non-
relativistic, neutral charge density, and inviscid as-
sumptions produce a combination of the Euler equa-
tions with a vector magnetic equation, a system of
eight equations. As in the previous work, we retain
the divergence of the B field in the source terms to
correct for computational error and to maintain the
symmetrizable form. A form of the equations with
embedded magnetic fields allows the accurate model-
ing of MHD flows in extremely high B field environ-
ments.

From these equations, a 2nd order finite volume
Roe-approximate Riemann solver was derived[6]. Im-
plemented with a multi-stage explicit update scheme,
this scheme produced results that were validated
and GDM simulations that were qualitatively cor-
rect. However, the large GDM magnetic fields of 10s
to 100s of Tesla produced wave speeds a few percent
the speed of sound. When trying to resolve GDMs
down to the centimeter scale, this produced unsuit-
ably small explicit time steps resulting in extremely
slow convergence rates. The only evident solution to
this problem is an implicit algorithm which has less
restrictive stability constraints.

Implicit Flow Solution

A general finite volume implicit formulation with
U, U∗, F, and S being the state vector, a neighbor-
ing cell’s state vector, a flux function, and a source
term vector, respectively, is
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However, using the divergence theorem, you can ob-
tain the source term as surface integral to get
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Incorporate this into the implicit formulation.
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To determine the derivative of the flux function,
start with a coordinate generalized Roe flux function.
For simplicity, it is assumed that the flux direction is
aligned with the n̂ vector is (1,0,0). K is defined as a
transformation matrix that converts from simulation
coordinates (x̂, ŷ, ẑ) to the flux normal coordinates
(n̂, τ̂1, τ̂2) where the τ̂s are perpendicular axes,
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Taking the derivative of the flux function gives
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The term, ∂|A(KUL,KUR)|
∂UL

, is truly ugly. However,
since we intend to use the derivative of the flux func-
tion in a matrix that will be assumed to be constant
as part of a linear system, we can also assume that
this term is zero.
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Using dFL(KUL)
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we get the following
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is derived the same way, and the derivative of the
source terms is relatively simple. The actual deriva-
tive for the MHD system of equations described above
is too extensive to print here, but their calculation is
straight forward, if tedious.

Convert the implicit formulation to Ax = b form
where Q is the vector of state vectors U.
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To approach 2nd order accuracy, the residual of the
current time step on the right hand side of the equa-
tion is calculated using the 2nd order explicit scheme
from the original work.

With the matrix A and vector b, we must solved
for the cell states of the next iteration. Since A is
a large unstructered sparse matrix, this is extremely
difficult. To tackle this system of equations, parallel
computers and the Portable, Extensible Toolkit for
Scientific Computing, PETSc[7, 8, 9], parallel library
is used.

Conclusions and Future Work

A magnetohydrodynamic Roe-approximate finite-
volume, 3D Cartesian adaptive scheme has been mod-
ified to address the extreme magnetic fields found in
proposed GDM designs. Embedded magnetic fields
are included to avoid the errors introduced by the
large magnetic terms in the equations. Most recently,
an implicit form of the scheme has been developed to
address the time step limitations imposed by near rel-
ativistic wave speeds and resolution requirements on
the order of centimeters.

Preliminary results from the new scheme match
the output of the previously validated explicit code.
The implicit algorithm needs to be rigorously vali-
dated, after which it can be applied to exploring the
design issues of gas dynamic mirrors.
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Fuel Products Total Charged Particle Optimal Ignition
Energy [MeV] Energy [MeV] Temperature [keV]

D − T n+4He 17.6 3.5 10.5
D −D p+ T 4.0 4.0 15

n+3He 3.3 .8 15
D−3He p+4He 18.3 18.3 60

3He−3He 2p+4He 12.9 12.9 1000
p−11B 34He 8.7 8.7 150

Table 1: Table of fusion fuels with relevant parameters.

Figure 1: Interplanetary vehicle with a gas dynamic mirror fusion propulsion system.
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Figure 2: Sample result of a MHD shock wave over a wedge.

4


