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Abstract 
Optimal space trajectory problems and the necessaly and 

sufficient conditions that define their solutions are stated most 
compactly in terms of position and velocity vectors. To obtain 
analytical or numerical solutions, however, the problems are 
expressed using a particular set of coordinates. Each set of 
coordinates has advantages and disadvantages depending on the 
application. Thus, it may be useful to be able to transfo~m from 
one set of ccn>rdinates to another during the course of solving an 
optimization problem. If the problem has been formulated using 
adjoint coordinates, the transformation requires not only 
transfonnation of the state coordinates, which are well-known, 
but also transformation of the adjoint coordinates. This 
combined transformation of the state and adjoint must be a 
canonical trcmsforntotion for the extremal trajecto~y generated 
with the new coordinates to be the same as the extremal 
trajectory generated with the old coordinates. 

In this paper, the canonical transfonnations between four 
common sets of coordinates used in space trajectory 
optimization-trajectory variables, orbit elements, equinoctial 
elements, Cartesian coordinates-are developed for the coplanar 
case. Applications of the canonical transfonnations in numerical 
optimization and the development of the necessary conditions for 
optilnality are discussed. 

Introduction 
Optimal space trajectory problems, such as the minimum- 

fuel transfer problem for a spacecraft in a central inverse square 
gravity field, and the necessary and sufficient conditions that 
define their solutions are stated most compactly in terms of 
position and velocity vectors [Mar79]. To obtain analytical or 
numerical solutions, the problems are expressed using a 
particular set of coordinates. The Cartesian coordinates, 
trajectory variables, orbital elements, and equinoctial elements 
are four common sets of coordinates for space tryiectory 
problems. Cartesian coordinates have been used for the 
analytical solution of optimal high thrust orbit transfer problems 
[Law63, Haz701 and the numerical solution of optimal low 
thrust transfer problems [BarXX, Enr90, RetlX41. Orbital 
elements have been used to develop approximate solutions for 
optimal low thrust problems, using averaging [Ede65, Mar77, 
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MarRI] and linearization [Edeh4, Edehh]. To avoid the 
singularities of the classic orbital elements, the equinoctial 
elements [Bro72, Bat871 have been used to develop a solution to 
the linearized rendezvous problem [GobhS]. Trajectory 
variables have been used for the approximate and numerical 
solution of optimal low thrust transfer problems [Rosbl, Bro91, 
Mea901. 

Each of these sets of coordinates has both attractive and 
unattractive features for analysis and computation. The 
coordinates that are best for analytical solutions such as 
averaging may not be best for numerical optimization. 
Therefore, it is advantageous to convert between sets of 
coordinates when solving optimal space trajectory problems. 
This conversion requires not only transfo~mations of the state 
variables, which are well-known, but also transformations of the 
adjoint or costate variables. The combined transfonnation of the 
state and adjoint must be a rrir~oriirril r~msfortiicition for the 
extrernal trajectoiy generated in the new coordinates to be the 
same as the extremal trajectory generated in the old coordinates. 

One common purpose for using a canonical 
transfoimation is to increase the number of ignorable coordinates 
in  a Flainiltonian system, which makes the differential equations 
easier to solve. Frae.jis de Veubekel used a canonical 
lransformatiol~ i n  the minimum-fuel transfer problem for a 
thrust-limited rocket to transform the optimal steeling control to a 
state variable when investigating the case of intermediate-thrust 
extremals [Fra65]. Marec and Vinh used a canonical 
transfonnation to change the independent variable from time to 
characteristic velocity when solving the minimum-fuel, 
impulsive thrust problem [Vin70]. Marec developed the general 
minimum-fuel transfer problem using orbit elements with a 
three-dimensional canonical transfonnation from Cartesian 
coordinates to orbit elements [Mar79]. 

In this paper, canonical tlansfonnations between the four 
sets of coordinates commonly used in coplanar trajectory 
optimization4artesian coordinates, trqjecto~y variables, orbital 
elements, and equinoctial elements-are developed. These 
canonical transformations are composed of state and adjoint 
coordinate transfo~mations. The state transfonnations. which 
are intlependent of the adjoint transfonnations, are well-known, 
so the focus is on determining the corresponding adjoint 
transformations such that the combined state and adjoint 
transformation is canonical. The canonical transfonnations 
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between the orbit elements and trajectory variables [HaiQI] and 
between the Cartesian coordinates and orbital elements [Mar791 and 
have been developed previously but are considered here for 
completeness. l%llo&ng the derivation of the canonical 
transformations, specific applications of these canonical 
transformations for space trajectory optimization problems are 
presented. 

Hamiltonian System for an Optimal Trajectory 
The Mayer form of the general optimal control problem is 

to detennine the m-dimensional piecewise-continuous control 
function u on the time interval [to, tf] that drives the n- 
dimensional state x from an initial value xo to a final value xf, or 
more generally to a final manifold defined by the k-dimensional 
(k 5 11) constraint vector ~ ( x ( t f ) ,  tf) = 0, and minimizes the 
performance index 

subject to the state equations (differential constraints) 

and the control constraint 

These conditions along with the state equations (2) and the 
hxmlary conditions 

constitute a two-point boundary value problem, the solutions of 
which are candidates for locally minimizing the performance 
index. The state trajectory corresponding to a solution of the 
two-point boundary-value problem is called an extreniul 
rrtrjectory. Equations (7) and (8) are known as the trunsversn~ify 
corztfitions. 

Assuming an explicit solution of eq. (6) of the fonn 

the optimal I-Iamiltonian H* is defined by 

(3 )  H* = pT(t) f(t. x4'(t), g(t, x4:, p)) 

for t E [to, tf] and U(t) a closed subset of S"'. 'The state and adjoint differential equations can be expressed as a 
In space trajectory optimization [Mar79], the control is canonical Htrt~dloriitrn sys/errr, 

the thrust or thrust accelwaticm vector, and the state is comprised 
of the position vector r, velocity vector v, and the mass m. For 
the minimum-fuel problem, the performance index to be dH* 

X *  = (T) (1.1) 
minimized is J = - m(tf). The state equations are 

where g is the gravitational acceleration and g, is its magnitude at 
sea level, T is the thrust vector and T is i h  magnitude, and Isr is 
the specific impulse. In special cases, it is advantagous to 
replace the mass with another coordinate. If the propulsion 
system is assumed to have constant e.jcction velocity, the 
characteristic velocity, or the time integral of the thrust 
acceleration magnitude, is used in place of mass; if the 
propulsion system is assumed to have limited power, the time 
integral of the thrust acceleration magnitude squared is used in 
place of mass. For the planar problem, the state x = (r, v, ~ n ) ~  
is five-dimensional, since r and v each have dimension 2. 

If u* is the optimal control and x* the conesponding 
optimal trajectcxy and assuming the problem is normal, it is 
necessary [Fle75] that a nonzero k-dimensicma1 constant vector p 
and a nonzero n-dimensional acljoirit vector function p(t) exist 
such that 

In the case of space trajectory design, p = (prT, p,T, p,,JT. The 
qualifier " * " is suppressed from here on. 

Canonical Transformation Theory 
Because the state and adjoint equations of the optimal 

control problem comprise a Hamiltonian system, the powerful 
rtmonird trcrn.Ffor7~1rrtion themy of mechanics can be applied. A 
canonical transformation introduces no new physics to a 
problem, but it may facilitate analysis or physical interpretation 
of the motion, whose underlying properties are the same in the 
old and new coordinates [Lic87]. One use of canonical 
transformations is to increase the number of ignorable 
cocmlinates, thus simplifying the integration of the Hamiltonian 
system. In the optimal control context,  canonical 
transformations allow one to translate the necessary conditions, 
integrals of the motion, approximate analytical solutions, etc., 
tierivcd in tenns of one set ol' coordinates into the equivalent 
results in tenns of another bet of coordinates, avoiding the need 

(5' for re-derivation. 
Let x* and p* denote the state and adjoint coordinate 

u*(t) = arg ~ n a x  (pT(t) f(t, x*(t),u(t))) (6) vectors for coordinate set A, and xB and pB denote those for 
coordinate set B. In the transfmmations of interest here, the 

aa, 3w transfo~mation between the state coordinate vectors are time- 

pT(tf) = 5;; (x*(tf). tf) + p T  5; (x*(tf). tf) ( 7 )  independent and do not involve the adjoint coordinate vectors: 
thus they are of the form 



and correspond to time-independent Lagrangian point 
transfosmations of mechanics [Lan49]. In the case of a 
Lagrangian point transfosmation, the Hamiltonian is an invariant 
of the associated canonical transformation from A coordinate 
vectors (xA; pA) to B coordinate vectors (xB; pB) [Lan49], 

It follows that the adjoint trruisfo~mation 

and the transformation of eq. (15) form a canonical 
B tsa~isfortnation CA = [$:, T:]: (xA; PA)+ (xB; pB). 

A set of transfo~mations together with the composition 
operation constitute a group if the following four properties are 
satisfied [Gol59]: 

(i) The set contains the identity transfo~mation. 
(ii) The inverse of each element of the set exists and is a 
member of the set. 
(iii) The set is closed under composition. 
(iv) The composition operation is associative. 

The canonical transformations associated with point 
transformations form a group on regions of the abstract state 
space whae the point transformations are one-to-one and onto 
(injective). Since our interest is transformations between any 
two of the four sets of state coordinates, there are twelve 
canonical transfonnations to be determined. G~ven the group 
structure it is sufficient to develop the three canonical 
transfo~mations from the Cartesian coordinates to the trajectory 
variables, the orbital elements to the trajectory variables, and the 
equinoctial elements to the orbital elements; the others can be 
obtained from composition and inversion of these. Smce the 
state coordinate transformations are known, it is the adjo~nt 
coordinate transformations that are of interest here. 

Explicitly, if 

and 

then 

and 

Some of the state coordinate sets considered here are not 
well-defined for certain points in the abstract state space; for 
example, one of the orbital elements is not well-defined for a 
circular orbit. The related singularities in the transfosmations at 
such points destroy the group structure; in particular, certain 
inverse transformations may not exist. Therefore, care must be 
taken in applying the canonical transfosmations developed in this 
paper. 

Definition of the State Coordinates 
The Cartesian coordinates, trajectory variables, orbital 

elements, and equinoctial elements must be defined before the 
canonical transfcmnations for the coplanar transfer problem can 
be developed. In Cartesian coordinates, r is expressed using x 
and y, where x is oriented along the line of nodes (or another 
reference line in the case of an equatorial orbit), and v is 
expressed using vx and vy, where vx is also along the line of 
nodes (fig. 1) .  The cossesponding adjoint coordinates are px, 
py, pvx, and pvy. In trajectory variables, r is expressed using 
the radial posit1011 r and the polar angle 0, where 0 is measured 
from the line of nodes (fig. 1). v is expressed using the speed v 
and the flight path angle y, which measures the angle between 
the velocity vector and local horizontal. The corresponding 
adjoint coordinates are p,, pu, p,, and py, 

Two sets of orbital elements are used (fig. 3). The first 
set consists of the semimajor axis a, eccentricity e, argument of 
periapse o, and mean anomaly M, with the cossesponding 
acl.joint coordinates pa, p,, pa. and p ~ .  In the second set, the 
true anomaly f replaces M; the comesponding adjoint coordinates 
are p',, p',, p',, and p'f, where the primes have been added to 
avoid confusion with the adjoint coordinates p,, p,, p,, and p ~ .  
Two sets of equinoctial elements are also considered. The 
coordinate names follow the convention of Battin [Bat87]. The 
first set is a, P I  and P 3  which are computed from e and o, and 
the mean longitude I; the cossesponding adjoint coordinates are 
Pa, pp,, pp2,. and PI .  In the second set, the true longitude L 
replaces 1 and p~ replaces pl. The explicit relations between the 
orbital elements and the equinoctial elements u e  given in the next 
sec tion. 

All of the state and adjoint coordinates are 
nondimensionalized using the reference position r,,f and the 
reference tine t,,f, where 

(21) 
Fig. 1. 

line of nodes 

Description of the Cartesian Coordinates and 
Trajectory Variables. F is the f ~ ~ c u s  of the orbit 
and the center of the central body. 



or, conversely, 

e2= P12+ P22 

p 1 tanw = - 
p2 

Fig. 2. Description of the Orbital Elements. F is the The transfos~nation from the trajectoiy variables to the orbital 

focus of the orbit and the center of the central elements is more involved [Bat7l]. Introducing the 
body. F' is the vacant focus. nondilnensional energy 5 and semi-latus rectum p, 

and p is the gravitational constant of the central body. The one trankformation from the trajectory variables to orbital 
nondi~nensionality is only apparent in the transfosmation elements is 
hetween the orbital elements and trajectory variables, where p 
does not appear in the state and adjoint tmnsformations. t=---  v2 1 
Converting the canonical transformations that are presented in 2 r 
this paper to dimensional form is stsaightforward. For example, 
if R is the dimensional radial position and p~ the conesponding 
adjoint coordinate, then 

e = 

and, using eqs. (15) and (17), 

PR = Pr /rref. 

where f is related to M through Kepler's equation and the 
eccent~ic anomaly E, 

State Transformations 
The transformations between the state coordinates are M = E - e sir$ 

well-known. To transform from the trajectory variables to the 
(43) 

Castesian coordinates (see fig. 1). 

1 - tan, . 
I - c  - (44) 

x = r C O S ~  (25)  

y = r sin0 (26) 

v, = v sin(y - 0) (27) 

vy = v cos(y - 0). (18) 

The transfo~mation fsorn classic orbital elements to equ~~ioct~al 
eleinents is [Bat871 

PI = e sinw (10) 

P2 = e cosw (30) 

I = w + M  (3 1) 

Adjoint Transformations 
Three carlouical transfmnations are presented in this 

section-a transfolmation between the Cartesian coordinates and 
the trajectory variables, a transfoimation from the orbital 
elements to the trajectory variables, and a transfoimation 
between the equinoctial elements and the trajectory variables. 
Bccause the state transfonnations are known, it is the adjoint 
transfonnations that are of interest. There are two equivalent 
approaches to dcveloping these transfonnations. In the first 
approach, the explicit state coordinate transfonnations are used 
i n  eq. (17) to develop the ca~lonical transformation. In the 
second approach, the state coordinate transfosmations are used in 
the invariance definition of eq. (16) and the adjoint coordinate 
transfqnnations can be extracted by matching the coefficients of 
the differential tenns. In the second approach, the old 
coorclirlates can be implicit functions of the new coordinates, 



rather than explicit functions. Because of this, it is sometimes 
simpler to take the second approach rather than the first. For 
instance, taking the partial derivative of a relationship such as 
that in eq. (42). which involves an inverse tangent function with 
the corresponding concerns about the quadrants, is more 
complicated than dealing with the unplicit relationship 

tanf = - 

The second approach is the one used in the derivation of the 
following canonical transformations. 

Cartesian Coordinates and Trajectory Variables 
First the canonical transformation from the Cartesian 

coordinates (x, y, vx, vy, m; px , py , pvx, pvy. ~ m )  to the 
trajectory variables (r, 0,  v, y, m; p,, pe, pv, pp pIrl) is 
developed. From the invariance of the Hamiltonian, eq. (1 h), 

Taking the differential of the state coordinate tsansfoi~nations in 
eqs. (25-28). 

Equinoctial Elements and Orbital Elements 
The next canonical transformation developed is a 

transformation between the orbit elements and equinoctial 
elements. Two different transfornations are considered, using 
different coordinates for the position in the orbit. In the first 
case, a canonical tsansfolmation between the orbital elements (a, 
e, w, M, m; pa, p,, pm, p ~ ,  pnl) and the equinoctial elements (a, 
P I ,  P2, I, m; pa, ppI. pp2,, PI,  prll) is considered. From the 
invuiaoce of the Hamiltonian, eq. (1 6), 

p a d a + p e d e + p o d o + p ~ d M + p l 1 , & n  
= Pa da + pp, dP1 + pp2 dP2 + pl dl + pIll dm. 

Taking the differential of eqs. (33-35), 

e de = PI dPI + P2 dP2 

dvx = sin(y - 0) dv + v cos(y - 0) (dy - dB) (41)) 

dvy = cos(y - 0) dv - v sin(y - 0) (dy - d0). (50) 

Substituting these relationships into eq. (46) and matching the 
coefficients of the differential tenns yields the tsarisfo~mation 

Since the state transformations for the position and velocity 
coordinates are independent of m, the corresponding acljoint 
coordinates in eqs. (51-54) are also independent of m, and the 
identity of eq. (5.5) holds. This identity holds for all of the 
canonical transformations considered in this paper, because all of 
the position and velocity state tsansfos~nations are inclepcndent of 
In, and it will no longer be stated explicitly. 

The inverse of this transfonnation, using cq. (7- L ), is 

cose cose 
py = pr sin0 + pe -- r +PY, (57) 

Solving eqs. (61) and (63) for dP1 and dP2, 

PI ~ 2 3  sec2w 
dPl =,de+ 

e2 
d o  = sinw de + P2 d o  

P2 PI P22 " C ~ W  
dP2 = 7 de - d o  = coso de - P1 do.  

e2 

Substituting eqs. (63-6.5) into the right hand side of eq. (60). 

Pa da + p, de + p(?, dw + p~ dM + pill dm = pa da 

+ ppl sinw de + pp P2 d o  + pp coso de 

- pp, PI  d o  + p~ dM - pl d o  + prll dm. 

Combining like tenns, 

Pa = Pa 

pz = pp sinw + pI,, coso 

PC!)= Ppl 1'2 - Pp, PI - PI 

I'M = 1'1. 

Inverting eqs. (68-70). 

coso 
~ p ,  = pe sine + (PC,, + PM) - e 



The next canonical transfolmation of interest is between 
the (a, e, w, f, m; Pa, Pe, po. pf. p m )  coordinates and the (a, Pi, 
P2. L. m; pa, ppI,, pp2,, p ~ ,  pn,) coordinates. The development 
is almost identical to the previous transformation. For the 
Hamiltonian to be invariant, 

Computing the differential of eq. (19) 

Substituting this relationship, along with the differentials from 
eqs. (61) and (62) into eq. (74), the relationship between the 
adjoint coordinates is 

p a d a + p e d e + p o d o + p f d f + p n , d m = p , d a  
+ ppl "no de +. ppl P2 d o  + pp2 coso de 

- pp2 Pi d o  + p~ df + p~ dw + pill dm. 

Combining like telms, 

Pe = ppI sino + pp2 coso 

Pm = PPI p2 - PP2 PI + PL. 

Pf = PL. 

with eq. (67). Inverting eqs. (77-79). 

Trajectory Variables and Orbital Elements 
Finally, canonical transfonnations from two sets of orbit 

elements to the trajectory variables are developed. The authors 
derived these canonical transfo~mations previously [Hai91], so 
only the transformations themselves are included here. The first 
canonical transformation is between the coordinates (r. 0, v. y, 
m; p,. pe, pv, pp pnl) and the coordinates (a, e, o, f ,  In; p',,. 
P'z, P'O)? ~ ' i r  ~111): 

(p 'f  - p;J sinf (e + cosf) 
e(e + cosf) I r (83 )  

(p'r - p',) s inf 2(e + cosf) 
e(e + cosf) I v (85) 

p', ( I  - e2) sinf 
Py = (1  + e cosf) 

- p'o') [e(l + e cosf) + ( e  + cosf)]. (86) 
+ e( 1  + e cosf) 

Equations (83-86) are cumbersome to invert symbolically but 
straightfo~wasd to inveit numerically as long as the eccentricity is 
nonzero. 

The adjoint transformation for the canonical 
transfonnation between the coordinates (a, e, w, f, m; p',, p',, 
p'(,,, p'f, pm) and the coordinates (a, e, o, M, m; pa, p,, p,, 
PM. pllJ is: 

sinf + sinf 
P. = P; + ~ ' f  ( 

1 - e cosE 1 - e2 

sinf 
PM = ~ ' f  

sinE(1 - e cosE) 

Equations (87-00) are easily invertible. Using the fact that 

the inverse of eqs. (87-90) is 

7 + e cosf 
p', = pe - p~ si11E 1 + e cosf 

sinE( 1 - e cosE) 
~ ' f  = PM sinf 

Combining these intennetliate calionical transfonnations, the 
canon~cal transfonnation between the coordinates (r, 8, v, y, m; 
Pr, p ~ .  pv, pp Prrl) and the cw~rdinates (a, e, o ,  M, m; pa, p,, 
PW. PM. p d  is: 

p', ( 1 - e2) sin1 
pv = (I+eGsf) 



2 + e cosf 
pVe = pe - p~ sinE 1 + e cosf 

sinE(1 - e cosE) 
~ ' f  = PM sinf (100) 

Equations (95-100) are also cumbersome to invert symbolically 
but straightforward to invert numerically as long as the 
eccentricity is nonzero. 

Applications 

Numerical Optimization 
One of the most important applications for these 

canonical transformations is in the numerical solutio~~ of space 
trajectory optimization problems. Computing optimal trqjecto~ies 
and controls is a two step process when using an iterative 
numerical optimization algorithm. The first step is initializing the 
numerical optimization algorithm; the second step is running the 
algorithm. Numerical optimization algorithms at best converge to 
local minima. The starting solution with which the algorithm is 
initialized must be within the domain of convergence of the local 
minimum of interest. Developing such a starting solution is often 
the most challenging and least systematic step in solving an 
optimal control problem. For indirect methods such as the 
shooting method one must provide starting initial adioint 
coordinates; for direct methods such as the gradient method one 
must provide a starting optimal control profile. 

Throughout the years, researchers have developed many 
approximate analytical solutions to space trajecto~y optimization 
problems, particularly finite thrust problems, which are difficult 
to solve numerically. These approximate solutions can be used 
as starting solutions for numerical optimization. With canonical 
transfor~nations such as those developed in the previous 
sections, these approximate solutions can be used in numerical 
optimization problems regardless of the coordinates used in  the 
numerical algorithm (fig. 3). This is particularly useful for 
multiple-revolution low thrust transfers, where it is difficult to 
guess the thrust profile, let alone the initial adjoint coordinates. 
The authors have used the average solution [Ede65, Mar77. 
Mar811, developed in tenns of the orbit elements, in computing 
the trajectory variable solution of the minunum-fuel, LP transfer 
problem [Hai9l]. Other potentially useful approximate solutions 
for space trajectoiy optimization are linearized solutions for low 
thrust propulsion using the LP model for rendezvous and 
transfer [Edew, Gob64, Gob651 developed in tenns of orbit 
elements for transfer and Cartesian coordinates for rendezvous, 
and the constant thrust, constant qiection velocity (CEV) solution 
using an asymptotic expansion about the impulsive solution 
developed in terms of Cartesian coordinates [Kor7 I]. 

The advantages of using canonical transfor~nation in 
conjunction with analytical solutions to do numerical 
optimization are numerous. A trajecto~y analyst can pick the best 
coordinates for numerical optimization independent of the 
coordinates used to develop the approximate solutiorl. There is 
no need to develop new approximate solutions using different 
coordinates. Developing the candidate solution is systematic, 
and if the approximate solution is valid for the transfer 
geometries and transfer times of intcrest, the optimization 
algorithm has a good chance of converging, antl ccmvcrping 
quickly. Although these analytical approximations require some 
numerical computation, this computation is insignificant relative 

to that required by just one iteration of a numerical optimization 
algorithm. 

Solution 

Calionical 
Transformation 

Numerical 
Op tirniza tion 

Fig. 3. Applying Approximate Solutions in 
Numerical Optimization Algorithms Using 
Canonical Transformation 

Transversality Conditions 
Another application of canonical transformation is in the 

analytical develop~nent of the optimal control problem. Once 
)I*, the necessary and sufficient conditions, integrals of motion, 
and boundary conditions have been detemined in one set of 
coordinates, they can he expressed in another set using canonical 
transformation, obviating the need for re-clerivation. This is 
particularly advantageous h r  the transversality conditions. If the 
final state constraints are complicated functions of the state 
coordinates, taking the partial derivatives with respect to the state 
coordinates antl eliminating the Lagrange multipliers to fonn the 
transversality conditions can be algebraically cumbersome. 
I-lowever, these partial derivatives are an inherent part of the 
canonical transfonnations. For example, for a transfer between 
two orbits where the position in the final orbit is free 

at the final time. The co~~csponding condition on the adjoint 
coordinates is 

This condition can be written in tenns of the equinoctial elements 
usinp the iancrnical transfc~r~nations of eqs. (73) and (78) as 



In tenns of trajectory variables, using eqs. (95-100). this 
condition is 

pv siny py v cosy 1 po v cosy 
p, v silly -- 

+ r ( 1  r = o r2 

(107) 

In tenns of Cartesian coordinates, substituting eqs. (51-54) into 
q. (107). 

Sunilarly, when the otientation is free in the final orbit, 

at the final time. Using at the canonical transfonnatio~l between 
the trajectory variables and the orbit elements, eq. (96). a free 
orientation implies that 

In tenns of equinoctial elements, from eq. (69) this tsansversality 
condition is 

Pp, PZ - Pp, PI + PL = 0. (112) 

Similarly, in tenns of the Cartesian coordinates using eq. (53), 
the bounda~y condition is 

All of these transversality conditions were derived without 
resorting to taking partial derivatives with respect to the state 
coordinates and eliminating the Lagrange multipliers. 

Conc lus ions  
Canonical tsansfonnations have been developed betweell 

the Cartesian coordinates, trajectcxy variables, equilloctial 
elements, and orbital elements for coplanar space trajectory 
optimization problems. The canonical transfo~mations allow the 
state and adjoint equations or their solution, the optimal control, 
transversality conditions, and integrals of the motion, to be 
transformed between any of the common sets of coordinates for 
planar space tsujecto~y optimization problems. Variations on the 
canonical transfonnations presented are straightforward to 
develop given the group properties of the canonical 
transfonnations. 

These canonical transformations are useful i l l  the 
numerical solution of finite thrust optimization prohlclns, where 
the challenge is to deteimine an estimate of the initial arl.joint or 
optimal control profile that is within the numerical algorith~n's 

convergence do~nain for the global minimum. With the 
canonical transformations, approximate solutions to the finite 
thrust transfer problem can be used to initialize numerical 
optimization algorithms repanlless of the coordinates chosen for 
the numedcal algositlun. 
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