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Abstract

Optimal space trajectory problems and the necessary and
sufficient conditions that define their solutions are stated most
compactly in terms of position and velocity vectors. To obtain
analytical or numerical solutions, however, the problems are
expressed using a particular set of coordinates. Each set of
coordinates has advantages and disadvantages depending on the
application. Thus, it may be useful to be able (o transform from
one set of coordinates to another during the course of solving an
optimization problem. If the problem has been formulated using
adjoint coordinates, the transformation requires not only
transformation of the state coordinates, which are well-known,
but also transformation of the adjoint coordinates. This
combined transformation of the state and adjoint must be a
canonical transformation for the extremal trajectory generated
with the new coordinates to be the same as the extremal
trajectory generated with the old coordinates.

In this paper, the canonical transformations between four
common sets of coordinates used in space trajectory
optimization—trajectory variables, orbit elements, equinoctial
elements, Cartesian coordinates—are developed for the coplanar
case. Applications of the canonical transformations in numerical
optimization and the development of the necessary conditions for
optimality are discussed.

Introduction

Optimal space trajectory problems, such as the minimum-
fuel transfer problem for a spacecraft in a central inverse square
gravity field, and the necessary and sufficient conditions that
define their solutions are stated most compactly in terms of
position and velocity vectors [Mar79). To obtain analytical or
numerical solutions, the problems are expressed using a
particular set of coordinates. The Cartesian coordinates,
trajectory variables, orbital elements, and equinoctial elements
are four common sets of coordinates for space trajectory
problems. Cartesian coordinates have been used for the
analytical solution of optimal high thrust orbit transfer problems
{Law63, Haz70] and the numerical solution of optimal low
thrust transfer problems [Bar88, Enr90, Red84]. Orbital
elements have been used to develop approximate solutions for
optimal low thrust problems, using averaging [Ede65, Mar77,
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Mar81] and linearization [Ede64, Ede66]. To avoid the
singularities of the classic orbital elements, the equinoctial
elements [Bro72, Bat87] have been used to develop a solution to
the linearized rendezvous problem [Gob65]. Trajectory
variables have been used for the approximate and numerical
solution of optimal low thrust transfer problems [Ros61, Bro91,
Mea90].

Each of these sets of coordinates has both attractive and
unattractive features for analysis and computation. The
coordinates that are best for analytical solutions such as
averaging may not be best for numerical optimization.
Therefore, it is advantageous to convert between sets of
coordinates when solving optimal space trajectory problems.
This conversion requires not only transformations of the state
variables, which are well-known, but also transformations of the
adjoint or costate variables. The combined transformation of the
state and adjoint must be a canonical transformation for the
extremal trajectory generated in the new coordinates to be the
same as the extremal trajectory generated in the old coordinates.

One common purpose for using a canonical
transformation is to increase the number of ignorable coordinates
in a Hamiltonian system, which makes the differential equations
easier to solve. Fraejis de Veubeke! used a canonical
transformation in the minimum-fuel transfer problem for a
thrust-limited rocket to transforn the optimal steering control to a
state variable when investigating the case of intermediate-thrust
extremals [Fra65]. Marec and Vinh used a canonical
transformation to change the independem variable from time to
characteristic velocity when solving the minimum-fuel,
impulsive thrust problem [Vin70]. Marec developed the general
minimum-fuel transfer problem using orbit elements with a
three-dimensional canonical transformation from Cartesian
coordinates to orbit elements [Mar79].

In this paper, canonical transformations between the four
sets of coordinates commonly used in coplanar trajectory
optimization—Cartesian coordinates, trajectory variables, orbital
elements, and equinoctial elements—are developed. These
canonical transformations are composed of state and adjoint
coordinate transformations. The state transformations, which
are independent of the adjoint transformations, are well-known,
so the focus is on determining the corresponding adjoint
transformations such that the combined state and adjoint
transformation is canonical. The canonical transformations

TMarec credits Fraejis de Veubeke as the first person to apply canonical
transformation systematically to the problen of optimal transfers in
[Mar79]. pp. 46.
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between the orbit elements and trajectory variables [Hai91] and
between the Cartesian coordinates and orbital elements [Mar79]
have been developed previously but are considered here for
completeness. Following the derivation of the canonical
transformations, specific applications of these canonical
transformations for space trajectory optimization problems are
presented.

Hamiltonian System for an Optimal Trajectory

The Mayer form of the general optimal control problem is
to determine the m-dimensional piecewise-continuous control
function u on the time interval [tg, tf] that drives the n-
dimensional state x from an initial value xg to a final value Xxf, or
more generally to a final manifold defined by the k-dimensional
(k < n) constraint vector y(x(tg), tf) = 0, and minimizes the
performance index

J = O(x(tg), tf) (1

subject to the state equations (differential constraints)

x(t) = f(t, x(t), u(t) (2)
and the control constraint
u(t) e U) (3

for t e [tg, t7] and U(t) a closed subset of R™.

In space trajectory optimization [Mar79]}, the control is
the thrust or thrust acceleration vector, and the state is comprised
of the position vector r, velocity vector v, and the mass m. For
the minimum-fuel problem, the performance index to be
minimized is ] = — m(tf). The state equations are

LON

() = v(t); v(h=g(r, )+ i () = T()

T gs Lsp ’

€}

where g is the gravitational acceleration and g is its magnitude at
sed level, T is the thrust vector and T is its magnitude, and Igp is
the specific impulse. In special cases, it is advantagous to
replace the mass with another coordinate. If the propulsion
system is assumed to have constant ejection velocity, the
characteristic velocity, or the time integral of the thrust
acceleration magnitude, is used in place of mass; if the
propulsion system is assumed to have limited power, the time
integral of the thrust acceleration magnitude squared is used in
place of mass. For the planar problem, the state x = (r, v, m)T
is five-dimensional, since r and v each have dimension 2.

If u* is the optimal control and x* the comresponding
optimal trajectory and assuming the problem is normal, it is
necessary [Fle75] that a nonzero k-dimensional constant vector g
and a nonzero n-dimensional adjoint vector function p(t) exist
such that

ia(t)=(§; i, x*(0), u*m)]f 0] (5)

u*(t) = arg max (pT(v) f(t, x*(1),u(1))) (6)
od 0

PT() = 57 (%10, 1) + T ¥ (et ) (7
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and

o 3
pT(t) f(tr, X*(tp).u(t0) = 7 (). 1) + T S (1), 19,
(8)

These conditions along with the state equations (2) and the
boundary conditions

x*(to) = x(to) )
y(x*(t)) = 0 (10)

constitute a two-point boundary value problem, the solutions of
which are candidates for locally minimizing the performance
index. The state trajectory corresponding to a solution of the
two-point boundary-value problem is called an extremal
trajectory. Equations (7) and (8) are known as the transversality
conditions.

Assuming an explicit solution of eq. (6) of the form

u® =g, x*, p), (1
the optimal Hamniltonian H* is defined by
H* = pT(0) f(t, x*(v), g(t, x*, p)). (12)

The state and adjoint differential equations can be expressed as a
canonical Hamiltonian systen,

o = (%*:))T (13)
p=- (%)T (14)

In the case of space trajectory design, p = (p;T, pyT, pm)T. The
qualifier " * " is suppressed from here on.

Canonical Transformation Theory

Because the state and adjoint equations of the optimal
control problem comprise a Hamiltonian system, the powerful
canonical transformation theory of mechanics can be applied. A
canonical transformation introduces no new physics to a
problem, but it may facilitate analysis or physical interpretation
of the motion, whose underlying properties are the same in the
old and new coordinates [Lic83]. One use of canonical
transformations is to increase the number of ignorable
coordinates, thus simplifying the integration of the Hamiltonian
system. In the optimal control context, canonical
transformations allow one to translate the necessary conditions,
integrals of the motion, approximate analytical solutions, etc.,
derived in terms of one set of coordinates into the equivalent
results in terms of another set of coordinates, avoiding the need
for re-derivation.

Let xA and pA denote the state and adjoint coordinate
vectors for coordinate set A, and xB and pB denote those for
coordinate set B. In the transformations of interest here, the
transformation between the state coordinate vectors are time-
independent and do not involve the adjoint coordinate vectors;
thus they are of the form



xB = 65 (xA) (15)

and correspond to time-independent Lagrangian point
transformations of mechanics [[Lan49]. In the case of a
Lagrangian point transformation, the Hamiltonian is an invariant
of the associated canonical transformation from A coordinate
vectors (xA; pA) to B coordinate vectors (xB; pB) [Lan49],

pA - dxA = pB . dxB. (16)
1t follows that the adjoint transformation
—1
T
265
A B
PP=l| A pA =T, pA (17)

and the transformation of eq. (15) form a canonical
transformation Ci = [chA, Ti]: (xA; pA)— (xB; pB).
A set of transformations together with the composition

operation constitute a group if the following four properties are
satisfied [Gol59]:

(i) The set contains the identity transformation.

(i1) The inverse of each element of the set exists and is a
member of the set.

(iit) The set is closed under composition.

(iv) The composition operation is associative.

The canonical transformations associated with point
transformations form a group on regions of the abstract state
space where the point transformations are one-to-one and onto
(injective). Since our interest is transformations between any
two of the four sets of state coordinates, there are twelve
canonical transformations to be determined. Given the group
structure it is sufficient to develop the three canonical
transformations from the Cartesian coordinates to the trajectory
variables, the orbital elements to the trajectory variables, and the
equinoctial elements to the orbital elements; the others can be
obtained from composition and inversion of these. Since the
state coordinate transformations are known, it is the adjoint
coordinate transformations that are of interest here.

Explicitly, if

ch=[on. T (18)
and

cp = [op, TR] (19)
then

= [o TR] = [eg o}, TRTE] (20)
and

-1 -1
cp=log. T31=1(62)". (T2) ™1 en
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Some of the state coordinate sets considered here are not
well-defined for certain points in the abstract state space; for
example, one of the orbital elements is not well-defined for a
circular orbit. The related singularities in the transformations at
such points destroy the group structure; in particular, certain
inverse transformations may not exist. Therefore, care must be
taken in applying the canonical transformations developed in this

paper.

Definition of the State Coordinates

The Cartesian coordinates, trajectory variables, orbital
elements, and equinoctial elements must be defined before the
canonical transformations for the coplanar transfer problem can
be developed. In Cartesian coordinates, r is expressed using x
and y, where x is oriented along the line of nodes (or another
reference line in the case of an equatorial orbit), and v is
expressed using vx and vy, where vy is also along the line of
nodes (fig. 1). The corresponding adjoint coordinates are py,
Py» Pvy» and py,. In trajectory variables, r is expressed using
the radial position r and the polar angle 6, where 8 is measured
from the line of nodes (fig. 1). v is expressed using the speed v
and the flight path angle y, which measures the angle between
the velocity vector and local horizontal. The corresponding
adjoint coordinates are pr, pg, pv, and pey,

Two sets of orbital elements are used (fig. 2). The first
sel consists of the semimajor axis a, eccentricity e, argument of
periapse ®, and mean anomaly M, with the correspoading
adjoint coordinates pa, pe, Pew. a0d pM. In the second set, the
true anomaly f replaces M; the corresponding adjoint coordinates
are p'a, P'es P'w» and p'f, where the primes have been added to
avoid confusion with the adjoint coordinates py, pe, Pe» 20d pM-
Two sets of equinoctial elements are also considered. The
coordinate names follow the convention of Battin [Bat87}. The
first set is a, Py and P2, which are computed from e and o, and
the mean longitude 1; the corresponding adjoint coordinates are
Pa, PP Ppy. and p1. In the second set, the true longitude L
replaces | and pr_replaces p;. The explicit relations between the
orbital eleinents and the equinoctial elements are given in the next
section.

All of the state and adjoint coordinates are
nondimensionalized using the reference position rref and the
reference time tyef, Where

local
horizontal Ty
)
yl————
r l
o |
I » line of nodes
F X

Fig.1. Description of the Cartesian Coordinates and
Trajectory Variables. F is the focus of the orbit

and the center of the central body.




periapsis
direction

line of nodes

Fig.2. Description of the Orbital Elements. F is the
focus of the orbit and the center of the central
body. F'is the vacant focus.

et =\ W/ (22)

and p is the gravitational constant of the central body. The
nondimensionality is only apparent in the transformation
between the orbital elements and trajectory variables, where p
does not appear in the state and adjoint transformations.
Converting the canonical transformations that are presented in
this paper to dimensional form is straightforward. For example,
if R is the dimensional radial position and pR the corresponding
adjoint coordinate, then

R=refr (23)
and, using egs. (15) and (17),

PR = Pr /rref- (24)

State Transformations
The transformations between the state coordinates are
well-known. To transform from the trajectory variables to the
Cartesian coordinates (see fig. 1),

X =1 cosd 25)
y =1 sinf (26)
vx = v sin(y — 8) 27
vy =V cos(y - 6). (28)

The transformation from classic orbital elements to equinoctial
elements is [Bat87]

P) =esinw 29
Py =ecoso [RID)
=0+ M 3GhH

L=wo+f (32)

or, conversely,

e2=P2+ P2 (33)
B

tanw = P, (34)

M=l-o (35)

f=0L-ow. (36)

The transformation from the trajectory variables to the orbital
elements is more involved [Bat71]. Introducing the
nondimensional energy & and semi-latus rectum p,

E==57 G7)

p =12 vZ cos?y, (38)

one transformation from the trajectory variables to orbital
elements is

)
= 1
E=5-1 (39)
e=\1+2¢&p (40)
o=0-f (41)
t
f = arctan [R—aﬂ}, (42)
p-r

where f is related to M through Kepler's equation and the
eccentric anomaly E,

M=FE —esink: 43)

tun%: i as etzm§~ (44)
2 \/ _ e 2

Adjoint Transformations

Three canonical transformations are presented in this
section—a transtormation between the Cartesian coordinates and
the trajectory variables, a transformation from the orbital
elements to the trajectory variables, and a transformation
between the equinoctial elements and the trajectory variables.
Because the state transformations are known, it is the adjoint
transformations that are of interest. There are two equivalent
approaches to developing these transformations. In the first
approach, the explicit state coordinate transformations are used
in eq. (17) to develop the canonical transformation. In the
second approach, the state coordinate transformations are used in
the invariance definition of eq. (16) and the adjoint coordinate
transformations can be extracted by matching the coefficients of
the differential terms. In the second approach, the old
coordinates can be implicit functions of the new coordinates,




rather than explicit functions. Because of this, it is sometimes
simpler to take the second approach rather than the first. For
instance, taking the partial derivative of a relationship such as
that in eq. (42), which involves an inverse tangent function with
the corresponding concerns about the quadrants, is more
complicated than dealing with the implicit relationship

tanf=[P_t_ilP_Z]
p-r

45)

The second approach is the one used in the derivation of the
following canonical transformations.

Cartesian Coordinates and Trajectory Variables

First the canonical transformation from the Cartesian
coordinates (X, y, Vx, Vy, ; Px , Py » Pvys Pvys pm) to the
trajectory variables (r, 6, v, y, m: pr, P8, Pv, Py Pm) 18
developed. From the invariance of the Hamiltonian, eq. (16),

Px dX + py dy + pv,dvx + vad‘/y +pmdm

= pr dr + pp d6 + py dv + pydy + py dm. (46)

Taking the differential of the state coordinate transformations in
eqs. (25-28),

dx = cos0 dr — sinB do 47
dy = sinf dr + r cos0 d6 48)
dvx = sin(y — 8) dv + v cos(y — 6) (dy — d8) (49)
dvy = cos(y — 0) dv — v sin(y - 0) (dy — d6). (50)

Substituting these relationships into eq. (46) and matching the
coefficients of the differential terms yields the transformation

Pr = Px Cos6 + py sin® (51
Pg=XDy =¥ Px ¥ Vx Pvy = Vy Pvy (52)
VPv = VxPvx + Vy Pvy (53)
Py= Vy Pvx = Vx Dvy (54)
Pm = Pm. (55)

Since the state transformations for the position and velocity
coordinates are independent of m, the corresponding adjoint
coordinates in egs. (51-54) are also independent of m, and the
identity of eq. (55) holds. This identity holds for all of the
canonical wransformations considered in this paper, because all of
the position and velocity state transformations are independent of
m, and it will no longer be stated explicitly.
The inverse of this transformation, using eq. (21), is

sin sin@

Px =Prcos8 —pp——-py (56)
. cos0 cosB

Py =Pcsin®+pe——+py—— (57)
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, -0s(Y - 8
Pyy = Dv Sin(y = 6) + “’“(j ) (58)

sin(y — 6)
VT 59

Pvy = Pv €O8(Y = 8) — py

Equinoctial Elements and Orbital Elements

The next canonical transformation developed is a
transformation between the orbit elements and equinoctial
elements. Two different transformations are considered, using
different coordinates for the position in the orbit. In the first
case, a canonical transformation between the orbital elements (a,
€, w, M, m; pa, pe, Po. PM, Pm) and the equinoctial elements (a,
Py, P2, |, m; pa, ppy, PPy, Pl pPm) is considered. From the
invariance of the Hamiltonian, eq. (16),

pada+ pede + pe dw + pp dM + py, dm

=pada+ Pp, dPy + Pp, dP2 + py dl + py dm. (60)
Taking the differential of egs. (33-35),
ede=P; dPy + Py dP» (61)
-P
sec?o do = dpy Po 5 1dP2 (62)
P2
dM = dl - do. (63)
Solving egs. (61) and (62) for dP) and dP3,
P Py3 sec?
dPy = = de +—2—;23C—°3dm=sinmde+l>2 do (64)
P P P32 sec?
Py = -2 de -2 G, — covw de - Py do. (65)

o2
Substituting eqs. (63-65) into the right hand side of eq. (60),

Pada + pede + py do + py dM + piy dm = py da
+ Pp, sinm de + Pp, Py do + Pp, cOS® de

~ Pp, Py dw + py dM - p; dw + py, dm. (66)
Combining like terms,
Pa=Da (67)
Pe = Pp, sinw + Pp, COS@ (68)
Po=Pp, P2-pp, P1—pi (69)
PM =P (10)
Inverting eqgs. (68-70),
Pp, = De $iN@ + (Pey + PM) e (71)

[




sinw
Ppy = Pe COS@ — (Pw + PM) Py

P1 = PM.

(72

(73)

The next canonical transformation of interest is between
the (a, e, ®, f, m; pa, Pe, Po» Pf» Pm) coordinates and the (a, Py,
P2, L, m; pa, pPy» PP2» PL, Pm) coordinaies. The development

is almost identical to the previous transformation.
Hamiltonian to be invariant,

pada + pede + p do + pm dM + py dm

= pa da + pp, dP; + pp, dP; + pL dL + pp dm.

Computing the differential of eq. (19)

dL = df + do.

For the

74)

(15)

Substituting this relationship, along with the differentials from
eqgs. (61) and (62) into eq. (74), the relationship between the

adjoint coordinates is

Pa da + pe de + p d + prdf + pny dm = pa da
+ pp, sinw de + pp; P2 dw + pp, cosw de
- ppy P1 do+ pL df + pp. do + py, dm.

Combining like terms,
Pe = PP; SI0O + pp, COSM
Po= Ppy P2 —ppy P1+ pL

Pf = PL,

with eq. (67). Inverting eqs. (77-79),

. COsSW

PP| = Pe SIN® + (P — PL) e
Sin®

PPy = Pe €O8® — (P — PL) -

PL = Pf.

Trajectory Variables and Orbital Elements

(76)

(7N

(78)

(79

(80)

(81)

(82)

Finally, canonical transformations from two sets of orbit
elements to the trajectory variables are developed. The authors
derived these canonical transformations previously [Hai9l1], so
only the transformations themselves are included here. The first
canonical transformation is between the coordinates (r, 9, v, 7,
m; pr. Po. Py, Py, Pm) and the coordinates (a, e, , £, m: pYy,

P'es Pws P'ts Pm):

242 [ . (P'f- P sinf] (¢ + cosf)
Pc="2 Pat*|[Pe ™ e+ cosh) T

pe =P'o

(83)

(84)
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(P'r—Pw) Sinf] 2(e + cosf) (85)

=7 42 ! L
pv =22 vpa+|:p.¢ e(e + cosf) v
Pl - e2) sinf
Py =""(1T+ ¢ cosl)
P'f~Po) " .
o(l + € cosh) [e(l + e cosf) + (e + cosf)]. (86)
Equations (83-86) are cumbersome to invert symbolically but
straightforward to invert numerically as long as the eccentricity is
nonzero.

The adjoint transformation for the canonical
transformation between the coordinates (a, e, o, f, m; p's, pe.
P'w. P'f, Pm) and the coordinates (a, e, ®, M, m; pa, Pe. Pe.
PM> Pm) i

Pa=Pa 87
sinf sinf -
=ple+ ] + (88)
Pe=Pe pf(l—ecnsE 1—82)
Po=Pw (89)
pu = pr——0 (90)
sinE(l — e cosE)
Equations (87-90) are easily invertible. Using the fact that
1 - e cosE 1
| -2 lvecost’ oD
the inverse of egs. (87-90) is
, . 2 + ¢ cosf
Ple = pe - Py sinE (1 Coir ) 92)
P'o= Pw (93)
, sinE(l - e cosE)
Pf=PM — gnr (94)

Combining these intermediate canonical transformations, the
canonical transformation between the coordinates (r, 6, v, ¥, m;
Pr. P8, Dvs Dy Pind) and the coordinates (a, e, @, M, m; pa, pe,
Pen DM, Pm) 18

242 [ . (P'f- Pw) sinf:l (e + cosf)

Pr="z Pa¥(le e(e + cosf) T (95)
Pt =Po (96)
ple (1 —¢d) sint
Py =" ¥ e cosl)
%i_;%f_)[e(l + e cosf) + (e + cosf)] (98)



. . 2 + e cosf

Ple = po =Pyt sint (Tt ©9
o sinE(1 — e cosE)

PE=PM™ gnf (100)

Equations (95-100) are also cumbersome to invert symbolically
but straightforward to invert numerically as long as the
eccentricity is nonzero.

Applications

Numerical Optimization

One of the most important applications for these
canonical transformations is in the numerical solution of space
trajectory optimization problems. Computing optimal trajectories
and controls is a two step process when using an iterative
numerical optimization algorithm. The first step is initializing the
numerical optimization algorithm; the second step is running the
algorithm. Numerical optimization algorithms at best converge to
local minima. The starting solution with which the algorithm is
initialized must be within the domain of convergence of the local
minimum of interest. Developing such a starting solution is often
the most challenging and least systematic step in solving an
optimal control problem. For indirect methods such as the
shooting method one must provide starting initial adjoint
coordinates; for direct methods such as the gradient method one
must provide a starting optimal control profile.

Throughout the years, researchers have developed many
approximate analytical solutions to space trajectory optimization
problems, particularly finite thrust problems, which are difficult
to solve numerically. These approximate solutions can be used
as starting solutions for numerical optimization. With canonical
transformations such as those developed in the previous
sections, these approximate solutions can be used in numerical
optimization problems regardless of the coordinates used in the
numerical algorithm (fig. 3). This is particularly useful for
multiple-revolution low thrust transfers, where it is difficult to
guess the thrust profile, let alone the initial adjoint coordinates.
The authors have used the average solution [Ede65, Mar77,
Marg1], developed in terms of the orbit elements, in computing
the trajectory variable solution of the minimum-fuel, LP transfer
problem [Hai91]. Other potentially useful approximate solutions
for space trajectory optimization are linearized solutions for low
thrust propulsion using the LP model for rendezvous and
transfer [Ede64, Gob64, Gob65] developed in terms of orbit
elements for transfer and Cartesian coordinates for rendezvous,
and the constant thrust, constant ejection velocity (CEV) solution
using an asymptotic expansion about the impulsive solution
developed in terms of Cartesian coordinates [Kor71].

The advantages of using canonical transformation in
conjunction with analytical solutions to do numerical
optimization are numerous. A trajectory analyst can pick the best
coordinates for numerical optimization independent of the
coordinates used to develop the approximate solution. There is
no need to develop new approximate solutions using different
coordinates. Developing the candidate solution is systematic,
and if the approximate solution is valid for the transfer
geometries and transfer times of interest, the optimization
algorithm has a good chance of converging, and converging
quickly. Although these analytical approximations require some
numerical computation, this computation is insignificant relative
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to that required by just one iteration of a numerical optimization
algorithm.

Analytical
Solution

pt

/

Canonical
Transformation

P (ty) u =g(t, xBpB)

) |

Numerical
Optimization

Fig.3. Applying Approximate Solutions in
Numerical Optimization Algorithms Using

Canonical Transformation

Transversality Conditions

Another application of canonical transformation is in the
analytical development of the optimal control problem. Once
H*, the necessary and sufficient conditions, integrals of motion,
and boundary conditions have been detemined in one set of
coordinates, they can be expressed in another set using canonical
transformation, obviating the need for re-derivation. This is
particularly advantageous for the transversality conditions. If the
final state constraints are complicated functions of the state
coordinates, taking the partial derivatives with respect to the state
coordinates and eliminating the Lagrange multipliers to form the
transversality conditions can be algebraically cumbersome.
However, these partial derivatives are an inherent part of the
canonical transformations. For example, for a transfer between
two orbits where the position in the final orbit is free

M=0 (101)

f=0 (102)

at the final time. The corresponding condition on the adjoint
coordinates is
pm=0 (103)

or

pi=0. (104)

This condition can be written in terms of the equinoctial elements
using the canonical transformations of egs. (73) and (78) as

pL=0 (105)

i
1
i
!




or
P =0. (106)

In terms of trajectory variables, using egs. (95-100), this
condition is

. _Ppvsiny pyvcosy, 1 Py V COsY
pr v siny 2 I (1 2 vz) +—F—=0

(107)

In terms of Cartesian coordinates, substituting eqs. (51-54) into
eq. (107),

cos0 sin
Px Vx + Py Vy — Pvy 2 - Pvy = 0 (108)

Similarly, when the orientation is free in the final orbit,
Pw=0 (109)

at the final time. Using at the canonical transformation between
the trajectory variables and the orbit elements, eq. (96), a free
orientation implies that

pe=0 (110)

In terms of equinoctial elements, from eq. (69) this transversality
condition is

pp,P2-pp,P1-p1=0 (111
or
pp, P2 —pp, P1+pL =0. (112)

Similarly, in terms of the Cartesian coordinates using eq. (53),
the boundary condition is

xpy_ypx+Vvay“Vvax=0- (113)

All of these transversality conditions were derived without
resorting to taking partial derivatives with respect to the stute
coordinates and eliminating the Lagrange multipliers.

Conclusions

Canonical transformations have been developed between
the Cartesian coordinates, trajectory variables, equinoctial
elements, and orbital elements for coplanar space trajectory
optimization problems. The canonical transformations allow the
state and adjoint equations or their solution, the optimal control,
transversality conditions, and integrals of the motion, to be
transformed between any of the common sets of coordinates for
planar space trajectory optimization problems. Variations on the
canonical transformations presented are straightforward to
develop given the group properties of the canonical
transformations.

These canonical transformations are useful in the
numerical solution of finite thrust optimization problems, where
the challenge is to determine an estimate of the initial adjoint or
optimal control profile that is within the numerical algorithm's

convergence domain for the global minimum. With the
canonical transformations, approximate solutions to the finite
thrust transfer problem can be used to initialize numerical
optimization algorithms regardless of the coordinates chosen for
the numerical algorithm.
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