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PREFACE

This paper is the twenty=third in a series growing out of studies

of radar cross—sections at the Engineering Research Institute of The

University of Michigan. The primary aims of this program ares

L

20 AO

B

30

To show that radar cross—sections can be determined analyti-
cally,
To determine means for computing the radiation patterns from
antennas by approximate techniques which determine the pattern
to the accuracy required in military problems but which do
not require the unique determination of exact solutions,
To determine means for computing the radar cross-sections of
various objects of military interest.
(Since 2A and 2B are inter-related by the reciprocity
theorem it is necessary to solve only one of these
problems )
To demonstrate that these theoretical cross-sections and

theoretically determined radiation patterns are in agreement

with experimentally determined ones.

Intermediate objectives are:

1. A,

To compute the exact theoretical cross—sections of warious
simple bodies by solution of the approximate boundary-

value problems arising from electromagnetic theory.
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B. Compute the exact radiation patterns from infinitesimal
slots on the surface of simple shapes by the solution of
appropriate boundary-value problems arising from
electromagnetic theory.

(Since 1A and 1B are inter-related by the reciprocity
theorem it is necessary to seolve only one of these
problems)

20 To examine the various approximations possible in this
problem and to determine the limits of their validity and
utility;

3. To find means of combining the simple-body solutions in order
to determine the cross-sections of composite bodies.

Lo To tabulate various formulas and functions necessary to enable
such computations to be done quickly for arbitrary objects.

50 To collect; summarize, and evaluate existing experimental
data.

Titles of the papers already published or presently in process of

publication are listed on the preceding page.

The major portion of the effort in this report was performed for

the Air Force Cambridge Research Center under Air Force Contract

AF 19(604)=1949.,

K. M, Siegel

vi
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CHAPTER I

INTRODUCTION

The natural limitation on the variety of problems in scattering and
transmission theofy"which can be handled conveniently by the technique
of separation of variables has led to the development of methods of
essentially different character. Among these are variational methods,
of which perhaps the most widely used is that developed by Schwinger
and emploYed with considerable success by him and by numerous others in
the solution of various problems in diffraction of sound and electro-
magnetic waves as well as quantum scattering.

Practically all the literature which has appeared so far in this
field has concerned itéelf with problems in one and two dimensions,
primarily because of the difficulty in performing the required integrations.
Regarding the electromagnetic problémg Mentzer remarks in his recent
book on scattering of radio wavessl "The formulation with three dimensional
scatterersy, such as spheres, leads to surface integrals which usually
are completely unmanageable; the integration processes with simpler
geometries are, at best, very difficult.” One exception to this is a
solution to the problem of the loop cobtained by Kouyoumjian., However,
similar statements are often found in the literature, even for the

scalar case,

The present paper represents another attempted break-through intc

iMentzer; Jo Ro, "Scattering and Diffraction of Radio Waves," Pergamon

Press, Ltdo, po 45 (1955),
1
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into the 'unmanageable! third dimension. It is true that the spheroidal
scatterer affords perhaps the simplest geometry next to the sphere of
any three-dimensional body, and the setup possesses cylindrical
symmetry; nonetheless the problem is essentially three-~dimensional and
this result in addition to that of Kouyoumjian may help to dispel some
of the pessimism noted above., The solution obtained may be of little
value in itself, since the prolate spheroid has already been dealt with
quite extensively by the separation technique. However, it does
indicate that the integrations involved in some three-dimensional
problems may be more or less manageable, and it may also shed a little
more light 6n the value of the variational method in general,

From a mathematical standpoint, some of the procedures used here,
just as in many of the papers of Schwinger and others, are not rigorous.
No justification is presented for the numerous changes in order of
integration, and some of the integrals which appear are at least formally
divergent. chéverg recent work of Bouwkamp2 has indicated that in some
similar problems this formal divergence is only formal, and can be
eliminated without affecting the results at all. These considerations,
together with the fact that the present solution agrees with known
results exactly in the limiting cases of zero eccentricity and very large
wavelength and extremely well for the case of a thin spheroid in the

resonance region, seem to indicate that an attempt to introduce

<Bouwkampy Co Jos "Diffraction Theory--A €ritique of Some Recent Developments™
Res. Rep. EM~50, N, Y. U, Inst. of the Math. Sciences (April 1953).

2
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mathematical rigor into this development would not be worthwhile at present.
The principal physicai quantity obtained in the present analysis
is the nose-on back-scattering cross section of the rigid spheroid. it
is easy to see how the re5ults and techniques could be extended to in-
clude certain additional information. Further analytical work on the forms
already obtained might also be profitable under some circumstances.
Various possibilities are discussed in more detail in the final section
of the paper,
The author wishes to express the deepest appreciation to certain
colieagues, in particular Messrs. K. M, Siegel; C. E. Schensted, and
A, H, Halpin, for many illuminating and invaluable discussions of the
problem., Credit is also due Mr. H. E, Hunter of the Willow Run
Laboratories for his meticulous work in computing the numerical results
contained here, Finally, the utmost gratitude is accorded Prof,
Wilhelm Magnus of New York University for his infallibly pfampt and
considered advice and assiétanceg without which the work could not have

been completed in the appointed time,
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CHAPTER 2
FORMULATION OF THE VARIATIONAL PROBLEM

We assume a rigid prolate spheroid with center at the origin, major
axis of length 2a in the Z-axis, minor axis of length 2b, and a plane
sound wave approaching in the negative Z direction. The following

integral equation for the velocity potential at any point exterior to

the scatterer can be established33
ikz 1 / D
S) = et¥% o L st) 2 (8,St)da? 1
#(s) o/, 57 7 o(s8) 1)

where S is the field point in space
8! is the point on the spheroid
#(S) is the velocity potential at S
G(SsS?) is the Green'!s function of free space = Qi;_{ﬁ.

( PE distance from Sto S!)

k = 2/ (A= wavelength)

_‘-3%1-' is the derivative in the direction of the exterior normal,

and the integration covers the surface.

Application of the boundary condition _g-g = 0 to equation (1)
n lge
yields
2
>n © o "I /E;'gl(s ) 55y 6(8,81) da (2)

3 Sollfrey, W. "The Variational Solution of Scattering Problems,™ Research
Report EM-11, New York Univ. Inst. of Mathematical Sciences, p.7 ff (1949).

L
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Then it follows™ that @(st) is the solution of the variational problem

53191 = 0, whors
2
f/s #s) 3%37&7 G(S,5*) @#(s?) da da?

2 _ikz 2
[IS g(s) < e s da :l

It is expedient now to introduce the prolate spheroidal coordinate

Jlg)- (3)

system i 9)7 P ¢9 which is related to the rectangular system by the

formulas

™
o

F/(ézw 1)(1 myzg) cos @ = Fo(f3 cos ¢

08

y F/(€2 - 1)(1:'12) sin ¢ = FX 8 sin ¢

Z = F é Yl
where F is the semi-focal distance, Then if \/5'2 -N2 = ¥ we have

da = FRel ¥ dv] df

i

(4)

2_ = & i
on FY 13

The trial function @(S?) (for S? on the scattering surface) may now
be expanded in terms of the Legendre polynomials P ( M '), which form a

complete, orthogonal set over the interval -1 £nt*< 1. Thus

g(st) g% Au(£7) Buln?) (5)
where the coefficients Ay (& !) are to be détermined. Then the varia-

tional quantity J[ @] takes the form

ZSollf:c"eyg W, "The Variational Solu%ion of Scattering Problems," Research
Report EM-11, New York Univ. Inst. of Mathematical Sciences; p. 13 (1949)0




THE UNIVERSITY OF MICHIGAN
2591=1-T

2
J(¢] = % Z b A"'f{SPM(n) aanan' G(8s8')P (n') da da?
i 2

3 3l 3 ) 25 % ]

or if the integrals in the numerator and denominator are represented by

(6)

Cuv and By respectively,
9] 2 BF A Qv (7
2
A B
5 b ]
It is easily shown (cf. Sollfrey, loc. cit.) that the stationary

value of J is the negative reciprocal of the back-scattered amplitude,

from which the back-scattering cross section is immediately obtainable.
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CHAPTER 3

EVALUATION OF THE INTEGRALS Cu¢v

To'accomplish the integrations appearing in the numerator of

equation (6) it is advantageous to use the Fourier integral representa-

tion of the Green's function5
(5,57) = & K7 K (8)
G(S,8!) = ff‘f dK 8
'0 277'2 270
-
where K = (Kx9Ky9Kz)
>
dK = dKXOde@dKZ
-)2 > -
K% = KoK
'S
and P = (x-x'; y=y', z-2') .

Now we have formally °

2°  g(s,sn = 2 2G_ & 2 L' DG )

5 = - ,
2non? on ?n' EX D?g \FYr 28§

Actually this quantity must be regarded as a limit6 as . §’-+ €g>iI10PdeF

to avoid difficulty with the singularity at S = S?', and accordingly we

preserve a distinction between g and % ', until after the crucial

integration has been performed., Furthermore

5Lev1ne9 Ho and Schwinger, J.; WDiffraction by an Aperture in an Infinite
Plane Screen, L.® Phys. Rev. 74s po 961 (1948).

6Morse, P. M, and Feshbach, H., "Methods of Theoretical Physics," McGraw-
Hill, New York, p. 1043 (1955).




MICHIGAN

THE UNIVERSITY OF

2591-1-T
dG _ 292G 2 x' 4 292G o0y .26 Al
281 T xt 9g Dyt 2E 1 Dzt 95
and
> = SN -
iKeP %o
e = - elK : 'i(K 9 ya KZ)
o(x',y52")

so that, ignoring for the present the question of the legitimacy of

differentiating under the integral signs, we can write

s ’
2% _ st R F L

o > =
C ([ SKP .
_ A , o
P ” 2l (ky £4 con frky Lo § sin §+ K, 7))
oy ). |
(K @—;v C°S¢'+Ky£‘§’ singt + K, ') dK .

oL
The divergence of this integral expression must be eliminated at a later

Then rearranging the integrations involved, we can write

stage.
+1 2\
b b P 2
- F7rL™ 4. d :.LK-
S -1 o (9)

2 / /
*(Ky f § cos@tKy £§sin¢+ KZV)(KX gg’cosgmxy %g 'singf? + Kzn')dgd@tdnd n*
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or

b
F* ol lim Tecv
272 &%

Cur =

where 1. represents the above integral.

It becomes convenient here to introduce the transformation

Kxgg.-z r cosw sin ¥ O=sr=zow

Kyzo% r sin w sin Yy O=v=T
i -

KZ;E r cos YV 0« w=z2T,

(This new coordinate system rs;¥,w is similar to ordinary spherical
coordinates but the family of spheres is replaced by a family of oblate
spheroids. The lack of orthogonality is not important.) The

Jacobian of this transformation is
2 (Kgs Koo K,) - r? sin Y

o(rs ¥y w) (= o4 2
In terms of the new coordinates,
-é "‘9 o
KoP = Fr[cos Wi ¥ (X B cosf -t B! cos@?)

<.

t SABWSINY (8 sing - o' 4" sin¢z)+9£§i G -gr m)}

= Fré%}/i lg(ﬁcos(w ~g) = x? B cos(W «W):{-I‘%}{L l%?)?m gi? n ] g

erfgcosgd +K'yo€§sin¢ +KZ)?E r ﬁééé sincos (W -f)+ ? cos l)UJ

2
and K g;-%%?(§2=coszl/)) o

Substitution of these quantities into the integral above gives
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1 (oo 2T rzsianwdr dy y iFrcosy(y - é,/,,);)
Lave 22 . BLODR()e 175 a4,
§2 222 o2yl
070" o(ﬁg g ~cos” Y)-k :
2T |

. SfeiFrS__Jéi? E(Bcos(wﬂmog’@’cos(w‘wi P?LE(% sin ycos (W-@)+ gcos I//]o

0

[~
°[f§, sin Y cos(u-g1)+ "2%"' cos\//J ag dgt o

We deal first with the ¢ and @* integrals, which can be resolved

almost immediately as follows:

om
L eiFriiﬂ"(chs(uwm ° [% sin ¢cos(ww¢)+zé cosW] ag

2T
= BE Sin‘//f eiFI’ﬁSin\//cos(umg)cos(umg!) af
0

A2

N

211

+ ,g_ coslpf oiFr Bsinycos(w -f) ag
0

= 202 sinye 173 (FrBsiny) + %4 cos Yo Mo (Fr Bsin ),

ol 2
and similarly

2T
o-iFr @12 sinycos(ug?) L%'%L sinycosas 1) cos '#J ag
0

et . 1,0 / ! s
= S5 sty 1 Moy(ernain )+ B conp Wagl-relf ssny)

10
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Putting these expressions inte I a4 and rearranging slightly, we have

moo 21 N 1
- 2 .
Lo, S -4éT rsin¥Ydwdrd ¢ g § sin~ @ 1
e ggoizmmw R A P "
r (10)
2
+ 00529/ 1)7 2—{3—i sin</Jcos</Jl: 03’2 IY( ‘%%7 17
where
+1 ) é/
I%L = [1 (7> B, (7) oLFrcos (- ’g)@?ﬁﬁl(Fr,zfsinyJ)Jl(mFl(%'%sinyJ)d,td{ ’
s b - )
2 = | 1Frcos o L A
I/{" :j_{ ()z) Pv(ﬂf) y[ g )ZYJ (Frﬁsul ) (" Fr’/g 31n¢)dnd7
3 2 iF / ili) 13- (Frgsing)Jd_(~Frg'-Zsin¢dndy’
T EL{ P (7) Pv(‘]) o rcos%’()?w g}? )7 1 r;gslngﬂ Jol- I;fO(Sln,,. ;7 7
=1
-l . |
Iyl); = /( ( Py (}7) P, (1) eiFrcosf”(V() -2 79)7 ﬂqo(Fr%sin;a)Jl(mFx;g";{;sinw)dz)d4 o
-1

Here the primed and unprimed integrals are separable in each case,

Consider first I Y}lo The 37 integral is

~1 . ‘
Jr 17%()7) elFreos(/j )7 .Jl(Fz;g sin %)dv

} [,glcvg) SEOIE

=1

iFrcosy >7

:2/q+1 Jl(FI;g sin¥)d O o
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We have in general

+1
[ e 2" cosme(z \/Zl.mrl2 sin\/J)an(Y))dq S 2}1 an(cosw‘]ml/2<z)
=1

(11)
for 0£ Y& T, so that the above integral becomes
I 21T
AV F /& Ef P (cosyOJ 1/2(Fr)“ +1(0031{) _*B/Z(Fr)]
In similar fashion for n we have
+1 §
j PV(VZ') 1Frcosy/§_% Jl(aFrﬂlg/sin ¥) arf
21
+1
1 ' iFrecoson’ ;
=TT j;[P ) - _f_l())‘] Jq (Fresinog')dn
- | (12)
2U+1 /;;r [ V='2p (COSG')J l/z(Fre_)-ul P (C:OSO')J 3/2(Freil
where - -g- cosY =€&coso and X — s:.n)p = esino o
Thus
MV
.l - 2T [&Lil(cossﬂ)%al/z(Fr)-l—P (cosy)d B/Q(Fr)]o
(24 +1)(2v +1)FrVe

OL (coso*)J 1/2(Fre)+ P (cosc‘)J 1_3/2(13‘1’5)*}

and in similar fashion

7Magnus, W, and Oberhettinger; F., "WFunctions of Mathematical Physics,"
Chelseas po 77 (1949). The integral is given in terms of Gegenbauer
functions. It takes the form used here when these are converted to
Legendre polynomials.

12
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ATV B
1,7 =277 9%+l)§&+l(cosqb{ab+3/2(Fr)a4§“l(cosW){iBl/z(Fr%]°
(2m+1)(2 v+ 1)Fr ' _

+l(cos O_)Jv—gr_3/2(Fr &=V P ml(cos O‘)Jvzl/z(f‘r e)—i‘ 9

3 2/”, FZEazal -
I = = (eom)Igq o(Fr)s B,E (008104, 5 /o(F2) J
( (2u+l)(2v+1)Fr /€ [ a-1/2 “tl +3/2

~

o (v+l)Pv+l(coso’)J 3/2(Fre) v P 1(0030)JU l/Q(Fré)

i
-

A ,u+v£l

2174

I (,er) (cos L[/)J
( (2/u+l)(2v+1)Fr Je

(Fr’)w,uP (cosW)J 1/2(1?1»); o

M+3/2

! (cosO’)J 1/2(Fre)+P l(cos@f) 1+3/2(Fre)j o

KE

Putting these expressions into (10) and observing that the dependence

of the integrand on w has disappeared; we have

11 o0
b a+v _
- 167 1 & J r sinydr dy | §§’ o 1
Tuv= . ,sin o ( )J (Fr)
Y7 (2041) (2usL)F 00 /g[§2=cos%/kk2 2*2-15&39( yﬁ 18cos¥)d, 7 solFT
¢ ; @_5.-_-_2
r

P il(cosxp):(llﬁ/z(Fr)J o !Pvil(cosc)JUml/z(Fre)H;’ji(cos 0‘)%+3/2(Fr€:)]

. -
-—-é_lﬁ[{uﬂ)g“l(cosw) +3/2(Fr)-MP (cosy)J, 1/2(Fr)J °

* (+1)P, , (cos0)g, '3/2 (Fre) VE (cosaﬁqvml/Q(Fre) _} (13)

(equation cont'd on
next page)

13
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+ 3_127/1_09_5_%!» 1(c0sWJ, 3 /p(Fr)+ B +1(0057”) %3 /2(FF) J

o[%%fl)? (cosw)J 3/Z(Fre)—vﬁuml(cosG')J,V__Sl/z(Fre-)

- siny cosyé’ ‘QL+1)Ea*1(003¢){u+3/2(Fr)**LP (cos#&J 1/2(Fr) ] o

¢ !

}P 1(0036) 1/2(Fre)+ P ! (cosdj +3/2(Fre)’

Thiscan be rewritten as follows, considering that the r integration is
/
to be performed first, and observing that the distinction between s

and g is essential only in the r integrals and thaté = 1, cos6—>~ cosV¥

s f 5

s
L m+3v
s g andW &m W
o L= J . a M.=1 UmlRll /erp -1f21
0

§-¢ (2u+ 1)(2v+1)F §2=cos‘v oL

: 1 l COS
TE v+1R12 Ul v+1 :[+ “lé Q‘“U (VL)1 Py 1 Ros Wl)”m& 121

siny cos
.,,/u.(‘tf‘\'l)P 1 v+1E12+/“v P L1 v’mlR.’Ll_l _ﬁ_g%__gét(wl)l: -1k

X

1 1
VB B Ryt (wL)p, P 1 BBy =V B Prafy J (14)

1
U+1 22

1
smﬁ COSﬁ
L(’“""l)/ul V=1 21+ (‘“1),(&1

1
e avamlRll - AP Pl J
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where o
= 14 Fr) J (Fre) D4
= g L 17287 9y po(Fre) 7.2
R =lim [ J (Fr)J (Fre r dr
127 ot j #=1/2 : 3/2 r9) r2 02
0
(15)
s oo r3 dr
Ry 1;3% j Jurzf2FF) Iy fplFre) &
I'"™~=C
= © r3 dr
R22=§/§n§J %+3/2(Fr) J B/Z(Fré) —
rY=Cc
0
and o2 = k2§22

and the argument of all the Legendre functions appearing is cos Y.

Now it may be observed that since R, ., considered as a function of

ij

W 5 is even about YW = T2, and since Pg(cos.yo is even or odd according
as m-n is even or odd, the integrand in (lh) is even or odd about
1p:g1ﬁ/2 according as 4 + V is even or odde Thus I, vanishes if e+ V'
is odd. Purthermore since Jn(=z) = (=1)" J,(z), it develops that the
integrands in the expressions for the Rij are even or odd about r = O

according as M +Vis even or odd, and consequently only the even case

need be considered. Thus we can set
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The representation (8) used here for the Green's function is not
completely defined until one specifies the manner in which the singu-
larity at K = (ks 0y 0) is to be avoided. In the present case the proper
procedure is to divert the integration path in.the complex Kxfplane
slightly below the point ky inasmuch as the scattered wave is to be
outgoingo8 This corresponds to a diversion below the point r = ¢
(and above the point r = - ¢) in the complex r-plane.

We proceed then to evaluate the integral

>
r.

c2 Z%=b

Y

me+l/2(Fr)_ Jml/z(Fre) = %‘5 {Jmﬂ/Q(Z)Jml/Q(ez) Zi dg (16)
C ' C

where z = Fry, b = Fcy; and the path C consists of the real axis from

- ooto + oobut with diversions above the point z = - b and below the
point z = b This integral apparently encompasses the divergence which
first appeared in the expression obtained previously for the normal
derivative of the Greent's function, since the integrand oscillates in-
definitely without decaying as z-> T coon the real axis, However, we

can obtain a formal value, at least, as followsg

First let
€2 '
¢, ez) ::J Toqr/2t8) @t (17)

gﬁorse and Feshbach, loc., cit. p. 818,

16
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3 4 | D 2 4

>
) e z< dz
TJJm+1/2(Z>¢n(CZ> m

It is clear from the original integral equation (1) that & must be less
than or equal to§ and consequently from the definition of £ (12)
it follows that € < 1. Now we assume for the time being that m< n + 3

and write

. g(1) (2)
maal?) = | B, (200 BT (Zﬂ °

Tt is well known that the Hankel function Hg})(z) vanishes exponentially
for large positive imaginary z, and that H§?>(z) behaves similarly for
large negative imaginary z, and accordingly we should try to express the

integral (18) in the following forms

P

ng
(19)

- tnan]

where C; is C closed by an infinite semicircle in the uppef half of the
z—=plane and 02 is C closed by one in the lower half. It must first be
shown that the integrals over the éemicircles vanish, For this we can
use Jordan's Lemma, which states that the integral of the quantity

el £(3) over an infinite semicircle in the upper half plane will vanish

provided that m >0 and f(Re¥®)— 0 uniformly in @ as R— @ with

17
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obvious modifications to handle the lower half plane.
Consider first the behavior of ¢néiz) for large z. Using the
definition (17) in the range where § is large, we can employ the

Hankel asymptotic form for Jn-+l/2(§) to obtain

¢ (€2) = J§7? [jfna%J f%;- d§ N in+lj “lé (i}

Setting

€D (0 0] (s'0]
eig ej‘é eiZ J e é
J \/é__- d§ Sj \/‘—2__-: déa-jéz 7-“5*‘ dz gAl - FF

where./ll = constant, independent of z, and putting é;; z + T

we have

iez itT
[ Ca dg = S S £ = dT .
I § €32 O 1""“&”?‘”
Using operatorial symbols, we can write

Sf(’l?) da 0% [f(’t)} and Dt [:’x g(’t)} 1V (ps1)t [g(T)]

50 that

co i,-t, | co .
e dT _ AT (pypi)-t __,;L_,} o
0 14 \/l-\-f‘; 0

€z

i

But

(D+:‘L)=':L

b

i i2

i~ 2
- i L1m2+9m==2331—@00000}

)

-1 [1 L 4D +i2D%+ 19D+ ‘“‘”‘“J

18
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so that
o ©
it r . _
S e d :—i[elt (1% 1D +1°D% 4+ —--) [ L
~ : fz:
O l+,_é__z_ «—e--_ O
_ w )
. | e > :Ln(2n)3
=-4 T n=0 n
1+ = Tntlez + T)
i oi | S Bt - 2 i)
T J/ 11?..52 n=0 2°™i(ez+£)® n=0 22Mni(e z)D
~1i for |z| large and O < arg z <77 ,

Similarly

[ oo o 3]

where AZ = constant, or

2 €2
j e~ i - {"’Mﬁ < i%(z2n)s J A

e /T ne0 2%ngen 2
~1ie er a/l. for |z| large.
€z
Then -
i =lez
P ~f:z£ﬁ'[_n_l( /z; A ) r T - Ay) J

Pt
—

{(«sl)]{1 le? 4 gmien }‘/3—3

-3
V2Te 2

19
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THE

whereanB incorporates-/xl andzsz, and consequently

-

(1) <[ iz]n ( n |
. =D~ - _1)Peiez, ~lez [1 ll+ —
m+l/2(z)¢ ( z) L'ﬁ?gé (~1) e %e + 3] 2T |
B i r(ul)neiz(l-r eff§+ REIGED) }/Z s-n-1 gff oA\
772'fg_L i /a ’
~ Jia(l+e) i(-1 n_feiZ(lwe) i, eif/:él -l (20)
Ta/e Tz e e ]

Each term in (20) satisfies the hypotheses of Jordan's Lemma (since
€ <1) and therefore the integral over the semicircle is Zero. The
same technique can be applied to the lower semicircle, and the original
integral (16) can thus be expressed in terms of the residues at the
poles included in the two contours.

(1,2)

Since the functions H_ /2 (z) Jn+l/2(&z) have poles of order

m-nat z =0, it is clear that as long as m<n + 3, the‘integrands

1,2

Hmil/2>(z) Jn+l/2(ez> will be regular at z = Oy, and the only
z<=b
singularities appearing will be simple poles at z = t b, one of which,
is included in the upper contour and the other in the lower. Thus
we have
; 2 (1) (2)
J Jm+l/2(2)¢1’1(é Z)—Z—E@f—)-z— = '--2“1:[ Hm+1/2 (b)¢n(6 b)°b+ Hm+l/2(‘=’b)¢n(“éb)°b

C
and from (18)

o=
=

2] (1) (2)
i Jm+1/2(Z>Jn+~l/2(&Z):zf§2 J-Zb [Hm+l/2(b)Jn+l/2(eb)"Hm+l/2("b)JnJrl/g(“C—b)Je

20
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(2) (1)
But Hm+l/2(~b) Jml /2(==eb) =-H /2 (b) Jn+l /2 (e b) for m+n even, so
that
3
Ine1/2(2)ns1/2(€ 2) zgizz = 1Tb2 Hm%}g(b) SRPACLP (21)

As for the question of what happens when m> n +3, examination
of equation (lh) shows that m takes only the values«~- 1 and «r+1, and
n only the valuesv=- 1, v"+1l, so that if//qé=2‘+23 this situation
will not occur. Furthermore it is apparent from the form of the quantity
C/uv'given in equation (9) that in the limit as 4 L>§this must be symmetricall
in ¢ and ¢~ , so that the situation for et +2 need not concern us.
The case/A4>zfcould be dealt with in similar fashion if desired, but
the development would be slightly more complicaﬁedo

When the expression (21) is substituted in the formulas (15) and
the limit process carried out, there result the expressions

. 2 ‘
Riy :'*f;c gﬁ(ii}z (Fe) J,, _y fo(Fe)

aric? (1)
Rz =72 Hu-1/2 (Fe) Jopy3/n(Fe)

ric? (1

1)
RZl = 2 H/b(+3/2 (FC)J,U. al/z(FC)

. 2

2= "2 i3/ (Fe)

and when these are substituted into (14), it develops that the bulk of

the integrand can be separated into two factors, one of which depends

21
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only on st ; s k,sﬂ and the other only on v, (;9 ks }0 o Thus

v Y
]ﬁm v = = g5i&+3 +1k2 5 j siny dvy /jog(e,'sks‘)u)A#(gsks‘P) (22)
§°5 Fe™(2 u+1)(20+1) (§2=coszsﬂ)2

O .

where

i

it

/—;1(.‘; sks W) anEJl_}z(M,_> [cosy/ anl(cosgb) - éan(cos ¢) }

Ve 2 _cos? v

(n+l)Hniiiz(;%'(—_—:;_>[cos}&Pn*l(cosl}/) - ‘;ZPH( cos ) -}

(23)

~

An(ote) = n3_ of E >[ (cosu) ~£2P_(c08 )
- na1/ ﬁ?,;?_?,, cos WP, _;(cosy) -§°P (cos ¥
§“-cos“y J

KF 8% )| cos ¢ By, (cosy)- £ Pp(cosy )

'=(n+l)Jn+3/2<?\/—§—=c:;—s?§_ﬁ->[ -

for n = Ms Vo These expressions can be put into slightly less cumber-

some form by introducing the spherical Bessel functions of Sommerfeld
and using standard recurrence relations for these and the Legendre

polynomials. Letting

= _kF&X

N S WYV
£ “=cos* ¥/

In -1—1/2('0) fé_ﬁ'—i Ynlf)s Hn%ﬁ])_/2 (P) g\/é'-?: gn(F)

we can write ‘ _

f;(g,k, p) = (2n+-l)/—27?[%(cos%anl agan)gn({?)+(§2=003250)Pn§n-i—l(f’)

= (2n-\-l>/’2_;].——?~ Fri(gsks}b)

with a corresponding form for An(%gks W), and C/,W— becomes

——

22
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fig

G = = BTFHE%0 immj ??ifsésv/)s/z L G oy (S

0 (24)

It is of course possible by expanding the products /;A Zk'v and
applying recurrence relations for the Legendre polynomials to write Cuv

as a linear combination of integrals of the form

m

J P .
f Pm(cossu)Pn(cos%) r4l/2(0 sinyd ¥
o |

ey /olO) 2 (ecos? Y

and since both the Legendre and Bessel functions involved are expressible
in closed form, the integrands here can be decomposed into expressions
involving only elementary functions. Recurrence relations among the
various terms can then be obtained, and the only integrations remaining
are a few initial values of fairly simple form, However the number of
terms iﬁvolved for any moderate values of 4 and V is so large that it
was Judged more economical for actual computation to use the form (24)
and ﬁerform the integration by numerical methods,

Alternatively, since the integrand in (24) can be expressed
entirely in terms of Bessel and Legendre functions of order « and’v’
and derivatives of these with respect to cos ¢5 some thought has been
given to the possibility of performing partiél integrations in order at
least to reduce the éomplexity of the remaining integral., It is not
immediately clear that anything can be gained by this approach, however,

and to date no thorough investigation has been made.

23
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CHAPTER 4

EVALUATION OF THE INTEGRALS B

Referring to equations (6) and (7), we have

da

- ? ikz
P = f Ful) 55
S S

2T +
J fa&(q)i‘-——l_emw \\ de%dng!
0 =1 3

11

it

+1
2\7‘1:&21?214% B.(7) ¢ 71 nan

i
[a]

or setting kF¢§ = ka, ;7 = cos ©

Vi
Bu = 271 o<2F2kJ E/’a(cos @)elka cos@ sin © cos © d9.
0
Using a recurrence relation to eliminate cos O, we get

T

B, = 277’5_0@1;'21{ ika cos@ oi
2u+1

s

,+,M.( E l(cos@) eTKa COSO 1 g d@o§

(/u+l)f 12(+1(cos@) e n o do

The integrals here are of the form given in equation (11), with m = O,

)/( = cos B, z = kay and%: 0. Thus
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_ 2MiolF3% Nyl 27 -1 [omg .-
Byz &= X 9L+1)lv = 3/2(ka)+'441 277 {Mwl/z(ka)

(2u+ 1) ka

3/2 .42 ' , ,

In terms of the spherical Bessel functions used in the preceding section,

this becomes

By = WTIFRaA2ik —d_ W (ka), (25)
d(ka)

25
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CHAPTER 5

DETERMINATION OF THE SCATTERING CROSS SECTION

Once values have been obtained for the quantities Cyw and Bu
over a sufficient range of the indices, the problem of finding the
back-scattering cross section is relatively trivial., The stationary
value of J [@] is found by setting the derivative of J with respect
to each A. equal to zero. This operation yields the system of

9

equations
I

00 Cuv 1
:g:o A L - J@ Bu ] =0 for all v (26)
t=

By
where J¢,is the stationary value of J [¢] o Existence of a solution
of this set of homogeneous linear equations in the unknowns Aw requires

that the determinant of the coefficients vanish, i.e.

| !C,uv‘ ’
- Jg @M,i =0 or l =Jdy =0 (27)

These are linear equations in J,, the solution of which can be written

in the form

apuv E
J = (28)
o) /tZ/L % -A/{A.’U'

where qu-

z cofactor of a v o

E:b
¢
1]

9Cf. Sollfrey, loc. cite pe 156
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Or we can write

e
Lot - (29)

Jo T oC !%MU;;
where C is any constant, which is perhaps a more convenient form.
Furthermore the fact that auv = O for s#+V odd means that the
coefficients of even and odd index are completely independent; so that

if we let Ay Sduv for the odd case and auv = ﬁ&Av‘ for the even,

we have

1o L$MV+C1! + !@uv+02‘ w( t 2 > (30)
Jo C1 ’dMAU ! Co ‘ﬂAAV-( Cy C, v
where C; and Cp are arbitrary constants. Once a value is obtained for
Jos the system (26) can be solved if desired for the coefficients %%Lo
The back-scattering cross section, however, is given directly by JOQ
which is inversely proportional to the back-scattered amplitude, as
remarked in Chapter 2. Specifically, if ¢ is the total scalar back-
scattering cross section, then

2
1

Jo

c = 1+’)T (31)

The above solution may also be obtained without resorting to

variational language. The method is due to Galerkin and has been shown

10 to be exactly equivalent to the variational approach. If

by Jones
the expansion (5) is substituted into the integrand of equation (2), and

both sides are then multiplied by Pmr(Q) and integrated over the spheroid

lOJones, Do Soy ™A Critique of the Variational Method in Scattering
Problems," IRE Trans. Vol. AP-4, No. 3 (July 1956).
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(in the manner of the above development) there results the system

(o]
Z A//LC/MV = 14'77 By » v= 0y, 1y 2 === 00, (32)
/M=O

The solution g A%Ag of this system is equivalent (within a normalization
constant) to that of the syste@ (26). The value of Jo 1s immediately

obtainable from this system by application of the stationary condition

JoBur % AuBu = S AL Cur for all V

derived from equation (7). Thus

© > AuBu
and
1 {ZA'B 2 (33)
OV-.Z_’—‘T I/M_M/"L i

This expression is probably more convenient for analytical and compu-~

tation purposes than those derived above, and is used in the develop-

ments which fellow.
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CHAPTER 6

VERIFICATION OF RESULTS

The lack of mathematical rigor in some of the preceding analysis
makes it imperative that some sort of check be obtained on the validity
of the results, The most obvious means to this end is to examine the
behavior of the solution in the extremes of wavelength and eccentricity,
where the correct solutions are well known.

Considering first the eccentricity, we can see at once that as
this becomes infinite the nose~on scattering cross section should
vanish for any finite ka , and little information is to bé gained
on the forms in question., We examine rather the case of vanishing
eccentricity, i.e., where the spheroid becomes a sphere., This transforma-
tion is accomplished by letting é—»oo and F—~ 0 in such a way that the
product { F — a, the radius of the sphere. Geometrically this implies
that the major axis of the spheroid remains fixed and the minor axis is
increased until the two are equal. From equation (23) and following it
is apparent at once that #-> ka and that the terms cos %,Pn+l become
negligible in comparison to the terms & 2Pn° Thus, since coszfabecomes

negligible compared to é 2, the integral in (22) reduces to

v ,
é{ Pu (cosy) By(cosy) singd . ”“gﬁmi}; (ka)m§a+1)§é{*g}% (ka)
° i/qyml/z (ka)w@f+l)%}+3/2 (ka) ‘

{
/

(equation con'd on next page)
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-3 2¢(2u+1)(2vA) d ¢ a d y ;
“ D T 2ka o) C w (ka) o Yv (ka) (34)
0

for,4/£ 4

%—'&' (24 +1) a'(%gy <,(/£ (ka) aﬁ—ay‘/u (ka) for g = v «

Equation (24) then yields

0 for f v
o | (35)
~2..3 4L .
“16T7 “ik’a 4 7 d_ ., , .
a1 alay o ke) qoay 7 (ke) for w= v
and equation (25) immediately becomes
B, = 4TMa?i"k —3— Yu (ka). (36)

M d(ka)

The velocity potential at a large distance R from the scatterer
in the direction of the approaching plane wave can be written in the

form
eikR
R

g(r) = %% & £2(7)

and as stated earlier, f(77) is equal to the negative reciprocal of Jos
the stationary value of J. Referring to equation (32) we have for the

sphere

Ay Cyu = 4B,  or Au = 4TBe ;
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and
> 2
fN) =2 =L > A B, =->20 (37)
LT o ;i Cpe pr

Substitution of (35) and (36) here yields

£(m) = i;(ml)ﬂ(zthl) H%J%(ka)/a% {4 (ka).  (38)

The classical solution for the sphere is given by Sommerfeldll

in the form

=-= 1 (24P, (cos0) €, (kr) T’T%‘ )/d(k {0 (ka)

where V is the velocity potential of the scattered wave at the point
ry 8, If this is restricted to give the back-scattered field at a

large distance Ry it becomes

z<-1>*“<zM+1>_z__w< / Ty S G2,
and multiplication of this by R o R 1 obtain £T 7) renders it
identical to equation (38)., The variational solution is thus shown to
be correct in the limit of wvanishing eccentricity.
We consider next the extremes of wavelength as compared to the
dimensions of the scatterer. The relation with the sphere solution

exhibited above makes it quite apparent that the present solution should

be most practical in the region of large wavelength, and we should

llSommerfeld, A,y "Partial Differential Equations in Physics," Academic

Press, po 164 (1949).
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certainly be able to compare it with the result obtained by Rayleigh

for this r'egion. To this end we write the back-scattered amplitude

as in equation (37)

and expand the quantities A x and Bu in powers of k. The terms of

order less than or equal to k® should then give the Rayleigh result.

Setting
3
Bu = %bj k
' (39)
AM - Z aM kJ F}
f !
J
we obtain immediately, to order k2,
—~ 1 0, 0 11 22 oo oo 11 11
M= - ﬁ{aobo + aobo—hamobo +k aobl+- albo*'aobl + zaL:Lb0
22 22| 2 0.0 0,0 ©O0o 11 11
+'aobl+‘alb0J +k %obZ + a.lbl +—a2bo+aob2 *r-albl
11 22 22 22
tayb +aby +ajb) +ab J . (40)

The quantities b; can be obtained easily from (25) by substituting

the power series expansion for the Bessel ,}funct-ions. We have, to order

k<,
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~ 3/2_2 /1 (kpE 32 1
B < - (27TF) 04/% (55> 573

1/2
Bi= 1/3(2171«")3/21«2/3;‘- (5%-5~) / L

[1(3/2

| 3/2 2k kre \3/2 1
B ~ - 1/5(27rF)" " L/K- (KEE —t—
o= = 1/5(2TE) /; A 7y

These yield

o ) 3 2
bZzbl:o, b2:=4/3/7’F¢<g
bLebh =0, b =L4/3 iR

(41)

2 2

bgEb =0, by - 8/15T P”§

i
To find the aj we refer to the linear system (32), substitute power
series expansions for AM s Cuv , and B-. , and equate coefficients of

like powers of k. Thus if we put
veul + 3
Cpv = Z 03“’ % ’

and remember that C,y = O for m+v odd, there result presently the

equations
00 (o]
C, ao = meo
(o] O O
Co” a c1 al = 4TTby
400 O o0 o, R0 2 _ o}
Cy a +c€> a1+-02 agtC, ag = LT b,
1
cil = 4TI}
11 1 11 1 -
C,may+C a m‘b (42)
22 2 2 .
CO “’l&/n/bo o]

33




THE UNIVERSITY OF MICHIGAN
2591-1-T

Referring now to formulas (23) and (24) it is clear at once

that CgD: C;é; O, while 052 # 0, and it develops easily that

oo_ 8T 3Px? § 23,2
= _ = = 16/377 F"K
2" T/ (1/2)
We find also by the obvious procedure that
5 1 h +1 5
LRI s | 2L - (o | H
35 21 g }? =1 g “Vl

S 16T P 62 - £ 2 10g £ 11 ‘
35 | 2 §-1 ]

Applying these. relations and those in (41) to (42), we find that

00 © 20 2 o
02 ao + CO a, = ATsz
Cll al =0

O 0

ll 1 1

¢, apt ey ay = 4TTBY

22 2 _

CO a, = 0

which reduces immediately to

C3° a9 = L1TTb,
111
Co- &) = LTTbL

or
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0 MTbTRP e o3
o
3.-1677 %% 2
L WIeLaFCe3 5 _ iF €
1= —— = ¢ =
pRn 22§ 2 §+ 1 2 &5 2 £ +1
3 167 F ',é - '—2' o log %=1 " L ) og é"‘l
Equation (40) now reduces to
r =
2 | |
¢y . _ k1 o,0 1 1
£ = Wit o by T2 By
L2 5 2 5+
. k2 F3c><2£ & 1- %‘j‘lOg éL:Ié (43)
—~ 5 5 e . o
3 25l 2 f 1o 2T L
~ > = 08 g —1

In his original work on scattering by small obstacles, Rayleigh
gives formulas for the case of a plane sound wave incident on a

prolate spheroid which can be written as follows:12

Y = T  2-L m
£(77) = =l (44)

—

where

2 / 2e -6

Upon substitution of the relations e =Fg , and AZ 277 [k,

iH
o
.
o

equation (44) becomes identical to (43), and the variational solution

lzRayleigh (strutt, J. W.) "On the Incidence of Aerial and Electro-
magnetic Waves on Small Obstacles,™ Phil. Mag.s Vole 4L, p. 28 (1897).
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is thus shown to be in agreement with the Rayleigh result,

In the limit of small wavelength the analysié is more difficult,
and the geometrical optics result has not been obtained from the
variational solution. It becomes apparent, however, that the situation
is similar to that which prevails in the case of the sphere, in that
the number of terms used in the series in (33) must be -of the order
of>kao This can be shown by the following analysis.

We examine first the behavior of the quantity C,, as ka becomes
large in comparison to « and v . In this range we can use the Hankel
asymptotic formsibr the Bessel and Hankel functions appearing in the

expressions for /. and Ay (equation (23)). Thus

1/2 : |
/-'/u (§ skgsl’) :(“,I—.r%;) el/’ /“l COS‘/’P 1""‘;23{;3“‘(/’”1)(COS§'/’I;‘,_+1'*€;2R,¢L) ‘
L/2 7 N 2 2
( ) (24+1)Py (cosif) (57 = cos™Y),
l .
Aar (8 5k ¥) - 1(735 / j 'u(cosxyfi =§ Pv) = (U+1)(cosyP Né Pu)

i
—

. 1 (l_v 1F+_ sV g=1f

2| |

)1/2(21%+1)P (vOS%D(é -Cos W ) o

s (2

A)HJ

add

and consequently T

Ay 3w —11

Cpy = = LTTRF2 4 3 %(cosquu(cole

O

M-V 1P el .
o !'1 21{ : ( ~COS gb) 51n5l/ ay o, (45)
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An approximate value for the first term of the integral when ka is
large can be obtained by means of the stationary phase formula.

Letting

cos = )Y

ng ~—= 5 E%(q)

P/,,L(cosxp) P,, (cos %)/52-» coszgﬂ = }((V{)

we find that if 770 is the stationary phase point, defined by the

relation iD/ ()/(O) = 0, then

I
j ezipf/’u (cos)P, (cosy) /§2cosz¢' sinyd ¢
0

+1
Eg oikay () A0y dn

-1
' . T LT N

ka\g? (V]O)l

g . ei(szo(+%'§i,u+U for uy U even
kFA ,M-H/( MU /)2 /

2 il A
- 22 (46)

_O for us Vv odd

The second term in the integral becomes
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+1 L
U / 2 2
i P () B()) /€7 =™ av) s (47)
-1
which is independent of k, so that the dependence of C,, on k has

the form
i
UL _ °
Cp ™ = WP i {% 14 (1) Jo;w(mé) e PHEAT S(FaE) k{ (48)

for ka large.

Use of the same asymptotic forms for the Bessel functions in the

expression for By (see Chapter 4) gives the result

R o
B ~ 2TTFX 2 !:elka-;- (wl)M ewlka ]’
J

S
2 cos ka for u even
~ LTIF &2 { (49)

§

For large k, the second term on the right in equation (48)

i sin ka ’ for %LOddo

dominates, and combining (45), (46), (A7)9,(h8)9 and (49) we can write

the linear system (32) approximately as

Z A T = ,ﬁm veven
A even e ka
(50)
- :E; AT ~ hxsin ka v odd,
M odd R ka

Application of Cramer?s rule to these systems gives

. /

Ay = Ad=tcos ka S Tuv even
ka \’t/\/\us v

AM:\: =L sin ka z tLu M odd

kal’tMv‘ v
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where 7;;U is the cofactor of T,, and WQMVI is the determinant.

Then

A, Bux 16T 14 °F cos® ka 2 T

M even
§ka 'T,M.u\
3
A,bL Bu —léﬂ/lr F Sln ka Z /CMU ,u_Oddo
gka

Assuming the quantities'zg 'ULv//TquU\‘ are bounded, each
term of the series (33) with u<< ka is of order 1/ka. Therefore any
reasonable approximation to the true cross section would require at
least approximately ka of these terms, as in the case of the sphere,
Thé dominant. terms in this region of the spectrum may be those with
pl::v‘ka,~-ln order to obtain the approximate values of these terms,
the Debye asymptotic forms for the Bessel functions might be utilized;
however these lead to much more awkward integrals than those in equa-

tion (AS), and no further attempts have been made in this direction.
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CHAPTER 7

CONVERGENCE OF THE SOLUTION

The principal question remaining is that of the convergence of
the series in equation (33)e It will be shown that at least for
small enough values of ka, this series must bé absolutely convergent.
Some of the estimates used in the following are rather rough, and
error terms are in general ignored. To make the proof absolutely
rigorous a more careful analysis of these error terms would be neces-
sary. However this would materially complicate the already tedious
development, and we therefore limit ourselves to what might be called
a strong plausibility argument.

We consider first the behavior of the quantities Bu (equation (25))
as M increases with ka fixed. The asymptotic form of the Bessel

function %@Kz) for z fixed and n large is easily found to pel3

( Jn+1l/2 n
z) =< (51)
#ula) it 3/2(n L1 /0)0 1
which can be differentiated with respect to z to give
n+1/2 n-1
4 (z) = & = (
S (z) = 52)
dz 2n+3/2(n‘%1/2)n-+l

Using this form in equation (25) immediately shows that for fixed ka,

the quantities IB/A{ ultimately die out as (%%%)Ak « It is clear then,

lBCf@ Watson, Go Noy WTheory of Bessel Functions," Cambridge, p. 225 (1952)0
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that as long as the AWL do not diverge too rapidlys the series %% A, Bu
will converge absolutely for any finite value of ka., Due to the compli-
cated fbrm whichlqg%ll‘p{evails for the coefficients C,v it is difficult
to obtain a direct proof of the boundedness of the quantities IAWJ 3
however, a constructive proof of the existence of a set of Auw which

are bounded in absolute value and satisfy the system (32) can be given
by the following line of argument.

We assume for the moment that the first N values of \AM | are
bounded, where N is a number which is large with respect to ka and unity.
Discarding the first N equations temporarily and transposing the products
Ay Cuy for m = N to the right hand sides of the remaining equations,
we can show that the resulting system of equations in the Au for « > N
has, for some range of kas; a solution of which each member is bounded in
absolute value and which can be determined in the limit by the usual
method of truncation. Furthermore we can showlthat when this solution is
substituted in the first N equations of the original system; the resulting
system can in general be solved for the Ay with = N. The result is
the unique bounded solution to the original system (32). whose existence
guarantees the convergence of the series in (33).

The first step is to show that there exists a number N such that if
| Ayl is bounded for all m g N; then the system

0 N
Z AM C,uu = l;./lTB-U = z AAA Cuuv s Vs N +l; ——ccmeee @ (53)
,M:N +1 =0
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has a solution é AM} - expressible linearly in terms of the set
M2

A such that |A,l = M for some M < wand all 7 No To
accomplish this we make use of the following theorem, due to Pellet
andWintner:l4

Given the system X, - = Cy s V=1, 25 000, where
oo
Wz = amy Koo s
M=l
if the quantities [C,| are bounded and the coefficients ayy are subject
to the condition
@©
S'U EZ_ ) a/f/-b} < l, V= 1., 29 oaooa?g (514')
M=1
then the X, exist and are equal to the limiting form as m > ocoof

the XSP) determined by solving the reduced system

m
XSJm) o zt a'/MU XSAm): CU, Ve lg 29 sooo Hlo (55‘)
M=

We first translate the notation of the theorem into that of the
system (53), after dividing each equation of the latter by the corres-

ponding quantity C, v for convenience. This entails the relations

aM”:"’CNw,Nw /_CN+U,N+U> VFm

ayy 8 0 (56)
N
M=

14 ¢f. Davis, Ho Tos "Theory of Linear Operators,"™ Principia Press, p. 130,

(1936), 42
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U2 = 2 Oy e /Cnpw b
,uiv

Sy

(1

2 %t u, O, | o
Utv

The boundedness of \ Cy l follows immediately from the assumption on the
\AMl for M <N and from the forms given previously for By and Cuwv o
It remains to show that S, < 1 forvs= ls 25 000 00

Referring to equation (24) we can write the real and imaginary

parts of Cyy for the range VU < Mas

Ui3M +1
Civ Z Re Cpn = 81T2§F.30(2(=l) 2 12 P4 % _
3 n?)
=1
(57)
| [&5_1”%1“1) Y@ g‘ZW’%“’)] [ Ry 0D PR, 0 11 m]
and i S ra .
Qv = Tyluy = - EMEP< () 2 kzj e
, | 57 7
=1

(58)

° [&%W%WM<P>+%2Pu<rz>%’«<f)>} [“;lml(vzwuwns EIONAE
/z(p)s and the

Here }71) (P) is the spherical Neumann function_/néig—w N, i1

quantity Ps 7—%—‘3-‘3‘2 ranges between kb and ka (b is the semi-minor

2
§-nN
axis of the spheroid) as Y] goes from - 1 to+1l, so that if N is large
compared to ka and unity, then for all MU,V > N we can use the

asymptotic forms (51), (52), together with the corresponding ones for
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7?n(2) and >7é(z), namely

20+1 jn- -1/2 2n o= 1/2

mi/2)”  p! ()~ (L) (n+1/2)" (n+1)
n+l/2 ol +1/2 L2

Nn(z) = (-1)

(59)

to obtain estimates for d%b' and C£4v o After some manipulation we

arrive at the expressions

U+ 3 M v
& 2 (1) 2 (kgx)  (ur1/e) (urd) 0
E(ur1/2)" T
(60)
+1 -
| S ngJrl(q)_gsz;(q)J pﬂ)y{%rl(m“‘gzp‘*(q):l n‘ﬂ IR
4 €%
22 1%42i am%\M}U
oI, ~Tr*F2x ek(-1) (_2-_
(61)
1 -
o S [(Mum PM+i(V])+M§2€M(/])J E‘Ua—l)}’] PU+1(Y?)1-U§2P,J(Q)J al] /4+U+§
21

(§2-17) T2
The integrals here can be roughly bounded from above by substituting
the least upper bounds of the factors in the numerators of the iﬁtegrands,
and the greatest lower bounds of their denominators. The following

inequalities results:*

*Here and hereafter in this chapter the symbol "=" should in general
be read "less than or approximately equal to."
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& < ETHE A icn (u+1> " Lur1)

(62)
€ o+ 1/2Y°"
CI _ T 2r2ek(g 2+1)2(§%§)MW (U+1) (u+l) (63)
ul = . 3
" ol + 172w r1 2P L

Bounds for the summation of these quantities from m= V+1 to comay

be obtained with the aid of the relations

00 0 M @ M
> eka " Mt _ 2v+h > eka.)ééh > <eka >
n=v+ll 2M¥1) pel/2 o 2VE3 o, q\RVi3) T 3 D \RVH3

4&(%)U+l 1
-3 2 v+l [ eka
e - 5
The resulting expressions are
_
z , CR 14 1672F(§2+l)2 (6,)
eka
M =V4L 3§O< [ - 2z)+3_’[
and '2 1
v
00 :
pal P PR Rt e B
ol |= L., (65)
M=l 3 € Ll _ _eka J
o 2V+4 3

The formula corresponding to (57) for the range (< V is
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+1
c}}v = gM2e P 2(_1)‘-‘%—33 K2 S {ﬁﬁ;"? P1)] /M(p)+g (>7)>7 (p)]
-1
° jﬂl/i_]; 2: / Pd
f— P Y)PU+1()7)(70U(P)+§ PV(Y))(//U (()) ] EQ:_;%?_

I .
and the expression for C,, is the same as before. Using the previous

estimates and procedures, we obtains; to order 1/U s

V-l _ LT F(§ 24 1)%cka v
> | B, (66
u=0 ' " \ §<7( (2U+l) )

and

.
Cov |2 2 MF(5 >+ 1) *(v+1)eka eka . (67
M§O o] § 2(v + 1/2) 2rdd )

Combining (64), (65)s (66) and (67) we can thus write

00 - -

> |t )] e W‘ZF(E;2+21)29ka L%g Fo(d)] . (68)
40 § |
MEU

An estimate is now required for C%z,o This can be obtained from equa-

tion (60). When m is set equal to v , the resulting integral can be
evaluated exactly with the aid of the formula

a
S (z = x)™ P_(x) dx = 2 Pp(z) Q,(a)
-1

1
form<n, |zl>1, z The resulting expression for Cgu is

T5 Cf. Erdelgl, et.al,, M"Tables of Integr 1 Transforms“ Vol., 2, Bateman
Manuscript Project, McGraw-Hill, p. 27 ?1954 Yo
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zsz(wr 1)) (wrl)(ve2) P, 1(8)Q, ,(6) [ﬁl’i.l)_z. mgzj P (8) Q. (8)
E(vr1/2)) 2u+ 3 2u+3 °

- U€3P.u(§)Qv(§) } ° (69>

For m large and § > 3/(2/2), the Legendre functions Pm(§) and Qm(§)

may be approximated to order 1/m by the form.ulasl6

&) S ml
b (€)= [ (m +1/2) e(m+1)<,o h™¢

FP T (ma) (2005075 1)L/

Jﬁjfj(m4,l)en(m*—l)COSth§
Mln+3/2)(1 - o2c0sn8 y1/2

Q) =

Substituting these into (69) we obtain, after some simplification,

2gh+2§3o<m1§+ o) . (1)

5 (£ +2) L |

Returning now to the theorem quoted above, thé condition (5&)

CR“ 2T F

N

requires, according to (56), that

(o 9] ]
!
Sy = > w1 for all v » N. (71)
w=N +1 { Cuv |
ntv

Using the triangle inequality we can write

léCfo Magnus and Oberhettinger; loc. cit., p. 73
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R 2 I2 .-1/2 Q0 R 2 I2.1/2
SU = (CIJU + C"UU ) / z (CUU +CMU /
M:N'\'l
ME Y
R -1 = R I
= 10, = |G |+ ‘cw . (72)
/A:N'[’l
nv

(Here the quantity C%L; is ignored since its order of magnitude is
clearly less than that of the errors in the other approximations.)
Finally, combining (68), (70) and (72), we arrive at the relation

2 2
S., = 11 eka(i +Q (g + A ) ) for all v > N, (73)
3c(26% 1267« - 1)

so that for sufficiently small values of ka (and for §‘> 3/(2/5))the
system (53) must have a solution g AA;&L7N obtainable as a limit by
means of the truncation technique.

Construction of the remaining set {_AZLEM‘LN.is accomplished by
substituting the previous set into the first N equations of the system
(32) and solving the resulting N x N system. To show that this is

possible we must prove that the infinite series which appear as coeffi-

cients of the A, converge. First consider the series

> Cuy Au ,  ueN. (74)
M=N+1

Use of the approximations (51) and (52) in equation (57) yields the
48
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expression

e
, & )< 81 2Fle kRPa2(u s %4 eox 1)( ek&j_) :

T Jzex (s 1) 2
+1
| S ENROURCITE YOY(C] s
-1

with a similar formula obtaining for ‘qu o It is obvious that the

integrals here are bounded in absolute value for any v 4 N, and
consequently it follows at once that the quantities ,QMA;idie out with
increasing u at such a rate that for any set of bounded /A%b[ the
series (7&) converges absolutely. Since the coefficients of the AA4 for
M <= N are formed by‘rearrangement of these series, it follows that
they must exist, and the system possesses a solution provided their
determinant does not vanish. The latter is a function of k, a, and ; s
and while it is conceivable that it might have zeroes in one or another
of these parameters, it cannot vanish identically. This completes the
argument.

As remarked at the beginning of this chapter, the error terms in
the estimates used here are nét taken into account and the proof may not
be considered rigorous until this is done. The criterion for conver-
gence obtainable from equation (73) is probably of little value, due to
the rough character of some of the inequalities used. However, in view

of the rates of which the critical quantities die out with increasing

index it seems clear that the approach outlined here could be made to
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yield a rigorous proof of the convergence and a more significant

criterion for the range of ka over which it holds.
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CHAPTER 8

NUMERICAL RESULTS

On the basis of the forms developed in the preceding
chapters a value was computed for the nose-on back-scattering cross
section of a’particular spheroid at a single wavelength., In order
to obtain é comparison with the exact so}ution, parameter values
were chosen for whiéﬁ the latter had brevicusly been determinedo.l”’
The axis ratio of the spheroid was taken as 10:1, and the wawelength
ratio ka was given the value 1,40, which is very near the location
of the first maximum in the curve of cross section vs. ka. The
integrals in equation (24) were evaluated by means of Simpson's fuleg
using intervals of .5° in the range 0< W& 10° and 2,5° in the range
]I)éq1é9000 (The smaller intervals near the origin were necessary
because with the value ofé'very near unity, the denéminator of the
integrand is small in this region and the value of the integrand
in general rises quite sharply. This effect would be less pronounced
for a fatter spheroid). The linear system (32) was then solved,
under the usual truncation assumptions; as an N*N sy;temg"and the
Qrder N was given several values in order to obtain some indication
of the convergence rate. Values of the scattering cross section

o were computed from equation (33) and divided by the geometric

7Siegel, Ko Moy et aloy "Theoretical and Numerical Determination
of the Radar Cross Section of a Prolate Spheroid® IRE Trans. Vol. AP. 4,

Noo. 3, July 19563 p02660
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optics resultrn'bb’/a2 for convenience in comparing with the known
solution. The value of the latter at the point in question, to

five significant figures, is

o = 1,1022
’lsz-‘/a2

The following table contains the values computed from the variational

result, listed as a function of the order N of the linear system.

N = 1 2 3 4 >

——_Qi77§ = 07337 1.833 1.025 1.110 1,105
ar b} /a '

The fifth order result is seen to agree with the exact answer
within about .3% at this point.

Some of the intermediate quantities used in obtaining these
figures may also be of interest and are tabulated heré for the
sake of completeness. We list first the coefficients C«+/ and

B, s removing certain common factors for convenience:
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i e e}

T
1
v |
|

N © Cyuw- [6m2Radx 2 je2]7
~Y ' Re Im .

0 0 | 2.68085 1073 | -3,40193 - 1071
0 2 | 93630 107 | -6.38906 1102 1 | 2.22699 - 107

Ne)

| -5.33925 © 1070 |

o 1 ,,,}f§§??9q1,1°”6 ~1.,37306 - 107% | 2 | -1.93905 . 103

2 | 7.13970 - 107° 2.46674 - 1071 ) 3| 26,50311 - 1074 (¢
1.85214 - 10=0 | -1.60819 - 10-2 | 4 1.41940 - 10=4

L
4| 1011642 - 10-7 Lo74239 - 1071
1 | 1.45043 - 10~k 1,01764 - 1071

113 | LebbLT6 - 10-6 | -2.57312 - 1072

3 |3 | 3.53351 - 106 | 3.69719 - 1071 || .

These quantities yield the following values of the A «as

the solution to the fifth order linear system:

| Be b | ImAe |
0 | 692536 - 1070 515 - 107

1| 1.69158 - 1073 115989 -

2 . -5.82917 - 101 9.76788 - 10™4

21.70612 - 10“1

3 131725 - 107

|
]
[ISBEU—: - l
|

L1 3.52111 - 1077

~3,00564 - 10~5

Substitution of these quantities in equation ( 5) gives the

potential distribution on the scattering surface.
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Several possibilities might be considered in an attempt
to improve the accuracy of the variational result. The discrepancy
between this and the exact answer must be attributable primarily
to three factors: 1) round-off error in the numefical quantities,
2) approximations inherent in numerical integratidn, and 3)‘
truncation of the series. The first of these. appears to bé}most
significant in the present case. The accuracy employed throughout
the computations was six decimal places, and a fifth-order answer
was also computed using intervals of twice the above specified
lengths in the integration process. This'yieldéd a value of 1,1025
for the quantity in question, which is somewhat more accurate than
the value obtained with the- shorter intérvals, indicating that the
point of diminishing returns had already been passed in the
direction of refining the integration intervalsy Regarding the
third factor, it seems that the successive orders of approximation
form an oscillating sequenée, and since the fifth-order answer
is betweeﬁ the fourth and the correct value, it is to be expected
that a sixth-order result, employing the same decimal accuracy,
might be worse than the fifth.

The problem of maintaining greater accuracy in the numerical
quantities might be'troublesome for hand computation, due to
limitaﬁions in the accuracy of available tables of the special
functions and the necessity for complicated interpolation methods;
however for a large scale computing machine.it should not prove

difficult,
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CHAPTER 9

CONCLUSIONS

As remarked previously, some of the procedures employed
in the foregoing are of extremely doubtful mathematical character
and are justified here only by the results they yield. It would
not be hard to reformulate the problem in mathematically rigorous
fashion, after the manner of Bouwkamp and others, but it seems
likely that the resulting integral forms might be even more
difficult to handle than those incurred in the present approach,
and since the latter apparently gives the correct résult there
is little reason to change it at this stage., As for the risks
involved in proceeding in the above manner, they are perhaps better

left unexamined,

There is little doubt that the solution obtained here is
correct, but the question of why it is correct might bear consid-
erable discussion. One is led to the conclusion that, although
it is not obvious at first glance, the various operations of
differentiation, integration, and passing to limits have actually
been performed in their proper sequence. Some of the formal
expressions used are thus incorrect, or at least misleading, but
given proper (or mathematically improper) intefpretation and

handling, they can be made to yield a valid result.
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From the standpoint of accuracy and economy the present
form of the variational solution still leavés something to be
desired. For cases where the available tables of spheroidal
coefficients do not apply, iﬂ is probably considerably superior to
the wave=function solutionp'at least for hand computation, and the
best available'estimates indicate that it may be competitive even
where these tables are useful for the‘latter; However it must
be admitted that the numerical evaluation of the remaining integrals
is tedious when done by hand, and the cross section depends very
sensitively on the values of these integrals. Further analysis
of the forms derived here might produce scme means of facilitating
the computation process or even eliminating the numerical integrations
entirely. For example, the power series expansions of the Bessel
and Hankel functions appearing in equation (23), together with
the explicit representations of tle Legendre polynomials, leave
only elementary integrals to be evaluated,; and the resulting forms
might be handled fairly simply by a computing machine., Alternatively
something might be gained through integration by parts, a certain
amount of which is possible after suitable manipulation of the
integrands.

For values of ka up to about 1.0 (for the 10:1 spheroid)
an excellent approximation to the cross section is given by the

three-term power series, described in the appendix which follows.
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The expressions given there yield the cross section of an arbitrary
spheroid in this region of the spectrum much more easily than do

the variational forms. It seems possible that one more term in this
series might give a‘good approximation to the first maximum in

the curve of cross section vs. ka, but the‘algebra involved in
obtaining this would be rather formidable, and eince the series is
expected to diverge somewhere in the near vicinity of this maximum
there is considerable uncertainty about the value of the result.

Another factor in the practicality of the variational
solution is of course the rate of convergence. Nothing specific
has been determined about this yet except that in the case computed
it seemsnto be comparable to that of the wave—function solution.

At higher values of ka the convergence would almost certainly be
slower, though it is not obvious how fast the rate changes. This
probably depends on the eccentricity of the spheroid in some manner
which is difficult to predict.

Although the back-scattering cross section is the only
physical quantity computed in the foregoing, it appears that more
information could be obtained without too much trouble. The values
of the A 4listed in the preceding chapter yield immediately the
potential layer on the scattering surface, through equation (5).
Furthermore once these are known, the integration of equation (1)

to give the scattered field at any point in space should be feasible.
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APPENDIX

POWER SERTES SOLUTION

The development in Chapter 5 indicates that the variational
forms may be used in deriving a power series representation for
the scattered field. The procedure and results in the case of the

18

circular aperture problem have been discussed by Magnus. For

the case of an electromagnetic wave striking an ellipsoid, the
first two non=vanishing coefficients have been derived by Stevensonl?
without reference to any variational expressions. Whether the

latter offer any material advantage in deriving thesé and subsequent
coefficients in the scalar problem is not immediately clear. At

any rate they have been utilized to obtain the second and third
coefficients for the prolate spheroid, and the results are given

here. The derivation proceeds aiong the lines described in Chapter 5.
It is straightforward but tedious, ahd the details, which are

contained in an unosublished memorandum (2591-509-M, 11 June 1957),

will not be included here,

18Magnusg Wo MInfinite Matrices Associated with Diffraction by an

Aperture.” Research Report EM-32; New York Univ.; Math, Research
Group, 1957,

198tevenson9 A; Fo "Electromagnetic Scattering by an Ellipsoid

in the Third Approximation,"® Jour. Applied Physics. Vol. 24,
No. 9, Sept. 1953,
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We are concerned with an expression for the scattered

field £( ) of the form
£(1) =3 pRK® | - (75)

It was shown earlier that the coefficients of index O and 1
vanish identically. Stevenson has -shown that in the electromagnetic
case at least the coefficient RB also vanishes. It develops that
this is also true in the scalar problem, and that here R5 vanishes
as well, though Ry apparently does not. We will limit ourselves
to determination of expressions fof Rﬁ and Rée

When the power series expansions of the quantities %/79
B./; and C«./ are substituted into the linear system (32) and the
expreésion (37) for the scattered field, it is easily shown that
the nth coefficient in the series (75) can be written as an inner

product
Ry=~ b2 A, B (76)

where An and B, are vectors whose components are proportional

to certain coefficients in the series (39) for %%(and 9« respectively,

and that furthermore

Ap = -_2 C;lﬁg (77)

where C;; is the inverse of a matrix C, whose elements are

proportional to certain coefficients in the series for q/41/9
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Combining (76) and {77) we can write R, as a quadratic form

WN\2 g lE
=/ b \* B - C B (78)
Rr] i—mewr/ n n o, ;,7:’
\ &
— — .

Tt can also be shown that the dimension of A, and B, should in
general be i(n+2)? for n even, or {n+1) (n+3) for n odd, though
in the present problem a number of the components vanish, so that
the dimension is actually less than the specified value in each
case considered. Moreover, because of the vanishing of Q/L(Z/
for 4+2/ odd, it develops at once that the matrix Cn is the direct
sum of two submatrices, one deriving from the even values of Is
and? and the other from the odd, so that the transformation is
considerably simpiified.

For the computation of R, and Ry the essential forms are as

I
follows:

The quantities B, and C../ are expanded in the power series

By =2mb? f?,b;/kr
/A rEs
C///r*// = ““leffr sza g"? Cgﬂ/ kg'ii mﬂ"%s (79>

it
O

s
{This notation differs slightly from that in Chapter 5 in that
for the cake of economy we have removed commen factors from the
cosfficients b¥ and cg?} The vector B, may then be written
B & (55 59 13, b3, )

and the corresponding matrix CL is
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00 00 02
= (314 . :n
‘ GOZ 0 022
.0 o)
L

Inversion of this matrix and substitution

THE UNIVERSITY OF MICHIGAN

in (78) gives finally

) 2)2 . 5 0202 0,.0 ey2 | ¢ 022 0022\
Ry, = ._L. (b5) 2 bibse +z b2b4+(b2) L (e29)=- c),cg”
al - 052 Cgocgd C%@ (Gg@)zggz
1,1 2 L1100
. 2191103 (by) 3 | (80)
11 - 1142 !
C’Q (@‘o ) J
Similarly we can write
Ro= (1.0 2 .0 .2 .0 1 .1 3 l
B = (bys b3s by b bgs bYs b3y by be)
and ~ ! / - W
0O 0 0 0 % c o o it
2 o .
22 .02 11 11
0 0 0 CQ %o » O GO 0 @2
Cy = 0 0 80 32 cf® |*jo o 23 L3
22 02 22 02 it 11 13 .11
0 coo g e3¢5 cy cy ey CA» |
© 02 .00 .02 o - -
/cg “o< cf° cf cg J
which yield ° v '
e w2 : 2 |
Rg= _b 1 (b3) \2 3% 52 gQng Ggﬁcge(@§2)2
az_‘ (ceo>3(@22>2 .
: !
- cgoc22(002>2%r(820832)2 _ 600022(682}2°F(022)4j
. i : : 5ol
+2 bSb§ {( @)2602©§2 @gzcgecz@gziw 90(602)3 QQQQQ)QGOQQSZJ
~ 010 [(200,00(22)2 _ £90522( ;02 2 012,02, 22 0042
2b b4 [c (c ) c5%es (c ) b2b4 (@ )
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+2 B368(c3°)?(e2?)? - (b3)? [(c§°)3052@<c3%32>2]
-2 b%bg(cgo)zcgzc§2+2 bgbﬁ(cgo)Bcggf(bﬁ)z(08°C§2>é}

} L (12 [o1133,11 011(013>2=_(C%1>2033]g(bl)2(c11>2c33
iy [ [ T

. - ¥
- (13)2(cth)3 + 2 bivdellelledds 2 pipd(clt)2eli2 b}b%(c%l)chjJ_ (e1)

The values of the.bﬁjaﬁd cgﬂ/are obtainable from the
forms derived in Chapters 2 and 3. The general expressions are

tabulated belows

Values of bi/

0 - 2a e - ad_
12 _ia? i
R 5 8k
2 - ha Lad |
15 105
3 2ia’
735
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These formulas along with equation (43) may be used to
obtain the first three coefficients in the power series solution
for an arbitrary spheroid. For the 10:1 spheroid the values of E

and( are 1.0050 and .1005 respectively, and substitution of these

2591-1-~T

) s o ~ Values of o B o |
0] 0 2! 4/3 B |
0. 0 4 | ha?x? £+1

e eET

oo,
0 0 6| _ 2842 [2&+x210g %+IJ
| 3583 .5
0 2 0., 2 2(3£2-2) +3 E X2 1og?->+1]
. 15 [ B} ,“WES?;.W L |
0 2 2 z+2 2 r6:§==(3%2«1):Lo J
T | “£1
22 0 i é.é_,.,-(23%2=2)+320‘ log_i_.J
| 5% g-1 _
22 2| 4 [(uEhs0E21)sE 0<2(9% -) log&+l
’ 105 5-1
111 0 28 | 2 4 2 1og§
. % 3a2 !
11 2 rzzoz%z) (3224)0«2 1o 1]
R 2 L -1
11 4 a20(2 | 2% (23% 243)+(238 4188 %43) :Logg= ]
21083 | 5
1 3 0 1 [’25(452h m48i2+7) (15%2=1)(3%2~1)o<2 log g_-:;l
; : _ 70 - \ e o % l)I
3 3 0 3E(5£31) ( 2;(5%2=13)+3(5% 2~1)0<2 1og§ 11
5
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in the above gives the following values of the ha

6.736 2> o 1073

R, -
R, = ~2.838 a? ° 1073
R, = 2922 al o 1074

For comparison with the exact solution it is convenient
to obtain the corresponding series representation of the quantity

o = = 5, (ka)™

we obtain as the first three non-vanishing coefficients

o5t ()7 e
as
S, = 8a\* . Ry . B, = -1.5296
6 2 8a) . By .
B -3 %
Sg = A(é\h (B2, 2Ry | Rl = k79
b \a } P

The accompanying graph shows how the exact curve is
approximated by the power series representations. It appears
that the three-term expression gives an excellent approximation

to the correct curve out to about ka = 1.0, Using the three

coefficients derived here it may be possible to develop an expression

which gives a still better approximation in some range of ka>1,

but this has not yet been thoroughly investigated.
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—_ ‘///
—+— !
10.0_
loO__
-— o)
10 ///
01 o /
i E— (a) Exact Solution
7] (b) Power Series, 1 Term
1 (Rayleigh)
(c) Power Series, 2 Terms
. (¢) n» " 3 Terms
001 _
.1 22 o3 .5 .7 1.0 2.0

ka
BACK=SCATTERING CROSS SECTION o~

TTbA;aZ
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