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Abstract 

In this paper a modified form of Euler integration is described 
which, when applied to the six-degree of freedom flight equa- 
tions, retains and enhances many of the advantages of AB-2 
integration and at the same time eliminates the disadvantages. 
The scheme is based on the Euler integration formula, but with 
the state-variable derivative represented at the midpoint of each 
integration step. In this case the conventional first-order Euler 
method actually becomes second order, with a very small 
accompanying error coefficient. To apply this method to the 
six-degree-of-freedom flight equations it is necessary to define 
velocity states at half-integer frame times and position states at 
integer frame times. It is shown through dynamic error 
analysis that the modified Euler method has an error coefficient 
which is one-tenth that associated with AB-2. The method also 
exhibits minimal output delay in response to transient inputs. 
The modified Euler method may also be useful in the integra- 
tion of state and costate equations in real-time mechanization of 
Kalrnan filters for navigation and control systems. 

The ever increasing complexity of the math models used as 
a basis for real time flight simulation has continued to apply 
pressure on digital processor speed requirements for such 
simulations. More effective numerical integration algorithms 
can help relieve some of this pressure. The most popular 
method currently in use for flight simulation is the Adams- 
Bashforth second-order predictor method, usually referred to as 
AB-2. Its advantages include second-order accuracy with 
respec1 to integration step size, only one required pass through 
the state equations per integration step, and compatibility with 
real-time inputs. Disadvantages include stability problems 
associated with extraneous roots and response delays of one or 
two frames following transient inputs. 

In the next section we consider AB-2 along with two other 
second-order integration methods suitable for real-time 
simulation of dynamic systems. The first is a two-pass real- 
time predictor-corrector algorithm and the second is a single- 
pass version of the same. We then introduce the modified- 
Euler method and describe its application to the flight 
equations. The accuracy of the various methods is compared 
by means of time-history plots of the dynamic error in 
simulating aircraft response to a control-surface input. 

2. Some Real-time Second-order Inteeration Aleorithm~ 

Consider first the AB-2 predictor integration method 
applied to the state equation given by 
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Here X is the state vector, U is the input vector, and h is the 
integration step size. The standard AB-2 predictor algorithm is 
the following: 

where X ,  = X(nh)  and 

The AB-2 formula in Eq. (2) is derived from the area under a 
linear extrapolation from F,  to Fn+l based on Fn and Fn.l. 

From Z transform theory it can be shown that the numerical 
integration formula in general has a transfer function for 
sinusoidal inputs which takes the form [I] 

where for AB-2 integration, k = 2 and el = 5/12. The term 
eI(iwh)k represents the error in the integrator transfer function 
compared with the ideal continuous integrator transfer function, 
1 Based on the integrator model of Eq. (4) the transfer 
function gain and phase error in simulating any order of 
dynamic system, when quasi-linearized, can easily be obtained 
[I]. It can also be shown that the fractional error in any 
characteristic root as a result of integration truncation errors is 
given by 

where 1 is the continuous system root and a* is the equivalent 
root for the digital simulation. Thus it is apparent that the order 
k and error coefficient eI for any given integration algorithm 
can be used to pred~ct the dynamic errors that will be i n d u c e d  
into a simulation because of the finite step size h when using 
that algorithm. It should be noted that this methodology of 
error analysis is not applicable to multiple-pass integration 
methods, such as the Runge-Kutta algorithms, where different 
orders of integration algorithms are used in the various 
derivative evaluation passes that constitute a single integration 
step. It is applicable to all of the real-time methods considered 
in this paper. 

As indicated in Eq. (1). the state variable derivative F will 
in general depend on the state X.  Since the AB-2 algorithm in 
Eq. (2) involves the past derivative Fn.1, the next state Xn+1 
will depend on the past state Xn-1 as well as the current state 
X n .  For this reason the AB-2 method introduces one 
extraneous state per integration. The characteristic roots 



corresponding to these extraneous states damp rapidly for small 
integration step sizes, in which case they do not contribute 
significant errors to the simulation. However, when the step 
size becomes large, the extraneous roots can cause instability. 
In particular, for a negative real root A, instability occurs when 
Ah < -1. This means that when AB-2 integration is used, the 
step size must be kept less than the shortest time constant in the 
system being simulated. Stability charts in the complex ah  
plane show the allowable step sizes when the roots of the 
continuous system are complex [2]. 

Consider next the Adams-Moulton two-pass predictor- 
corrector algorithm. Here the AB-2 method is used on the first 
pass to compute an estimate, &+I, for the n+l state. From this 
state and the input Un+l the estimated derivative is in turn 
calculated. The corrector pass then computes Xn+1 using Fn 
and with the following formula: 

If the estimate in Eq. (6) is repaced by the true derivative 
F,+I, the formula represents implicit trapezoidal integration. It 
turns out that the explicit AM-2 method has the same 
asymptotic error coefficient, e, = - 1/12, as the implicit trape- 
zoidal integration which it approximates. The order k = 2. 

It should be noted that the AM-2 algorithm requires two 
passes through the state equations per integration step. At the 
beginning of the second pass, the input Un+1 is used in the 
calculation of the derivative estimate FA+1. But Un+1 will not 
be available in real time until the completion of the second pass. 
Hence AM-2 is not compatible with real-time inputs. 

However, a second-order predictor-corrector algorithm 
suitable for real-time inputs can be constructed using the 
concept behind modified Euler integration. In modified Euler 
integration the state-variable derivative is represented at the 
midpoint of the integration step. Thus the integration formula 
becomes 

Xn+l = Xn + h h+ln  (7) 

If the derivative F is a function of the state X, which is 
normally the case, then it is necessary to compute an estimate 
for the state Xn+1n in order to evaluate Fn+lR. In real-time 
Runge-Kutta 2 this is accomplished using Euler integration 
with a step size of h/2. The resulting real-time RK-2 integrator 
error coefficient el = 116. In the second-order real-time 
predictor-corrector method, denoted here as RTAM-2, the 
estimate forXn+1n is computed using a second-order predictor 
algorithm. This leads directly to the following difference 
equations [31: 

x&,, = x, + h(QFn-+Fn- , )  (8) 

The predictor formula in Eq. (8) for Xn+1n is derived from 
the area under a linear extrapolation based on Fn and Fn-1. The 
RTAM-2 given by Eqs. (8), (9) and (10) requires the input Un 
at the start of the first pass and U,,+ln at the start of the second 
pass, both compatible with real time. Here the RTAM-2 
integrator error coefficient el = 1/24, compared with -1112 for 
standard AM-2. For a negative real root A, instability occurs 

when Ah < - 2. In the complex ah plane the overall stability 
boundary is slightly larger than the stability boundary for 
standard AM-2. 

Thus the modified AM-2 integration denoted here as 
RTAM-2 can be used as a general, real-time integration method 
for simulating nonlinear systems. For small step sizes h it is 
twice as accurate as either implicit trapezoidal integration or 
standard AM-2 integration, neither of which are compatible 
with real-time inputs. It is ten times more accurate than AB-2 
integration. It should be realized, however, that the RTAM-2 
considered here is a two pass per step method. Thus it will 
normally take about twice as long for computer execution as 
AB-2. When this speed differential is taken into account, the 
modified AM-2 still exhibits 2.5 times the dynamic accuracy of 
AB-2 based on the approximate asymptotic formulas for small 
step size. In a real-time simula-tion the intermediate state 
X;1+112 can be used as a real-time output which has full second- 
order predictor accuracy for the step size h/2. Use of both 
X;1+in and Xn+1, then, provides outputs at the sample rate of a 
single-pass method, even though a two-pass method is being 
utilized. Note also that the method uses two input samples per 
frame, Un and Un+1n. 

The final integration method considered in this section is a 
single-pass version of the RTAM-2 algorithm described above. 
The method computes the state-variable derivative F only at 
integer frame times rather than both half-integer and integer 
frame times, as in Eqs. (8), (9) and (10). Values of the state X 
at half-integer frame times are computed using the modified- 
Euler algorithm, while values of X at integer frame times are 
computed using a second-order predictor. The difference 
equations are the following [3]: 

where 
FA = F(X;,U,) 

The predictor formula in Eq. (12) is derived from a linear 
extrapolation based on FA and Fi.1. The SPRTAM-2 given by 
Eqs. (1 l), (12) and (13) requires the input Un at the start of the 
nth integration step, which is compatible with real time. From 
Z transform theory we can show that the SPRTAM-2 integrator 
error coefficient el = 1/24, the same as that obtained previously 
for the two-pass RTAM-2. Since it executes twice as fast (one 
pass per integration step versus two for RTAM-2) and the 
dynamic errors are proportional to h2, it will in general be four 
times as accurate. 

The price we pay for the accuracy increase in the single- 
pass predictor-corrector method is reduced stability. For a 
negative real root A, instability occurs for Ah < - 417, compared 
with Ah < - 2 for RTAM-2 (actually, hh < - 1 if one takes into 
account the doubled execution time for the two-pass RTAM-2). 
In the complex Ah plane the overall stability boundary for 
SPRTAM-2 is therefore somewhat smaller than the boundary 
for either standard AM-2 or the RTAM-2 introduced here. It is 
also somewhat smaller than the stabilty boundary for AB-2 
integration. In any event we should remember that the 
integrator error coefficient e, in Eq. (4) and the characteristic 
root error in Eq. (5) are both based on approximate formulas 
that assume the integration step size is small in comparison with 



the reciprocal frequencies or eigenvalues, respectively. For the 
moderate step sizes normally used in flight simulation, final 
comparison of integration methods should be based on actual 
example simulations, as we shall see in a following section. 

3. The Modified Euler Inteeration Methad 

Application of the modified-Euler integration method to the 
nonlinear flight equations can be understood by considering the 
following two vector state equations for the velocity vector V 
and the displacement vector D: 

To apply the modified-Euler method we represent the discrete 
velocity state Vat half-integer frame times, denoted by V,,-lD 
The acceleration A and discrete displacement state D are 
represented at integer frame times, denoted by An and Dn, 
respectively. Then the modified-Euler difference equations 
become 

Here Vi represents an estimate of V at the nth frame. To obtain 
this estimate we resort to the same predictor formula used 
above in Eq. (12) for the SPRTAM-2 method. Thus we let 

Unlike the SPRTAM-2 method, however, we note here that the 
displacement state D, in Eq. (16) is not a predictor-derived 
estimate but results directly from the modified-Euler integration 
algorithm itself in Eq. (15). This results in considerably 
improved stability, particularly for dynamic systems having 
quasi-linear charcteristic roots that are near the imaginary axis. 
In fact if A does not depend on V and depends linearly on D, as 
would be the case for the pure imaginary roots of an undamped 
dynamic system, it is easy to show that the modified-Euler 
method presented here exhibits exactly zero damping, regard- 
less of the integration step size h [4]. 

We note that the predictor formula can be used to compute 
the displacement 4+3yz in accordance with the formula 

Thus at the end of the nth integration frame in a real-time 
simulation we can output the displacement state Dn+1 as needed 
in real time and a prediction of the state, D,4,+3/2, one half step 
ahead of real time. This could be quite advantageous in 
compensating for other delays in an overall real-time 
simulation, such as the half-frame delay associated with the 
dynamics of zero-order DAC (digital-to-analog) extrapolators. 

The nonlinear dependence of the acceleration A on the 
velocity V in Eq. (14) can often be expressed in terms of 
VaAIaV, where aAIaV is not a function of V, or at worst is 
only slightly dependent on V. For example if A represents 
dgldt, the time derivative of pitch rate Q in the flight equations, 
then aAlaQ is proportional to the aerodynamic stability 
dericvative C,Q i.e.. the dimensionless pitching moment due 
to dimensionless pitch rate. CMQ is normally independent of 
Q, although it may be dependent on other variables such as 

Mach number. Also, the overall aA/aQ in this case will be 
independent of Q. Letting V be a scalar which represents the 
angular velocity Q, we can rewrite Eq. (14) as follows: 

= C, [D, U(t)] + C,[D,U(t)]V (19) 

where Cg + CIV = A and C1 = JAIaV. Now, when mechan- 
izing the modified-Euler difference equations (15) and (16) we 
can compute Vi, the estimate of V at the nth frame, by the 
formula 

vi = 4 (Vn+In + Vn.la ) (20) 

From Eqs. (19) and (20) the difference equation (15) then 
becomes 

With respect to the velocity state V this equation clearly 
represents implicit trapezoidal integration. However it can be 
solved to obtain the following explicit formula for Vn+iR: 

This formulation, i.e., the use of trapezoidal integration for the 
damping term, expands very substantially the stability region in 
the M plane compared with the use of the predictor formula of 
Eq. (17) for the damping term [5]. It can also reduce apprecia- 
bly the dynamic errors following transient inputs. The extra 
required computation is modest and consists mainly of an 
additional division. 

In deriving Eq. (22) we have assumed that V ia a scalar, 
whereas V will in general be a vector. In this case aA/dV will 
be a matrix, which must be inverted to obtain the explicit 
formula for Vn+1/2. Fortunately, the critical terms in this matrix 
in the case of the flight equations are the diagonal terms, in 
which case simple formulas similar to Eq. (22) involving only 
the diagonal terms can be derived. In particular, if P, Q, and R 
represent angular velocity components in roll, pitch, and yaw, 
respectively, difference equations similar to (22) can be written 
for Pn+l/2, Qn+1/2, and Rn+in where C1 in each equation is 
proportional to the stability derivatives C Q ~ ,  C M ~ ,  and CNR 
respectively. 

4. ExampleSolutions of Flight Eauation~ 

In this section we compare the performance of the various 
real-time integration algorithms described in the previous two 
sections in the solution of actual flight equations. Since the 
largest characteristic roots for the rigid airframe are normally 
those associated with the short period pitching motion, we will 
only consider symmetric flight, i.e., the longitudinal equations 
of motion, in our example simulation. The conclusions 
regarding dynamic errors can safely extrapolated to the full six- 
degree-of-freedom case. The scalar rotational flight equations 
are invariably written with respect to aircraft body axes. 
However, the translational equations can be written with 
respect to either body or flight path axes [6]. Here we will use 
flight path axes, since they seem to be somewhat more suitable 
for the modified-Euler algotithm. In this case the longitudinal 
equations of motion can be written as follows: 



H = V, sin (Q- a )  (27) 

Here V,, is the total aircraft velocity, a is the angle of attack, Q 
is the pitch rate, O is the pitch angle, and H is the altitude; F, 
and F,, are the external force components along the x and z 
flight-path axes, respectively, and M is the moment about they 
body axis; finally, m and Iyy reqresent, respectively, the aircraft 
mass and pitch-axis moment of inertia. The following formulas 
were used to represent the external forces and moment: 

T 
F,, =- qS (CL+ CLseSe ) + gcos (0- a )  - sin a 

C 
M =qcS(CM0+CMaa+CM Q 2Vp - Q + C ~ . - & + C ~ , ~ S ~ )  a 2Vp 

(30) 
where 

1 2  q = dynamic pressure = -Z pVp (3 1) 

and 
CL = lift coefficient = Ch + CLa a (32) 

In these equations S is the aircraft wing area, g is the gravity 
acceleration, T is powerplant thrust, 6, is elevator 
displacement, and c is the mean aerodynamic chord. The 
various C's represent aerodynamic coefficients and stability 
derivatives in accordance with the subscripts. In a full flight- 
envelope simulation these will be nonlinear functions of other 
variables such as V p  (through Mach number dependence), a, 
6,, and h. The actual difference equations used to solve (23) 
through (32) using modified Euler integration are presented in 
the Appendix. 

As a specific example we consider a business jet flying 
at 40,000 feet at a speed of Mach 0.7 [7]. For the above flight 
condition the undamped natural frequency of the short-period 
mode is about 3 radsec and the damping ratio is 0.4. We 
consider the aircraft response to two different input functions. 
One is a step elevator displacement of -0.01 radians at the initial 
time r = 0. The second is the input function shown in Figure 1, 
which is a step elevator displacement with a one second rise 
time. Use of this input function tends to reduce the large 
transient errors caused by step inputs when predictor 
integration algorithms are used. It is also probably more 
representative of an actual pilot input. Figures 2 and 3 show 
the aircraft pitch rate and pitch angle response, as generated by 
the simulation using RK-4 integration with a step size h = 0.05 
seconds. With this step size the RK-4 simulation is sufficiently 
accurate to serve as an ideal solution against which the real-time 
second-order algorithms described in this paper can be 
checked. 

The predictor algorithms considered in this paper all depend 
on the past as well as the present value of each state-variable 
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Figure 1. Finite rise-time elevator step input. 
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Figure 2. Pitch-rate response to input of Figure 1. 
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Figure 3. Pitch angle response to input of Figure 1. 

derivative. This causes an initial startup ambiguity, since at the 
initial time t = 0 the past states and hence their derivatives are 
not known. They could be computed numerically prior to 
initiation of the simulation by integrating backwards one step 
using, for example, an RK algorithm. However, the usual 
method in real time simulation is to employ Euler simulation for 
the first step. Unfortunately, this can also cause startup 
transients which can mask the dynamic errors we are looking 
for in the second-order algorithms considered here. To circum- 
vent this problem we have chosen to use a real-time RK 
algorithm for the first integration step. This consists of an 
Euler half-step followed by an RK-2 full step which uses the 
derivative as computed from the half-step result [I]. Subse- 
quent integration steps use the particular second-order method 
being studied. In Figure 4 the error in pitch angle is plotted 
versus time with data points from the simulation using AB-2, 
RTAM-2, SPRTAM-2 and modified Euler integration, as 
described in this paper. For each algorithm the step size h = 
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Figure 4. Pitch angle error versus time for step input in elev. 
displacement. 

0.1 (10 integration steps per second), except that in the case of 
the RTAM-2 method we have used h = 0.2. This is because 
the RTAM-2 is a two-pass method which requires approximate- 
ly twice the processor time per overall integration step in 
comparison with single-pass methods. From the figure it is 
evident that the modified-Euler algorithm performs slightly 
better than the SPRTAM-2 algorithm, with the AB-2 and 
RTAM-2 algorithms exhibiting considerably larger errors. For 
smaller step sizes the RTAM-2 method becomes significantly 
more accurate than AB-2, finally approaching an asymptotic 
limit equal to 0.4 times the AB-2 error, as noted earlier in 
Section 2. For smaller step sizes the SPRTAM-2 and 
modified-Euler methods continue to show an order of 
magnitude advantage over AB-2. 

Next we consider the finite rise-time step input. In this 
case, in order to have the example be representative of an 
ongoing simulation, we have delayed three integration steps 
before applying the elevator input function of Figure 1. In 
Figure 5 the error in pitch angle is plotted versus time with data 
points from the simulation using AB-2, SPRTAM-2 and 
modified Euler integration. Again the step size h = 0.1. Once 

AB-2, h = 0.1 

SPRTAM-2, h = 0.1 
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Figure 5. Pitch angle error for the input function of Figure 1, 
delayed in time by 1 second. 

more the superior accuracy of the modified-Euler method is 
apparent. It is interesting to note the transient error introduced 
not only by the input slope discontinuity at t = 0.3, but also the 
additional transient error introduced by the second input slope 
discontinuity at t = 1.3. 

In this paper we have only considered second-order 
integraion algorithms. This is because it is usually not 
worthwhile to consider higher-order methods for the moderate 
dynamic accuracy (the order of one percent) normally con- 
sidered adequate for real-time flight simulation. Higher order 
methods sutable for real-time simulation also tend to be less 
stable. 

5. Conclusions 

We have shown that the modified form of Euler integration 
described in this paper, when applied to the six-degree-of- 
freedom flight equations, gives results that are substantially 
more accurate than the AB-2 method which is usually 
employed. This has been demonstrated by considering the 
asymptotic formulas for characteristic root and transfer function 
errors, and by comparing actual time-domain errors in the 
response to control surface input functions. Following a 
transient input, the modified-Euler method produces an output 
response in the next integration step, whereas AB-2 integration 
exhibits an additional one-step delay in displacement response. 
The inherent nature of the modified-Euler algorithm permits it 
to produce outputs at half-integer steps. This feature can be 
used to produce an accurate half-frame lead in real-time output 
displacement. The modified Euler method may also be useful 
in the integration of state and costate equations in real-time 
mechanization of Kalman filters for navigation and control 
systems. 

We have also shown that two other second-order 
integration methods, a real-time AM-2 predictor-corrector and a 
single-pass version of the same, represent more accurate 
alternatives to AB-2 integration for flight simulation. 

The flight equations used for the numerical results 
presented in this paper are given by Eqs. (23) through (32). 
Application of the AB-2, RTAM-2 and SPRTAM-2 integration 
algorithms to these equations is straightfornard. Application of 
the modified Euler method requires additional explanation, 
which is the purpose of this appendix. When the six-degree- 
of-freedom flight equations are represented entirely in body 
axes, the six velocity states consist of U ,  V, W, the com- 
ponents of airframe velocity, and P, Q, R, the components of 
airframe angular velocity, along the body axes, x, y, z ,  respec- 
tively. The six displacement states consist of three position 
coordinates, normally latitude, longitude, and altitude, and, 
when Euler angles are used, three angular position coordinates, 
0, 0, and Y, . Alternatively, four quaternions, el, e2, e3, and 
e4, can be used as angular position states, from which direction 
cosines and Euler angles can be computed. To prevent 
accumulation of errors due to the the redundant fourth 
quaternion state, constraint terms which maintain e12 + e22 + 
e32 + e42 = 1 are added to the right side of each quaternion state 
equation. 



When the translational equations of motion for the six- 
degree-of-freedom flight equations are derived using flight-path 
axes, the velocity states are represented by Vp,  the total aircraft 
velocity, a, the angle of attack, and P, the sideslip angle [6]. 
When only the nonlinear symmetric (longitudinal) equations of 
motion are considered, the state equations become (23) through 
(27), where the equation for horizontal position has not been 
included. Based on the way in which modified-Euler integra- 
tion was introduced in Section 3, the velocity states Vp,  a and 
Q would be represented at half-integer frames, with the position 
states O and H represented at integer frames. For the nth inte- 
gration frame this results in the computation of the n+1/2 
velocity state from the n-112 velocity state, followed by 
computation of the n+l position state from the n position state 
using the n+1/2 velocity state just obtained. However, from 
Eq. (24) it is apparent that it would be better to represent the 
angle of attack a at integrer frames, even though it is derived 
from a velocity state equation. This is because the dominant 
term on the right side of Eq. (24) affecting the high-speed 
dynamics is the pitch-rate Q, which is represented at half- 
integer frames. The other term in Eq. (24), F,,lrnVp, is the 
negative of the flight-path-axis pitch rate, and is generally much 
smaller in magnitude than Q .  This is the reason for 
representing a at integer frames in the modified Euler flight 
equations. When the lateral equations of motion are considered 
in a full six-degree-of-freedom simulation, the same rationale is 
used to represent the velocity state Pat  integer rather than half- 
integer frames when using modified Euler integration. 

With this as background, we now list the actual difference 
equations used in each modified-Euler integration step when 
solving the longitudinal flight equations. 

Variables available at the start of the nth integration frame: 

Difference equations for the nth integration frame (in order of 
execution): 

@Lm = e m , +  h(.875QW1,- .375Qn.,,) (A. 12) 

Some comments regarding the above equations are in order. 
As noted previously, in an actual full flight-envelope simulation 
the aerodynamic coefficients which appear as constants in the 
equations will in fact be nonlinear functions of variables such 
as angle of attack, Mach number, control-surface dispacement, 
etc. The calculation of these multivariable functions by table 
lookup and linear interpolation usually constitutes a sizeable 
fraction of the total processor time for one integration step. 

Eq. (A.l) indicates the necessity of computing both CLn 
and C L , + ~ / ~ .  In a full simulation the drag coefficient in Eq. 
(A.2) would probably be computed as a nonlinear function of 
Mach number, angle of attack, and perhaps other variables such 
as flap position and elevator position. Typically, the lift 
coefficient would involve a nonlinear function of the same 
variables. Note that the ci term in Eq. (30) is synthesized in 
Eq. (A.3) in terms of Q and F,JmVp in accordance with the 
formula in Eq. (24). The ix term actually results from a first- 
order approximation to the time delay associated with the effect 
of wing downwash on the horizontal tail. An alternative 
method for simualing this is to include a pure time delay 
proportional to 1/Vp for the fraction of the C M , ~  term due to 
the downwash effect. 

In Eq. (A.8) the dynamic pressure q, has been used rather 
than qn+1/2, even though the right side of Eq. (A.8) in general 
is represented at the n + l n  frame. This is because both the 
density p and velocity V p  vary slowly enough that it seems 
hardly worthwhile to compute the dynamic pressure at both the 
n and n+1/2 frame, although this could be done with a modest 
additional amount of calculation. Also, in Eqs. (29) and (A.8) 
we have not included aerodynamic lift terms involving Q and ci 
simply because their effect generally turns out to be negligible. 

In the full six-degree-of-freedom flight equations the 
counterpart of Eq. (26), or its equivalent difference equation 
(A. 1 I), would be nonlinear state equations for the three Euler 
angle rates. Or, if quaternions are used, there would be four 
state equations invloving e l ,  e2, e3, and eq, as well as P, Q, 
and R. The corresponding difference equations would compute 

e ~ , + ~ ,  e3n+l, and e4,+] from formulas involving Pn+ln, 
Q,+,,, and R,+ln. To convert body axis velocity components 
to earth-axis velocity components at the n+ln  frame, direction 
cosines are used. These are computed at the n+1/2 frame from 
quaternions at the n+1/2 frame which in turn are computed as 
the average value of the quaternions at the n and n+l frame. 
Finally, the earth-axis position coordinates are computed at the 
n+l frame with modified Euler integration using the earth axis 
velocity components at the n+ln frame as the input derivatives. 
Eqs. (A.l l)  and (A.13) represent the equivalent to these 
calculations in our simplified longitudinal case. 
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