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Abstract 

Within the context of optimization of 
finite element models, methodology is devel- 
oped for the tracking of eigenpairs during per- 
turbations in the eigenproblem, for both self- 
adjoint and nonself-adjoint cases. One goal 
is to eliminate difficulties caused by “mode- 
switching” (i.e. frequency crossing). Out of sev- 
eral candidate methods, two methods for mode 
tracking are successful. The first method, the 
higher order eigenpair perturbation algorithm, 
is based on a perturbation expansion of the 
eigenproblem. It replaces the reanalysis step 
of an optimization routine with the important 
feature of maintaining the correspondence be- 
tween the baseline and perturbed eigenpairs. 
The second method is a cross-orthogonality 
check method which uses mass orthogonality to 
reestablish correspondence after a standard re- 
analysis. Modified eigenpair extraction routines 
(Lanczos, subspace iteration, inverse power) 
were unsuccessful in tracking modes. Applica- 
tions of mode tracking technology that are pre- 
sented are frequency-constrained optimization, 
optimization with mode shape constraints, and 
V-g flutter analysis. Each application procedure 
is outlined and examples are given. Recommen- 
dations are made based on method speed and 
robustness in the example problems. 
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Nomenclature 

[A] = aerodynamic matrix from the doublet 

b = reference semi-chord of a wing 
[C] = cross-orthogonality check matrix 
C = weighting factor determining the 

lattice method; complex,nonsymmetric 

contribution of the homogeneous soln. 
to the total soln. for the eigenvector 
perturbation 

= coefficient matrix in the eigenvector 
perturbation solutions; singular 

= static pseudo-load vector appearing in 
eigenvector perturbation calculations 

= artificial structural damping in V-g 
flutter analysis 

[D] 

{ F }  

g 

[ K ]  = stiffness matrix; symmetric 
[ I C ]  
k = reduced frequency (q) 
[MI = mass matrix; symmetric 
[m] 
{ V }  

= modal stiffness matrix; diagonal 

= modal mass matrix; diagonal 
= particular solution for eigenvector 

perturbation calculated via Nelson’s 
method 

V = airspeed 
{ z }  = flutter mode of normal mode 

participation factors; eigenvector in V-g 
analysis ( [k ] {z~} i  = xi([mI + [ A ] ) { z R ) ~ )  

[ Z ]  
A 

x 

[ 
(4) 

= matrix of { z }  column vectors 
= perturbation symbol denoting exact 

change from a reference 
= eigenvalue (real in self-adjoint problem, 

complex in nonself-adjoint problem) 
= collection of terms in solution for ci 
= normal mode shape; eigenvector in 

structural eigenproblem ([K]{4}i 
= Ai[M]{4}i); normalized with respect 
to appropriate [MI 
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[(a] 
w 

= matrix of {d} column vectors 
= circular frequency of harmonic 

oscillation in V-g flutter analysis 

Subscripts 
i 
L 

R 

= associated with the ith eigenpair 
= associated with the left eigenvector in 

= associated with the right eigenvector in 
nonself-adjoint problems 

nonself-adjoint problems 

Superscripts 
( I C )  = optimization iteration number 
T 

denoted by nT 
0 = baseline values 
1 

= standard transpose, hermitian transpose 

= perturbed values resultant from parameter 

= a user specified quantity 
= denotes error from a specified value 

change, e.g. ( )' = ( )' + A( ) 

N 

nt ro duct ion 

As optimization technology has matured, the range 
of disciplines that can appear in an optimization pro- 
cess has increased dramatically. Numerous codes are 
now capable of complex multi-disciplinary optimiza- 
tion. In ASTROS (Automated Structural Optimization 
System), for example, constraints can be applied on 
stress, displacements, buckling loads, natural frequen- 
cies, and static and dynamic aeroelastic constraints. In 
optimization for free vibration characteristics, previous 
work has been dominated by the frequency-constrained 
problem. Eigenvector control is a relatively new tech- 
nology and can appear as a stand-alone constraint on 
the optimization. In both frequency-constrained and 
mode shape-constrained optimization, mode tracking is 
an important technology which allows for proper book- 
keeping on constrained frequencies and mode shapes. 

the design goals, and from the mathematical viewpoint, 
in that convergence can be destroyed. 

Another concern when optimizing is that mode 
shapes can change drastically in character. Rather 
than smoothly varying with changes in design variables, 
mode shapes can jump to entirely different shapes. For 
example, a rectangular plate having modes with hori- 
zontal and vertical nodal lines might have modes with 
diagonal nodal lines after a design perturbation. In 
some design scenarios, i t  may be desirable to handle 
this type of behavior; in all cases it is desirable to detect 
these abrupt changes, even if no action will be taken. 

ode Tracking 

Mode tracking algorithms perform an eigenproblem 
analysis with the added feature of maintaining corre- 
spondence between baseline and perturbed (current and 
projected) modes. Thus, they can be used to replace 
the reanalysis phase of an optimization algorithm. A 
typical flowchart for optimization with mode tracking 
is shown in Figure 1. The first step in structural op- 
timization is the generation of a baseline model. After 
thorough analysis of the baseline model, criteria are de- 
veloped for desired improvements and are implemented 

When defining constraints on the dynamic charac- 
teristics of a structure, specific frequencies and modes 
must be referenced in some manner. In vibration prob- 
lems, the eigenvalues and eigenvectors are ordered by 
eigenvalue magnitude. In aeroelastic optimization, flut- 
ter frequencies and modes are ordered either by criti- 
cal airspeed or frequency (double eigenvalue problem). 
When design variable perturbations are performed, fre- 
quencies and critical airspeeds will drift and mode 
crossings can occur. Thus, it is possible for a constraint 
to be enforced on an entirely different mode than was 
intended. This causes problems both from the design 
standpoint, in that the optimum found will not reflect 

Figure 1 : Optimization algorithm with mode tracking 

through a design objective and design constraints. Con- 
straint and objective function sensitivities are then cal- 
culated and used to find the design space search di- 
rection. After the optimal projection along the search 
path has been found, an optimization algorithm must 
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reanalyze the new design configuration in order to eval- 
uate the new objective function and constraints. The 
mode tracking algorithms perform this reanalysis with 
the added feature of retaining parent/offspring data 
for the modes throughout the optimization iterations. 
Two successful methods are proposed for use in mode 
tracking for both self-adjoint and nonself-adjoint prob- 
lems, and one unsuccessful class of methods is briefly 
discussed. One successful method, the higher order 
eigenpair perturbation algorithm, is based on perturba- 
tion expansions of the eigenproblems. The unsuccessful 
method is the modified eigenpair extraction routine, of 
which three cases are discussed. The second successful 
method is the cross-orthogonality check method, which 
uses mass orthogonality to reestablish correspondence 
after a standard reanalysis. 

Self-Adjoint Eigenvalue Problems 

Higher order eigenpair perturbations (HOEP) 

This method [l] performs a perturbation expansion 
on the standard undamped structural eigenproblem: 

All perturbation terms are retained, which leads to cou- 
pled equations for AX; and {&}i. These equations, 
which follow, must be solved iteratively and will con- 
verge to the exact eigenpair perturbations. 

The full-order eigenvalue perturbation equation is: 

In the context of a reanalysis phase in an optimiza- 
tion process, the 0-superscript denotes the current de- 
sign and the l-superscript denotes the projected design. 
Unlike linear sensitivity methods, in which only the cur- 
rent eigenvector appears, Eq. 2 shows coupling with the 
projected eigenvector. 

The corresponding eigenvector perturbation equation 
is 

where 

(3) 

(4) 
is singular, and 

{F"'}; (AX;[M1] + Xp[AM] - [AIi']){4'}j (5) 

is a static pseudo-load. Equation 3 corresponds to the 
pathological Fredholm alternative in which the coeffi- 
cient matrix is singular and there is a non-zero load. 

Such equations cannot be solved in general. This equa- 
tion is solvable, however, since it is "consistent," i.e. 
{F"'}i is orthogonal to {dl}i. 

The total solution for {A4}j is made up of homo- 
geneous and particular solutions. For singular [D1]i, 
(4')j is a homogeneous solution for {A4}i in Eq. 3 
since [D1]j{41}j = (0). The total solution for (B4)i 
is then a sum of the particular solution {V}j and a 
weighted {$'}j. The weighting factor ci  is introduced 
because the scaling of the homogeneous solution is ini- 
tially indeterminate : 

Equation 6 must be altered since {q5l}j is unknown: 

Employing conditions of mass normalization for the 
current and projected systems and substituting Eq. 8 
for {&}j yields a quadratic equation for c i .  The de- 
sired root is: 

C j = l - J r n  (9) 
where 

t i  = {4°}T[A~]{40}i  + 2{4 '}T[~~]{V}i  
+{ v}T[M']{ V}i (10) 

The algorithm has evolved considerably since its orig- 
inal publication [l], It has been greatly simplified 
and its convergence characteristics have been improved. 
The current algorithm flowchart is shown in Figure 2. 
Iteration 0 consists of obtaining an initial estimate of 
the eigenvalue perturbations from a first order approxi- 
mation to Eq. 2. The nonlinear iterations are then per- 
formed, which consist of solution of the almost singu- 
lar eigenvector perturbation equation (Eq. 3) followed 
by the full-order update for the eigenvalue perturba- 
tion (Eq. 2).  Solution for the eigenvector perturba- 
tion requires the computation of the particular solu- 
tion {V} ;  of Eq. 3 by Nelson's method [2], calculation 
of cj from Eqs. 9 and 10, and finally solution of Eq. 8 
for {Aq5};. These iterations continue until the conver- 
gence criterion is satisfied. The important feature for 
mode tracking is the fact that the computations involve 
data from the ith eigenpair only. There is a direct cor- 
respondence between current and projected data and 
frequency crossings are of no concern. The method is 
computationally intensive, but can converge for very 
large prescribed changes in design variables. 
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First Order A h  ter 

Figure 2: HOEP algorithm 

Modified eigenpair extraction routines 

The block Lanczos, subspace iteration, and inverse 
power eigenpair extraction routines were identified as 
having potential for mode tracking. In all cases, the 
idea was to preserve the baseline eigenpair ordering by 
using the previous iteration eigenpair data for trial vec- 
tors and shift values. In standard usage, random trial 
vectors are generated, shift values are widely spaced, 
and the converged eigenpairs are returned in ascend- 
ing eigenvalue order. This reordering destroys the one- 
to-one correspondence if mode-switching has occurred. 
The goal of the modifications was to  eliminate the re- 
ordering by altering the convergence characteristics of 
the extraction methods. In all cases, however, the abil- 
ity to track modes was not achieved. 

Modification of the block Lanczos method [3, 41 was 
eliminated from consideration because the iterates in 
the Lanczos recursion, the Lanczos vectors, are not di- 
rectly related to the eigenvectors and therefore would 
not respond favorably to the use of baseline eigenvec- 
tors as trial vectors. 

The subspace iteration algorithm is an eigenpair ex- 
traction routine which, unlike the Lanczos method, it- 
erates directly on eigenvectors (see [5]). The modifica- 
tions fail in the task of mode tracking because conver- 

gence in the subspace iteration method occurs accord- 
ing to eigenvalue magnitude and not according to eigen- 
vector similarity to  trial vectors. While convergence is 
improved when using the baseline eigenvectors since the 
starting subspace is an excellent approximation to the 
least-dominant (Le. converged) subspace, convergence 
still occurs in eigenvalue order due to the minimization 
of the Rayleigh quotient inherent in the method. Shift- 
ing was also ruled out since it would be inefficient to 
shift on each baseline eigenvalue and, more importantly, 
since the procedure would not be foolproof. I t  is easy 
to envision scenarios where the closest eigenvalue to a 
shift is not the correct eigenvalue. This could occur for 
closely spaced eigenvalues or for frequency crossings, 
the exact cases of the most concern in this paper. 

The inverse power method with shifting and sweeping 
is the final candidate extraction routine. This method 
was also unsuccessful, for the same reasons that sub- 
space iteration was not successful, i.e. convergence oc- 
curs on eigenvalue magnitude rather than trial vector 
similarity and shifting is neither fail-safe nor efficient. 

Thus, while some of the modified eigenpair extrac- 
tion methods could be used for fast reanalysis due to 
their improved convergence speed, none of the methods 
exhibit a reliable ability to  track modes. 

Cross-orthogonality check (CORC) 

This method, proposed by Gibson [6], performs a 
mass orthogonality check after reanalysis. The orthog- 
onality information is held in the following mass triple 
product: 

[C] = [ ~ ( ~ - l ) ] T [ M ( k ) ] [ ~ ( k ) ]  (11) 

where k and k - 1 are the current and previous it- 
erations, respectively. If the [C] matrix is diagonally 
dominant, then no mode-switching has occurred; and 
if the matrix is not diagonally dominant, the locations 
of the dominant values can be used to recorrelate the 
current iteration modes. The method does not attempt 
to directly track modes, but rather tries to reestablish 
correspondence after the changes in design and mode- 
switches have occurred. While attractive due to its 
simplicity, the method is unattractive in that the stan- 
dard reanalysis does not make use of available base- 
line information and, in a sense, starts from scratch. 
This method could be combined with one of the mod- 
ified eigenpair extraction routines. For example, the 
subspace iteration algorithm with baseline eigenvector 
trial vectors would enable an efficient reanalysis, and 
the cross-orthogonality check method would perform 
the mode tracking. 

There are many other methods that can help identify 
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or correlate modes, which appear in the system identi- 
fication and model correlation literature ([7, 81 for ex- 
ample). The general spirit of these methods is similar 
to the cross-orthogonality check method and will not 
be reviewed here. 

Nonself- Adioint Eigenvalue Problems 

Complex higher order eigenpair perturbations (C- 
HOEP) 

This method is an extension of [l] and performs a per- 
turbation expansion on the nonself-adjoint eigenprob- 
lem for which the associated eigenpairs are complex. 
The approach is general and will be illustrated by way 
of a specific example - perturbation of the reduced 
frequency in the V-g flutter analysis modal equation: 

[(l + i g ) [ k l  - w 2 ( [ m 1  + [ A l ) l { z R }  = (0) (12) 

where [A] is the complex, non-symmetric aerodynamic 
matrix derived from the doublet lattice method [9, lo], 
g is the artificial structural damping necessary to  sus- 
tain harmonic oscillation (which is required for the un- 
steady aerodynamics), w is the frequency of the har- 
monic oscillation, [k] and [m] are diagonal modal stiff- 
ness and mass respectively, and { Z R }  is the right flutter 
eigenvector made up of complex normal mode partici- 
pation factors. This equation can be rewritten: 

where 
W 2  A = -  

1 + i g  (14) 

is called the complex eigenvalue. The associated left 
eigenproblem is: 

Perturbing the reduced frequency k affects the aero- 
dynamic matrix and the eigenpairs in Eq. 13, giving the 
following equation written for the i th  eigenpair: 

ABXi = 

depending on whether or not the left eigenvector data 
is computed at  each optimization iteration. If the left 
eigenvector data  is available, Eq. 17 is preferable to 
Eq. 18 due to its convergence characteristics (see ex- 
ample problem in Applications section). Also, the con- 
jugate transpose appears on {&}i in Eq. 18 because 
it has been numerically determined to have better con- 
vergence characteristics than the standard transpose. 

The corresponding eigenvector perturbation equation 
is 

[ D ' ] i { A z ~ } i  = { F R } ~  (19) 

(20) 
where 

[@]i E [k] - xt([m] + [A']) 
is singular, and 

is a static pseudo-load. The equation is consistent since 
{ F R } ~  is orthogonal t o  { z Z } ~ .  Likewise, the eigenvector 
perturbation equation for { A z ~ } j  (not shown) has its 
pseudo-load vector orthogonal to { z ; } i .  This biorthog- 
onality of the pseudo-load vectors is true for nonself- 
adjoint problems in general, and the perturbation equa- 
tions are solvable since they are consistent. 

As in the self-adjoint case, the total solution for 
{ A z R } ~  is made up of homogeneous and particular solu- 
tions. Since [D1]i{zk} i  = {0}, {zA}i is a homogeneous 
solution for { A z R } ~  in Eq. 19. The total solution for 
{ A z R } ~  is then a sum of the particular solution { V R } ~  
and a weighted { z i } i :  

{ A z R } i  = c i { z i } i  + {vR}i (22) 

Equation 22 must be altered since { z k } i  is unknown: 

or equation for ci: 
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where The algorithm flowchart for C-HOEP is basically the 
same as that for HOEP and is shown in Figure 3. It- 
eration 0 consists of obtaining an initial estimate of T -T T 

& = mj { V R } ~  + { V R } ~  { z i } j  +mi {VR}i  (26) 

is a real number. Equation 25 is a real equation in 
two unknowns, because the weighting factor c i  can be 
complex in general. An additional condition must be 
imposed since there are more unknowns than equa- 
tions. Two approaches can be taken. The first ap- 
proach is to enforce a phase correction condition on 
each C-HOEP iteration, that is, use c i  to rotate the 
homogeneous solution in Eq. 22 such that the phase of 
the perturbed eigenvector satisfies the phase correction 
condition. This approach is somewhat involved, and as 
it turns out, unnecessary. The second approach is to 
take the phase of ci to be zero, equivalent to  assuming 
that ci is real. In this case, the homogeneous solu- 
tion is not rotated, and the phase correction condition 
is not enforced on each C-HOEP iteration. Instead, 
the phase of the perturbed eigenvectors is corrected af- 
ter convergence. This approach is simpler, faster, and 
more robust. 

For real ci ,  the desired root, as before in Eq. 9, is: 

ci = 1 - Jm (27) 

where & is defined by Eq. 26. 

After convergence has occurred, the phase of the 
complex eigenvector must be corrected, since it is ini- 
tially arbitrary. This phase correction allows for a 
unique complex eigenvector, which is mandatory if op- 
timization constraints are to be placed upon it. The 
phase correction used is to force the maximum mag- 
nitude component to  have zero phase by multiplying 
the complex eigenvector by a unit magnitude scalar of 
opposite phase. This correction is unique despite the 
phase discontinuity a t  f n .  It is interesting to note that 
the length of the complex eigenvector is very important 
and it  must be normalized on each C-HOEP iteration 
(Eqs. 22 through 27), whereas the phase is relatively 
unimportant and only needs to be corrected once (at 
convergence). 

Computation of the left eigenvector perturbations 
proceeds identically as for the right eigenvector pertur- 
bations described above. The left eigenvectors will be 
required if Eq. 17 is to be used in an incremental pro- 
cess. The same inverted [D']i matrix (modified by the 
singularity removal by Nelson's method) may be used 
in the computations for { A z L } ~  and { A z R } ~  so long as 
the same pivotal element is used for the left and right 
systems (this is the standard procedure; consult [2] for 
details of Nelson's method). 

First Order A& ti0 

Figure 3: C-HOEP algorithm 

the eigenvalue perturbations from a first order approx- 
imation to  Eq. 17 or 18. The nonlinear iterations are 
then performed, which consist of solution of the ap- 
proximately singular eigenvector perturbation equation 
(Eq. 19) followed by the full-order update for the eigen- 
value perturbation (Eq. 17 or 18). Solution for the 
eigenvector perturbation requires the computation of 
the particular solution { V R } ~  of Eq. 19 by Nelson's 
method, calculation of ci from Eqs. 26 and 27, and fi- 
nally solution of Eq. 23 for {AzR}~ .  These iterations 
continue until the convergence criterion is satisfied. As 
in the self-adjoint case, mode tracking is possible be- 
cause the computations involve data from the ith eigen- 
pair only, creating a direct correspondence between cur- 
rent and projected data. 

Complex cross-orthogonality check (C-CORC) 

For the V-g flutter analysis problem, one must make 
use of the biorthogonality property to  recorrelate the 
complex modes. The expression for the [C] matrix is 
then: 



where k and k - 1 are the current and previous itera- 
tions, respectively. Obviously, this requires left eigen- 
vector information which is not generally computed. As 
before, if the [C] matrix is diagonally dominant, then 
no mode-switching has occurred; and if the matrix is 
not diagonally dominant, the locations of the dominant 
values can be used to recorrelate the current iteration 
modes. 

Figure 4: Simple cantilevered wing box 
Applications 

Optimization with Frequency Constraints 

Problems of structural optimization subject to fre- 
quency constraints are commonly formulated in the fol- 
lowing manner: 

minimize 
subject to 

The linear sensitivity of the frequency constraint to a 
design variable is: 

where the denominator is unity in the case of mass nor- 
malized eigenvectors. 

Since the eigenvectors do not appear in the above 
problem formulation (Eq. 29), it is typical for the an- 
alyst to ignore the eigenvectors altogether. Even with 

constraint sensitivity is being calculated for a vastly dif- 
ferent mode shape. The iterations may even oscillate 
unpredictably if the mode-switching is recurrent. Thus, 
even if frequency constraints are the only concern, mode 
tracking is an important technology. 

The first optimization procedure is the standard re- 
analysis procedure implemented in ASTROS. When a 
lower-bound constraint is placed on w3 (wg 2 110 Hz), 
optimization without mode tracking exhibits large os- 
cillations (see Fig. 5). The modes first switch on it- 
eration 3, causing the constraint sensitivity to be cal- 
culated using the wrong mode shape and resulting in 
an erroneous projection to the iteration 4 design. The 
modes have switched back in the iteration 4 design and 
the optimization begins its nonconverging oscillations. 

When mode tracking by the HOEP or CORC algc- 
rithms is inserted in place of the reanalysis routine, the 
mode-switch on iteration 3 is properly tracked and the 
correct sensitivities are calculated. Figure 5 shows con- 
vergence to the optimal design in 6 iterations. 

--+-Designed Weight 1400 
3 1200 .9 

800 possibilities of mode-switches and drastic modal char- 3 

mization iteration history can exhibit a jump since the 4 2oo 

modest design changes, this practice can fail due to the 3 * lo00 

acter changes. When either possibility occurs, the opti- .z 8600 4oo 

Example 1: Simple Cantilevered Wing Box 

A simple cantilevered wing box (Fig. 4 has been de- 
vised for use in optimization with vibration constraints. 
The ASTROS multi-disciplinary optimization code is 
being used with MAPOL (Matrix Programming Ori- 
ented Language) coding and FORTRAN modules per- 
forming all nonstandard tasks. 

The simple wing box is to undergo weight minimiza- 
tion subject to frequency constraints. The third and 
fourth modes are closely spaced in the original design 
and have exhibited a tendency to switch. 

I 

1 2  3 4 5 6 7 8 9 10 
Optimization Iteration Number 

Figure 5: Weight minimization with a frequency con- 
straint 

Both HOEP and CORC are robust enough to handle 
the mode-switching in this example problem. More ex- 
amples are to be presented at the conference. The ques- 
tion of efficiency depends on the method of reanalysis 
used prior to CORC. If all eigenpairs must be extracted 
prior to the orthogonality check, then HOEP has a def- 
inite advantage in tracking only the constrained eigen- 
pairs. 

Optimization with Mode Shape Constraints 

The obvious extension of the frequency-constrained 

983 



problem is to include constraints on the mode shapes. 
Typically, it may be desired to  constrain a mode to 
have some specified shape. This could involve control 
of nodal lines to minimize vibration in a region of the 
structure. Or, it might involve constraining against an 
anticipated abrupt modal character change. While con- 
straints of this type can be formulated in numerous 
ways due to the vector nature of a mode shape, the ap- 
proach employed here will involve vector norms. If, for 
example, it is desired to keep the ith mode shape close 
to  some specified shape, then the optimization problem 
can be formulated as: 

minimize f( { b } )  (31) 
subject to  gj =./L: - pi 0 

where 
pi = lI{GIiII 

and 
{G}i = {4)i - {4 * ) i  

Here, {+}i is the current mode shape and { 4 * } i  is the 
specified mode shape. The p; is user specified to de- 
note how close the current eigenvector must be to the 
prescribed eigenvector. In order to lead to a simpler 
sensitivity formula, the constraint can be reformulated 
with the square of the vector norm: 

gj = w>’ - I~{GI~II’ L 0 (32) 

or 
gj = (P:)’ - {G>T{G>i L 0 (33) 

This does not alter the nature of the constraint. The 
sensitivity of this new constraint to a design variable is 

where the fact that 

has been used, since 

(34) 

Implementing this sensitivity (Eq. 34) requires calcu- 
lation of the eigenvector derivative (by Nelson’s 
method [2] since it is already coded for the HOEP al- 
gorithm). Current {&$} i  information, the difference 
of the current and prescribed eigenvectors, is a known 
quantity and is available for the constraint calculation 
(unlike {Aq5}i, which is an unknown in the HOEP al- 
gori t hm) . 

This constraint formulation is very general since any 
portion of an eigenvector can be prescribed. If only 
certain degrees of freedom are to be constrained, then 
only those freedoms appear in the vector calculations 
of Eqs. 33 and 34. Common choices for the prescribed 
eigenvector would include the baseline mode shape, an 
experimental mode shape to be correlated, or a region 
of zero vibration (enforcing a nodal line). 

Once again, mode tracking will be very important 
to  a successful optimization. The vector norm con- 
straint formulation will preclude any abrupt changes in 
modal character, but will be very susceptible to  mode- 
switches. The same convergence problems could occur 
as in the frequency-constrained case if mode-switches 
are not properly tracked. 

Example 1: Sample Cantilevered Wing Box 

The same simple cantilevered wing box (Fig. 4) will 
be used to illustrate optimization with eigenvector con- 
straints. 

Initial testing has been conducted to define 
“iteration-invariant” normalization and sign convention 
methods. The goal is to enable the eigenvector pertur- 
bation vector norms to measure changes in mode shape 
only, separate from changes in sign or normalization. 

Mass normalization of all eigenvectors to the baseline 
mass matrix [Mol has been identified as the best invari- 
ant normalization method. This normalization deletes 
changes in scaling from the vector norms. Care must 
be taken in calculating the eigenvalue sensitivities from 
Eq. 30, however, since the scaling of { 4 } i  affects the 
sensitivity calculation and the subsequent optimal pro- 
jection. 

The best sign convention method involves making the 
maximum magnitude baseline eigenvector component 
greater than zero, and retaining the same component 
as positive in all subsequent eigenvectors. Through this 
use of the baseline eigenvectors as a reference, the sign 
convention is consistent for all iterations. 

Figures 6 and 7 show a before and after view 
of iteration-invariance. Vector norms of eigenvector 
change measured from the baseline are shown for the 
seven lowest modes of the cantilever wing box. In Fig- 
ure 6, changes in sign and normalization obscure the 
changes in mode shape. Figure 7 shows the effect of 
using an invariant sign convention and normalization. 
Pure changes in mode shape are plotted, and a mode- 
switch has become evident through the relatively large 
vector norms for the switched modes. 
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ITERATION NUMBER (l=BASELINE ANALYSIS) 

Figure 6: Before iteration-invariance 

This concept of iteration invariance is easily extended 
to the complex case, e.g. a flutter mode. The length 
normalization is already iteration invariant since no 
mass operator is used (Eq. 24). The phase correction 
discussed previously is an extension of the sign con- 
vention for real eigenvectors. The phase correction is 
rendered iteration invariant by making the phase of the 
maximum magnitude baseline eigenvector component 
equal to  zero, and retaining zero phase on the same 
component for all subsequent optimization iterations 
(not to be confused with C-HOEP iterations). 

Examples of eigenvector control are not complete at 
printing time, but will be presented in the conference. 

V-e: Flutter Mode Trackinn 

It is important to  distinguish between two mode 
tracking needs in the areas of flutter analysis and opti- 
mization. First, in V-g type flutter analysis, pre-flutter 
modes are tracked as reduced frequency (k) is incre- 
mented. Typically, the analysis steps through k val- 
ues, extracting complex eigenpairs on each step, until 
the desired flutter points are obtained (when the artifi- 
cial damping required for harmonic oscillation is greater 
than that available from the structure). Second, in flut- 
ter optimization, critical flutter modes (ordered by air- 
speed) may switch order under a design change. This 
is a more difficult problem than the former, since each 
critical flutter mode denotes the result of a converged 
flutter analysis. 

The former problem, pre-flutter mode tracking in 
flutter analysis, is handled as developed in the nonself- 
adjoint eigenvalue problems theory section. The fol- 
lowing example shows an application of this technique. 

Example 1: MATLAB pre-flutter made tracking far 
rectangular wing 

The aerodynamic planform and doublet lattice dis- 
cretization for the rectangular wing are shown in Figure 
8. The underlying structure was kept as simple as pos- 
sible and is an aluminum cantilever beam of rectangular 
cross section. A total of six normal modes are retained, 
three each of bending and torsion. For Mach 0.5 a t  sea 
level ( p  = 1 . 2 2 5 3 ) ,  a V-g analysis for k varying from 
1.0 to 0.0 was performed, resulting in Figures 9 and 
10. The most important thing to  note is apparent in 
Figure 10, where the modes are seen to veer away from 
one another. That  is, frequency crossing is not a prob- 
lem for this example, and simply ordering the modes 
by frequency magnitude is sufficient. 

While frequency crossings may be rare for a clean 
wing (with modes that are strongly coupled by the aero- 
dynamics), it is theorized that this will not be true 
for more complex configurations (where some modes 
will not be affected by the aerodynamic changes). 
For example, in a full airplane with stores, wing and 
store vibration modes may be weakly coupled by the 
aerodynamics and frequency crossings could easily oc- 
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ITERATION NUMBER (l=BASELINE ANALYSIS) 

Figure 7: After iteration-invariance 

Figure 8: Rectangular wing with doublet lattice dis- 
cretization 

cur. Likewise, some wing/tail, wing/fuselage, and 
tail/fuselage interactions would be weakly coupled with 
the aerodynamics. 

Performance of the mode tracking methods was eval- 
uated for this example problem. The lack of frequency 
crossings allows evaluation of the mode tracking meth- 
ods well past their region of convergence, since the 
proper mode identifications are known with assurance. 
In all cases, the initial value of k (the reduced fre- 
quency) is 1.0, and the projected value is as shown. 
This is not an incremental process (no updates are 

made). The purpose here is to test the methods for 
increasing Ak. 

In Table 1, performance of the C-HOEP algorithm is 
shown by virtue of the CPU time and iterations nec- 
essary to reach convergence, for analyses run without 
use of left eigenvector data (i.e. using Eqs. 18). The 
convergence criterion is average A i  change < 0.01%. 

Table 1: Performance of C-HOEP with no left 
eigenvector data 

new k CPU/mode iterations 
(sec, R only) 

0.9 0.36 3 
0.8 0.36 3 
0.7 0.36 3 
0.6 0.36 3 
0.5 0.36 3 
0.4 0.47 4 
0.3 7.4 72 
0.2 4.1 40 * 
0.1 5.6 55 * 

In Table 2, left eigenvector data is used (via Eq. 17), 
and CPU times per mode tracked are shown for com- 
putations of the perturbed eigenvalues and right per- 
turbed eigenvectors (column 2) and for computations 
of the perturbed eigenvalues and both the right and 
left perturbed eigenvectors (column 3). The latter case 
is more realistic since left eigenvector data will have to 
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Figure 9: V-g plot for 0 3 5 1  

be updated if Eq. 17 is to be used in an incremental 
process. 

is desirable, and only a relatively small penalty is paid 
for calculating the left eigenvector perturbations in ad- 
dition to the right eigenvector perturbations. 

Table 2: Per fo rmance  of C - H O E P  wi th  use of 
left  e igenvector  data 

new k CPU/mode CPU/mode iterations 
(sec, R only) (sec, R&L) 

0.9 0.22 0.30 2 
0.8 0.22 0.30 2 
0.7 0.22 0.30 2 
0.6 0.22 0.30 2 
0.5 0.31 0.43 3 
0.4 0.39 0.55 4 
0.3 3.1 4.6 37 
0.2 2.6 3.8 31 * 
0.1 4.6 6.8 55 * 

The * designates failure in mode tracking in that the 
proper mode identifications are not made. The trend is 
obvious: as you push the perturbations higher, conver- 
gence is less assured. Use of the left eigenvector data 

In Table 3, the performance of C-CORC is shown 
through CPU times and “corruption” data. A corrup- 
tion index for a mode in the C-CORC method is the 
largest magnitude value in the column of [C] different 
from the correlated value (with a reference value of 1). 
For example, if a column of [C] has first and second 
largest component magnitudes of 1.2 and 0.3, then the 
value of 1.2 correlates the mode and the corruption in- 
dex for that mode is 0.3/1.2 = 0.25. The “average 
corruption” index denotes the average of the corrup- 
tion indices for the 6 columns in [C], and the “max- 
imum corruption” index shows the largest corruption 
index. The smaller the corruption indices are, the bet- 
ter the assurance of proper mode correlation. Since the 
proper correlations are known a priori in this example, 
a corruption index of greater than 1.0 shows correlation 
failure. 

987 



0 
0 0 100 150 200 250 300 350 400 
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Table 3: Performance of C-CORC (left 
eigenvector data required) 

9. In this region, mode 5 correlates highly with mode 6 
and visa versa, meaning that the mode shapes become 
very similar when near flutter. Mode tracking with the 

new k CPU (sec) Avg Corrupt. Max Corrupt. C-HOEP and C-CORC methods is tested in true incre- 
0.9 1.2 0.018 0.043 mental fashion for the range 0.15Fk_<0.35, in order to 
0.8 1.2 0.037 0.084 test robustness in this difficult region. The initial k is 
0.7 1.2 0.059 0.12 0.4 and increments are taken of 0.05 with the baseline 
0.6 1.2 0.087 0.16 updated at each increment. Table 4 shows the results. 
0.5 1.2 0.13 0.19 
0.4 
0.3 
0.2 

1.2 
1.2 
1.2 

0.21 
0.47 
1.2 

0.33 
1.1 * 
3.2 * 

0.1 1.2 2.7 6.9 * 

The basic trend is the same: increasing the pertur- 
bation size decreases the performance of the method. 
Again, * denotes failure of the method. 

There are large changes in pre-flutter modes 5 and 6 
near k=0.3, causing the methods to have convergence 
problems. This is where the fifth and sixth frequen- 

Table 4: Robustness of C-HOEP and C-CORC 
near flutter points 

incremental k C-HOEP C-CORC 
iterations Max Corrupt. 

0.35 3 0.22 
0.30 5 1.8 * 
0.25 10 1.9 * 
0.20 14 1.5 * 
0.15 12 ** 

cies can be seen to  veer in Figure 10 and where the 
fifth and sixth modes can be seen to flutter in Figure 

Again, * denotes method failure in mode tracking 
in that the proper correlations are not made, and the 



** denotes total failure in the C-CORC method since 
it correlated more than one mode with a single par- 
ent mode. I t  can be easily seen that C-HOEP is in 
fact more robust than C-CORC. Similar mode shapes 
near flutter cause C-CORC to fail, whereas C-HOEP 
can still track modes despite this mode shape similar- 
ity. Note that it takes more iterations to converge in 
the C-HOEP method as k=O.O is approached since the 
change in airspeed is increasing. Once a mode tracking 
method fails, it is impossible to recover since the pro- 
cess is incremental and the following iteration modes 
are being correlated with a bad set. 

Conclusions 
Mode tracking techniques have been developed and 

applied to a range of problems in dynamic analysis and 
optimization. This often overlooked technology is an 
important bookkeeping tool which allows the analyst to 
maintain proper identification of modal data, thereby 
avoiding confusion caused by mode-switching. In opti- 
mization with frequency constraints, higher order eigen- 
pair perturbations (HOEP) and the cross-orthogonality 
check (CORC) have both been shown to be effective 
in eliminating convergence problems caused by mode- 
switching. Relative efficiency of the methods depends 
on the reanalysis method used prior to CORC. If the 
reanalysis method must extract all eigenpairs, then 
HOEP has an advantage in only needing to track the 
constrained eigenpairs. 

In V-g flutter analysis, C-HOEP has been shown to 
be more robust in the example problem than C-CORC. 
Near flutter points, different flutter modes can become 
very similar, causing orthogonality check correlation 
methods to fail. C-HOEP can successfully track modes 
near flutter despite mode shape similarity. Further- 
more, C-HOEP can be more efficient than C-CORC if 
only a few eigenpairs need to be tracked. 

If the problem requiring mode tracking technology is 
fairly well-behaved, then the orthogonality check meth- 
ods may be preferable due to their simplicity. If, how- 
ever, the problem is more difficult and large mode 
changes are possible, then the eigenpair perturbation 
methods are recommended due to their superior robust- 
ness. 
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