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The Mechanics of Moving Asteroids®

D.J. Scheeres’and R.L. Schweickart?

The fundamental problem for all asteroid mitigation concepts is how to best alter the
trajectory of the hazardous body. This is a non-trivial issue and brings together many
different aspects of dynamics, engineering, and small body science. This paper will focus
on some select issues that pertain to this problem, and will attempt to define a coherent
approach to a class of solutions to this problem. First, we will discuss what is currently
known or suspected about the surface, interiors and spin states of small bodies, and the
implications of these. Second, we will discuss the mechanics of altering an asteroid’s tra-
jectory and spin state, incorporating realistic numbers for thrust levels available. Finally,
combining these previous topics, we will discuss some possible approaches to implement-
ing these maneuvers. Throughout we will focus on the use of continuous thrust devices
for effecting these changes to the small body state.

Introduction

In this paper we address a simple question: what are
the basic mechanics of moving an asteroid? This turns
out, in fact, to be a complex issue involving non-trivial
interactions between two 6DOF bodies, the spacecraft
(or tug) and the asteroid itself. Simple analyses per-
formed for moving point mass bodies do not hold up,
in general, when applied to the realistic problem of
pushing on a non-spherical, rotating asteroid. In this
paper we explore different options for generating low-
level, controlled propulsion of an asteroid over long
time spans.

When confronting an asteroid spinning freely in
space one is dealing with an uncommonly huge ob-
ject. The largest Nimitz class aircraft carrier in the
U.S. Navy fleet displaces about 88,000 metric tons of
water (88 x 105 kg). A typical 200 meter diameter as-
teroid with density 2 g/cm® weighs in at 8.4 x 109 kg,
or almost 100 times the mass of the worlds largest air-
craft carrier. Maneuvering an object of this size with
a propulsion system which might be able to exert 10
newtons of force is a daunting challenge indeed!

In the typical case we are also dealing with a spin-
ning object. Most asteroids larger than 200 meters
spin at a rate below that which would cause an ob-
ject on its equator to experience weightlessness. This
translates to rotation rates below 12 revolutions/day
(2 hr/rev) with most having rotation periods of 4 hours
or greater. While most asteroids rotate steadily about
their maximum moment principal axis, some pose a
special challenge by tumbling randomly.

Using the assumption that one intends to deflect an
incoming NEA 10 years or more before impact, the
optimum AV aligns with the velocity vector, either
posigrade (to cause it to rendezvous too late) or ret-
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rograde (to cause it to rendezvous too early). The
challenge then becomes one of applying the available
force on the asteroid for an adequate period of time to
change the asteroid’s velocity by the desired amount
to miss the Earth. For a typical time-to-impact of 10
years, a properly oriented AV of one or two cm/sec
would be adequate to cause the asteroid to miss its
rendezvous with the Earth. Putting aside, for the mo-
ment, the major issue of attachment of the vehicle or
thrusting mechanism to the asteroid, the specific de-
sign challenge is to accelerate the asteroid along its
velocity vector while it is rotating about an axis ran-
domly oriented in space.

In this paper we review several options for the solu-
tion of this challenge, describing in more detail the de-
cision process that the B612 Foundation went through
in developing their implementation plan, partially re-
ported in.'® One issue that we do not address is the
effect of uncertainty in the asteroid’s orbit on the op-
timal direction in which to move it. This is a crucial
consideration and thus deserves a full discussion on
its own. We refer the read to the paper by Chesly
and Spahr® for an introduction to some of the issues
related to this concern.

In summary, the procedure that we suggest for de-
flecting an asteroid allows us to continually tug the
asteroid in the optimal direction, along its velocity
vector, while simultaneously causing the asteroid ro-
tation axis to precess in order to allow for this optimal
thrusting to continue. This approach can be generi-
cally applied to any size asteroid. Furthermore, this
can be achieved by attaching the spacecraft tug to the
asteroid with a single cable attached at the asteroid ro-
tation pole. This reduces the interaction between the
tug and asteroid to a single universal joint anchored
(or otherwise attached) to the asteroid rotation pole.
The background, derivation, and assumptions made in
developing this concept are outlined below in detail.
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Survey of asteroid properties

We first review the basic mechanical and surface
properties of asteroids. A comprehensive review of the
asteroid environment is found in the book Asteroids
II1,2 and much of the information we quote below is
taken from this reference.

Asteroid sizes and shapes

Potentially hazardous Near Earth asteroids, as a to-
tal population, span a large range of sizes, from bodies
that are tens of meters across to asteroids the size
of Eros, over 35 km in length. Currently, it is be-
lieved that the largest asteroids have been detected
in the Near Earth Object (NEO) population down to
kilometer-sized objects, leaving the smaller bodies of
100 meters to 1 km size to populate the immediate
hazard. Still, among this class of smaller asteroids one
finds a great diversity of shapes and morphologies.

In this regime, the best data on asteroid shapes and
sizes comes from the field of radar astronomy. There
have been a number of published shape models for as-
teroids in the size range of a few km or smaller.” A
partial list of asteroids for which shape models exist,
or soon will exist, includes 4769 Castalia, 1620 Ge-
ographos, 4179 Toutatis, 1998 ML14, 25143 Itokawa,
6489 Golevka, 2063 Bacchus, and 1998 KY26, while
66391 (1999 KW4) and 2000 DP107 are binary aster-
oids. A brief visual survey shows that they exhibit a
range of shapes, from a near-spherical object (1998
ML14), to a bifurcated object (Castalia), to a ex-
tremely distorted body (Geographos), to a more sim-
ple ellipsoidal shape (Itokawa). Any mission to an
asteroid must be prepared to deal with this range of
variability, and must be robust to it. This being said,
in this paper we do not consider binary asteroids in
any special detail. We do note that the operations we
discuss could all be carried out on the larger of the
two bodies in a binary asteroid pair, however. While
we have not analyzed it, we believe that the smaller
body in a binary pair would be dragged along with the
larger.

To continue our discussion we must define a number
of properties for these small bodies. First, we define
the mass distribution of the asteroid as a set B which
consists of all points contained within the asteroid. To
every vector r contained in B we can assign a density,
p(r), thus realizing that a natural body will not, in
general, have a constant density. We do note, however,
that the asteroid Eros was determined to have a near-
constant density distribution.® With this definition we
can define the total volume and total mass of the body:

Vv = /Bdr3 (1)
/B plr)dr? 2)

Two useful numbers that help characterize an asteroid

M =

are its mean radius and mean density, defined as:

w= ()" )

)= (4)

A related number of interest for orbital operations is
the total gravitational parameter of an asteroid, u,
computed as the gravitational constant G = 6.672 X
1078 g/s? /cm? times the mass, or u = GM. While the
gravity field of an asteroid in general deviates consid-
erably from an ideal point mass, it is still useful to use
a point mass potential to determine the basic orbital
mechanics properties of motion about an asteroid.

For the work we are considering here, another im-
portant concept is the inertia moments of the asteroid,
as they determine how its rotational motion evolves.
Given the concepts mentioned above, the inertia ma-
trix of an asteroid is defined as:

= I‘TI‘ —I‘I‘T Ir I‘3
7 = /B[ I— ") ple)d (5)

The inertia is a symmetric 3x3 matrix in general, how-
ever a set of axes can always be found such that the
inertia is a diagonal matrix. These axes are defined
as the principal axes of the body, and the related mo-
ments of inertia are designated as I < I < I3. Even
though the principal axes and moments of inertia of
an asteroid always exist, they are not always easy to
find. An exception is for an asteroid uniformly ro-
tating about its maximum moment of inertia, as the
rotation pole will lie through the corresponding prin-
ciple axis. For any other situation, the estimation of
principal axes is much more difficult.

Asteroid rotation states

The second crucial property of asteroids is that they
all rotate. Their range of rotation periods span many
orders of magnitude, with the fastest rotators making
one revolution every few minutes and the slowest ro-
tators taking days or weeks to make one full rotation.
Furthermore, while most asteroids are in a principal
axis rotation state about their largest moment of in-
ertia (I3), a non-negligible fraction of them are in a
complex rotation state, tumbling in space. Such tum-
bling motion seems to be most frequently associated
with slow rotators such as Toutatis,* although there
have also been small fast rotators detected which are
tumbling. Across the NEO population the average ro-
tation period is approximately 5 hours, and the vast
majority of asteroids are in uniform rotation about
their largest moment of inertia. The one definitive
statement one can make about rotation rates is that
the fast rotators (those with rotation periods less than
~2 hours) are all small bodies, most likely monolithic
shards of larger asteroids.
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The rotational dynamics of an asteroid can be de-
fined with two, related vectors. First is the angular
velocity of the body, designated as w. The vector de-
fines the instantaneous rotation axis and rotation rate
of the body. Second is the angular momentum of the
body, computed as the product of the inertia matrix
and the angular velocity vector,

H = Tw (6)

We note that the angular momentum vector of a rotat-
ing asteroid is constant over the time scales of interest
to us, however the same is not necessarily true of the
angular velocity vector. If the asteroid is spinning
about one of its principle axes (assume I3) then the
angular momentum and angular velocity are simply
proportional to each other, and the rotation rate is a
constant. If the rotational velocity is not aligned with
a principal axis, then it varies as a function of time
in general, causing the asteroid to tumble in inertial
space instead of having a simple, repeating rotation.
In this paper we will focus on the case of a uniformly
rotating body.

If the body is spinning about its maximum moment
of inertia, I3, and has an equatorial cross-section of 2«
by 243, its moment of inertia can be estimated as:

I~ (e? ) )
and we note that this moment of inertia will always be
greater than the moment of inertia associated with a
sphere with mean radius r, and mass M, or:

I3 > 2Mr%/5 (8)
which is a useful lower bound.

Asteroid surfaces and interiors

Asteroid surfaces are not well understood. When
the NEAR spacecraft descended to the surface of as-
teroid Eros, it found that at the smallest scale, the
surface was essentially free of craters.!'’ This was not
expected, and is in direct contrast to the surface of the
moon, which has craters down to the smallest scales.
For the asteroid Eros this directly implies a surface of
loose material over the body, termed regolith, as well
as a process that transports this material. Both of
these observations are of importance for a mitigation
mission to an asteroid, as discussed later. At the other
end of the spectrum, asteroids such as 1998 KY26,8
with its extreme rotation rate, are spinning so fast that
they clearly cannot retain any surface material. In be-
tween these extremes are asteroids such as Golevka,®
which has regions which are steep enough so that the
presence of loose material is unlikely, yet may very
well have other regions blanketed in regolith (see Fig.
1). Any pre-planned mitigation mission which inter-
acts with an asteroid surface must be able to handle,
in principle, all of these extremes.

Fig. 1 Surface slopes of the asteroid Golevka.

Furthermore, there are currently no measurements
of the sub-surface properties of asteroids. The best we
can do is to infer, from the population of fast rotating
monoliths, that within larger asteroids there exists a
sub-structure of boulders of size a few hundred meters
and less. It is important to note that there are no large
asteroids with extremely rapid rotation rate, which im-
plies that all larger bodies are probably comprised of
fractured rock, which is in turn consistent with numer-
ical simulations of impacts between asteroids.! The
probable existence of a surface regolith lying over such
a sub-stratus of boulders adds to what will be a chal-
lenging environment to affix a space structure to.

One additional possible implication of surface re-
golith and an associated transport phenomenon is that
surface operations will cause clouds of regolith to be
raised during surface interactions.’ If the transport
mechanism is due to charged particles, it is also pos-
sible that the spacecraft themselves may attract par-
ticles, which could be quite problematic. These issues
of asteroid surface and sub-surface must be addressed
by scientific missions to a representative sample of
asteroids prior to a mitigation mission that directly
interacts with the body surface. An incomplete or
wrong understanding of this environment could be
catastrophic for a large scale mission to the surface
of an asteroid.

Definition of a “Model” asteroid

Given the above discussions, we note that the likely
range of asteroid parameters could be quite large. A
complete study of the mitigation hazard would have
to incorporate this full range of possibility. To focus
our current work, however, we will define a specific
model asteroid and use this for our example compu-
tations. As our model, we will choose a body with a
mean radius 7, of 100 m, a density of p = 2 g/cm?,
and a rotation period of 5 hours. From this, we can
derive a number of other constants, including the total
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mass M, the moment of inertial (computed assuming
a spherical body) Is, the angular velocity, w,, and the
angular momentum magnitude H,:

ro, = 100 meters

p = 2000 kg/m®

P = 5hr

woe = 3.5x107* rad/s
M = 84x10%kg

I; = 3.35x10" kg m?
H, = 1.17x10' kg m?/s

Mechanics of changing an asteroid
trajectory and rotation state

In the following sections we discuss the detailed me-
chanics involved in moving an asteroid. We see that
we must concern ourselves with both the translational
and rotational aspects of the problem. We start with
a discussion of the optimal approach to effect a small
deflection in an asteroid’s trajectory, and end with a
discussion of how to achieve such a deflection by con-
trolling the orientation of the asteroid’s spin axis while
simultaneously pushing or pulling it along its path.

Before we get into a detailed discussion, we first give
a very brief statement of the relevant equations for
the translation and rotation of an asteroid subject to
thrusting. First, the translational motion of the aster-
oid will be governed by the equations of motion:

.. ws 1
R = T3 R+ MT (9)
where pg is the sun’s gravitational parameter, R is the
position vector of the asteroid in an inertial frame, M
is the asteroid mass, and T is the thrust vector applied
to the asteroid. An important consideration to recall
is the specific energy of the asteroid’s orbit:

1 ps
E = -v.v-£2 1
Hns
= -2 11
90 (11)

where V = R is the velocity of the asteroid and a is
the semi-major axis of the asteroid’s orbit. Under the
presence of thrusting, the energy of the orbit will no
longer be constant, but will have a time rate of change
that is computed as:

E = V.T/M (12)
In general we will assume that the asteroid has a cir-
cular orbit, meaning that its radius and speed are
constant and equal to a and /s /a, respectively. As-
sociated with this, the asteroid will have a constant
angular rate as it moves about the sun called the
“mean motion” n and equal to:

.o B w

It is important to note that the velocity vector will
also rotate at this rate as the asteroid orbits about
the sun. In the ensuing discussion we only consider
circular orbits for convenience, all of our computations
and analyses could be generalized to eccentric orbits
as well.

For the rotational motion of the asteroid, the rele-
vant equation involves the time rate of change of the
angular momentum vector:

H =M (14)

where M is the moment applied to the asteroid. In our
applications we will assume that the moment is due to
a thrust applied at the surface of the asteroid, located
at a position vector r, thus the moment will equal:

M = rxT (15)
We can decompose the angular momentum vector into
its magnitude and direction: H = H H. Furthermore,
if we assume principal axis rotation (which we do in
this paper), the angular momentum magnitude is sim-
ply H = Isw and the time rate of change of this is
I3w. Thus, when considering the time rate of change
of the angular momentum vector we must account for
variations in both the magnitude and direction. Thus
the general rotational equation of motion we consider
is:
LoH+HH = rxT (16)
Using these equations, we can now discuss the dy-
namics of deflecting and precessing an asteroid.

Deflecting an asteroid

Should a hazardous asteroid ever be detected,
chances are that we will have a relatively long lead
time until impact occurs, although this is not guaran-
teed.? Assuming this situation, what is really needed
to cause a potentially hazardous asteroid to miss the
Earth is a small shift in its orbital mean motion, as
this will cause it to slow or speed itself in its orbit and
miss the Earth. If the time to impact becomes small
then it may become optimal to shift the trajectory in
a direction that does not necessarily change its mean
motion. Although we do not assume that situation
here, all the following material could be changed to
accomodate this situation as well.

Given a change in the mean motion of the asteroid,
the total shift in the asteroid’s position along its orbit
can then be approximated as the change in mean mo-
tion, times the time till close Earth approach, times
the asteroid semi-major axis. Thus, we find the shift
in the asteroid from its nominal (assumed impacting)
trajectory to be As = Anat;y,,. This is an approxi-
mate result, however, and will be corrected below. But
we see immediately that we must also specify the nec-
essary shift in the trajectory.
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The amount by which the asteroid path needs to
be shifted is, at most, equal to the radius of the Earth
times a focusing factor which depends on the approach
hyperbolic speed of the asteroid. This focusing factor
is:

2up
RgVZ

R (17)

where pp is the Earth’s gravitational parameter (~
4 x 10°), R is the Earth’s radius (~ 6400 km), and
Vs is the asteroid’s approach speed to the Earth. The
total shift necessary is then computed as:

As = Rpfs (18)

For an approach speed of 10 km/s, fo, ~ 1.5, leading
to a necessary shift of almost 10,000 km. If the as-
teroid approach speed is very slow, say on the order
of 4 km/s, then this factor increases to 3, leading to
a necessary shift of almost 20,000 km. Clearly, such
a slow approach speed would be a serious problem for
mitigation, however any asteroid on such a low energy
approach would most likely be of smaller size. For our
example we use a target value of 10,000 km, realizing
that all of our results will scale non-linearly with the
Vs of the approaching asteroid.

Now, let us consider, more accurately, the effect of
thrusting on the shift in the asteroid’s path. The an-
gular rate of the asteroid orbit (assuming a circular
orbit for simplicity) equals its mean motion, or:

06 = n (19)
Thus the angular acceleration equals

) = —=—i 20
520 (20)
where a can be computed from the energy equation to

be
—F (21)

If we assume that we thrust along or against the ve-
locity of the asteroid we have an acceleration rate
A =T/M, and the time rate of change of the energy
is

E = 4VA (22)
respectively, where V' is the speed (assumed local cir-
cular again). Resulting from this, we find that:

. A

0 = F3— (23)
a

which is a familiar, if not counter-intuitive, result.

Namely, a constant increase in the energy of the ve-

hicle will cause the asteroid to fall behind its nominal

trajectory, and vice-versa. Assuming a constant accel-
eration, the general solution for 6 and @ is:

. 34,
6 = 6o+ 0otF 5t (24)

. A
b0 F 31 (25)

Given these results, the accumulated change in path
length is then computed as As = af and the accumu-
lated change in speed is AV = ab.

Now, let us calculate the total deflection of the as-
teroid. First, assume that a constant thrust is applied
over a time t,. Then at the end of this period the total
shift in position and speed will be

As = %Ati (26)
AV = F3At, (27)

If this period of acceleration is followed by a long coast
time, t., the accumulated change in path length is:

As = :FgAta (ta + 2t.) (28)

To achieve a 10,000 km shift in 10 years we consider
two scenarios. First we assume a constant acceleration
for the entire time, t, = 10 years, t. = 0. The neces-
sary acceleration is then 6.75 x 10711 m/s?. Although
extremely small, this is still orders of magnitude larger
than the solar radiation pressure acceleration acting on
our example body. In terms of applied thrust to the
asteroid, we multiply the acceleration by the mass of
the asteroid to find a thrust T' ~ 0.6 N to move a 100
m radius asteroid by the requisite amount in 10 years.
Although the engines are required to operate over 10
years, the level of thrusting required is clearly within
our capability.

An alternate strategy would be to thrust for a
shorter time period with a stronger engine, followed
by a coast period. Let us set the acceleration time to
be one year and the coast time to be 9 years. Then the
required acceleration to shift the asteroid by 10,000 km
would be 3.5 x 1071 m/s?, or a thrust on the order of
3 N.

This is a “best case” analysis in that we assume
thrusting along the asteroid velocity vector over the
entire time span. This is a challenging thing to do,
however, given that the asteroid rotates once each as-
teroid day and that its velocity vector rotates through
360 degrees every asteroid year. If our thrust vector
is directly fixed on the asteroid surface through the
asteroid center of mass, it will be acceptably aligned
with the velocity vector a vanishingly small portion of
the time due to asteroid rotation and asteroid motion
around the Sun. Therefore we have to look at options
to control the asteroid.
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Direct control of an asteroid

One possible way in which to implement a capabil-
ity for continuously changing the thrust direction is
to turn the entire asteroid into a “vehicle” which the
thrust system re-orients as it thrusts. To do this would
require that the asteroid first be “de-spun” and the
thrusting engine be subsequently situated so that it
thrusts through the asteroid center of mass and con-
trols the asteroid orientation by properly gimballing
its thrusting engines. This is entirely feasible, as an
asteroid could be de-spun by placing a thruster at the
equator and applying a torque opposite to the rota-
tion pole (see Fig. 2). For this maneuver, the time
rate of change of the angular momentum magnitude
due to a constant thrust located at a height h above
the equator is:

o = —(ro+h)T (29)

Assuming a constant thrust, the angular velocity of
the asteroid as a function of time will be:

C(ro+ h)Tt

T (30)

w—w, =
Thrusting until the body is no longer spinning yields
the de-spin time, tp:
T3w,

tp = ——— 31

b (ro +h)T (31)
For a 5 N thruster placed at a height h = r, above
our model asteroid (100 m), the time to despin is 4.5
months.
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Fig. 2 De-spin and push.

Then, to re-orient the vehicle as it thrusts would
require an ability to turn the asteroid at a rate of
approximately 1 degree per day (assuming a circular
orbit at ~1AU). This can be achieved by inducing the
asteroid to spin at the appropriate rate about a pole
normal to its orbit plane, and adding in additional
control accelerations as needed. The level of thrusting
authority to implement this is relatively small. The
asteroid attitude will need to be controlled, however,

since if rotation is induced about a non-principal axis
the asteroid will slowly tumble unless corrected by the
thruster system. While this would be a challenging
control problem, it is not the most severe problem that
this approach faces.

If the body in question is not a monolith, then as it
is despun its internal stress distributions will be signif-
icantly changed.'> We must recall that the spinning
body has naturally acheived some equilibrium between
its self-gravitational attraction, its centrifugal acceler-
ations, and its internal stress distribution. A large
change in its rotation rate will destroy this equilib-
rium and create a body that is out of equilibrium. As
the asteroid is likely to be composed of a collection
of smaller boulders, this body will most likely be sub-
ject to large shifts in the relative positions between
its components as its spin rate decreases. Any one
of these shifts would be likely to destroy the attached
propulsion system, or at the least create a hazardous
environment as the components of the body rearrange
themselves. Following such a shift, it is likely that the
asteroid components may impact and even be in close
orbits about the body for a period of a few days. In ad-
dition to these hazards, once the body has settled into
a new equilibrium its moments of inertia and center
of mass location must all be re-determined, a process
that may be more difficult for a non-rotating body.

If the body is clearly a monolith (i.e., is rotating
rapidly) these concerns may not be as much of an issue.
Then, however, it will require a longer time to de-spin
the body. For our example of a 100 meter radius body,
a b N thruster, and an altitude of A = 100m, an initial
spin period of 60 minutes would take over 1.5 years
to despin. Also, it may be more difficult to anchor a
tall structure at the equator, as there will be a strong
centrifugal acceleration.

Precession of an asteroid spin state

An alternative to despinning the asteroid is instead
to precess its spin axis in inertial space, much like a
spinning spacecraft’s orientation angle can be modi-
fied. The implementation of such maneuvers for an
asteroid can be envisioned as follows. The propulsion
unit is placed at one of the poles of the asteroid, and
has a degree of freedom allowing it to thrust perpendic-
ular to the rotation pole in any direction. Specifically,
as the asteroid rotates it is able to continually thrust
in the same direction in inertial space. Considering
this, the resultant moment produced by the thruster
can be computed as:

M = r,THxH,, (32)

where H 1, is a unit vector perpendicular to the aster-
oid angular momentum vector. Under this moment,
the magnitude of the angular momentum will not
change, so the equation of motion becomes:

HéH,, = r,TH,, (33)
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where H 1, is mutually perpendicular to the other two
unit vectors and will be fixed in space as the other unit
vectors rotate under the moment, and where &5 is the
angular rate at which the asteroid angular momentum
vector rotates (see Fig. 3). Thus, the precession rate
and rotation angle of the asteroid angular momentum
(and spin pole) will be:

. roT
o2 = HO (34)
rol’
g9 = HO t (35)
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Fig. 3 Precess and push or pull.

Using this approach, the time it takes to despin an
asteroid is equivalent to the time it takes to precess
the spin pole by 1 radian (57 degrees). The main ad-
vantage of this approach is that the total spin rate of
the body is not changed, nominally, meaning that the
asteroid will not be disturbed from its natural equilib-
rium state.

The speed with which the asteroid can be precessed
is not as fast as the speed with which a non-spinning
asteroid can be reoriented, however. To precess our
model asteroid (100 meter radius, 5 hour period, alti-
tude = 0) at a 1 degree per day rate will require 23
N of continuous thrust. However, it is clear that it
is possible to re-orient the asteroid rotation pole over
reasonable periods of time.

Simultaneously pushing and precessing an asteroid

Now we will combine our approaches and search for
a condition where it may be possible to tug the aster-
oid in the optimal direction (along the velocity vector)
while maintaining a fixed orientation of the asteroid
rotation pole relative to the velocity vector. We can
do this if we induce the appropriate precession rate
of the asteroid rotation pole as we thrust along the
velocity vector.

First, we assume that we are able to precess the as-
teroid rotation pole so that it lies, at a given epoch,
in whatever orientation relative to the asteroid orbit
that is needed. We assume that the propulsive device

is situated at the asteroid pole, and that it is gimbled
such that it can direct its thrust parallel to the aster-
oid velocity vector as the asteroid rotates. Thus, it
continually adds or subtracts energy from the asteroid
orbit, as desired. To analyze this system, we re-write
the equations of rotational motion in a frame rotating
with the asteroid orbit velocity vector. Choosing the
orbit normal direction to be the z axis, this rotational
velocity vector equals nz. Choose the x axis of this
rotating frame along the asteroid velocity vector, and
the y axis from the usual cross-product. Then, in this
frame the thrust vector will, ideally, equal T = Tx,
the position vector of the propulsive unit will equal
roﬂ, and the rotational equations of motion become:

(H) tnaxH = r,THxX (36)
T

The sub-script  denotes that the time derivative takes
place in the rotating frame. To be able to simulta-
neously tug and precess the asteroid we wish to set

(H) = 0, as then this relative orientation will be
T

maintained. This implies that z x H is parallel to
H x X, a situation that can only occur if H lies in the
X — z plane. Let us assume so, and furthermore stip-
ulate that the H vector makes an angle o with the x
axis. Then, we find that:

nHcosoy = r,Tsinoy (37)
nH
t = 38
ano T (38)

We note that for any level of thrust 7" there will always
be a unique angle ¢ that will maintain our thrusting
situation. Figure 3 shows a representation of this ap-
proach. For our example asteroid with a semi-major
axis of 1 AU and a thrust of 10 N, this angle is 67
degrees, while for a 1 N thrust it equals 87.5 degrees.
For the de-spun asteroid case considered earlier, we see
that o = 0.

Thus, across the spectrum of applied thrust levels,
we see that we are always able to thrust along the
velocity vector and precess the asteroid rotation pole
along with us to maintain the appropriate geometry
of the situation. This is a significant point, as it is
now possible for us to simultaneously tug the asteroid
and maintain a favorable orientation simultaneously.
Furthermore, once the propulsion device is fixed to
the pole it never needs to be moved, as the initial
precession maneuver and the simultaneous period of
precession and tugging can all occur relative to the one
contact point. Thus, we have identified this sequence
of maneuvers as, perhaps, the best manner in which
to deflect the asteroid trajectory using a continuous
thrust device.

Implementation challenges

The above scenario has a number of obvious tech-
nical challenges, even beyond generating thrust for
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sustained periods of time. However, by developing a
methodology that only requires a single attachment
point on the body at a well-defined location (i.e., the
rotation axis), the overall complexity of our approach
is reduced.

The fundamental implementation issue we must deal
with is attaching the thrusting device to the asteroid.
While asteroids may have regolith, the regolith is not
expected to be particularly strong or able to sustain
the stress necessary to hold an anchor, even at the
small levels of thrust we are considering. Thus, if a
direct anchoring scheme is proposed, it must involve
driving a spike past the regolith and into “bedrock,”
whatever that means on an asteroid. Due to the un-
known surface and sub-surface properties of asteroids,
it may be necessary to first survey a given asteroid to
determine the feasibility of this approach.

Before we discuss anchoring, however, we should
point out that there are two basic ways in which we
can deliver thrust to our asteroid: pushing or pulling.
Each of these approaches will have significantly dif-
ferent technological solutions. For pushing, we would
afix a propulsive device along the rotation axis of the
asteroid. The thrusting unit would need to have a gim-
ble that would allow it to maintain a constant thrust
in a given direction as the asteroid itself spins. The
attachment device would have to maintain a compres-
sive load and a bending moment, as the thrust will be
an angle o off of the rotation pole, in general. Both of
these loads will be problematic. A compressive load of
~10 N applied to the asteroid surface is much larger
than any compression the body will likely have felt
in the past (except if it is the core of a larger par-
ent planetesimal). Thus there is a strong possibility
for the material to undergo a long-term crushing or
compaction response to this load, which would in turn
cause misalignment of the propulsive structure from
the rotation axis. While this can be mitigated by em-
ploying a large footpad, there will still be some level
of crushing and settling that is likely to occur. There
will also be a rotating bending moment applied across
the spacecraft structure, and across the gimble axis.
Thus to maintain its vertical integrity, the propulsive
unit must also be braced against sway. Again, the
devices used to implement this will need to sustain
compressive or tensile loads that may never have been
experienced by the surface material. An additional
problem is the need for a gimbled engine, as it will
be under a relatively heavy duty cycle when consid-
ered over the number of repetitions and the time span
in the space environment. As the surface regolith will
likely have relatively fine material, the prospect of this
material contaminating the gimble bearings must also
be considered.

If we instead consider pulling, we can get relief from
some aspects of the technological problem. As seen
in Fig. 3, it is now possible to not use a gimbled

engine, but instead to affix a universal joint to the sur-
face, which is in turn attached to the tug by a cable.
Again, the anchor must sustain loads on the order of
10 N, including periodic lateral loads that, over time,
would be expected to loosen the anchor’s grip into the
asteroid “bedrock”. The engine itself, however, will
be much simpler and will not require a gimbled noz-
zle. Additionally, with this approach the spacecraft is
able to easily make small adjustments to the thrust
and torque it applies to the asteroid by changing its
relative attitude to the asteroid.

Given the challenges of anchoring into the surface,
an alternative approach has also been developed. In-
stead of anchoring a device into the asteroid, it is also
possible to anchor it to the exterior of the asteroid by
wrapping or enveloping the asteroid surface with suffi-
ciently long “arms” that can distribute the surface load
over a much greater area. There are many specific de-
sign approaches that can be considered in this vein,
but they all would achieve gripping strength through
some sort of grappling or wrapping around the aster-
oid surface. One particular concept, shown in Fig. 4,
would have a central anchor for stabilizing the cen-
ter of the attachment device, and then would deploy
a series of arms long enough for them to wrap around
the curvature of the asteroid. The more compressive
contact points between the arms and the asteroid sur-
face, the smaller the load each one must bear. Then, a
universal joint at the center of the attachment device
(and located at the asteroid rotation pole) is coupled
to a cable that attaches to the spacecraft.

Ariachmenl Schame

Fig. 4 Grapple.

Conclusions

In this paper we have discussed the problem of de-
flecting an asteroid using a controlled thrust. We have
clearly identified a sequence of maneuvers that ad-
dresses realistic deployment issues for attaching a tug
to an asteroid and subsequently pulling on it to effect
an asteroid deflection. Additionally, we have identi-
fied several specific technical challenges that must be
addressed for such an application to be implemented.
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