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Design of Spacecraft Formation Orbits Relative
to a Stabilized Trajectory

F. Y. Hsiao∗ and D. J. Scheeres†

University of Michigan, Ann Arbor, Michigan 48109-2140

The design of spacecraft formation orbits traveling relative to an unstable trajectory is investigated. We imple-
ment the designs with position and velocity feedback control laws, so that the entire constellation is forced to follow
a similar path relative to a nominal trajectory. We find sufficient conditions under which the relative motion of
the spacecraft constellation is stable and a controller can be designed. We consider the problem of specifying the
orientation of the formation orbit, which is equivalent to eigenvector placement, and show how these modes can
be combined to force a formation to fly in a range of orientations. Applications of our approach to relative motion
in rotating and nonrotating systems are given.

Nomenclature
A(t) = dynamics matrix at time t
Ã(t) = stabilized dynamics matrix at time t
a(t) = applied acceleration
h = linear angular momentum
ĥ = unit vector of h
hb, ha = angular momenta before and after plane reorientation
hi = entries of h, where i = 1, 2, 3
I = identity matrix
j =

√−1
ki = factor of oscillation frequency with respect

to ω f for the i th mode
R = position vector of nominal trajectory

in a rotational frame
R̂ = unit vector of R
R(t) = rotation matrix at time t
r = magnitude of r
r = position vector of a spacecraft
T = period of nominal trajectory
Tc = a feedback controller
t = time
U (R) = potential energy of an astrodynamical system at R
u± = stable and unstable manifolds
ui = eigenvector for the i th mode
û = arbitrary unit rotation axis
V = arbitrary force potential
V = velocity vector of nominal trajectory

in a rotational frame
Ṽ = closed-loop force potential
V̄ = normalized closed-loop force potential
Vcv, Vcr = matrices for velocity and position feedback
V̄i j = entries of V̄ , where i, j ∈ {x, y, z}
VRR = second derivative of arbitrary force potential

with respect to position
V = Lyapunov function
v = velocity vector of a spacecraft

in a rotational frame
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X = states of the nominal trajectory
x = states of a spacecraft
x, y, z = coordinates of nominal trajectory in a

rotational frame
x̂, ŷ, ẑ = unit vectors along x , y, and z axis

in a rotational frame
α,β = real and imaginary parts of an eigenvector λ
|�V| = cost of manipulation, km/s
δr = relative position vector of a spacecraft

to the nominal trajectory
δṙ, δr̈ = first and second derivatives of δr in a rotational

frame with respect to time
δx = relative states of a spacecraft to the nominal

trajectory
�V = diagonalized force potential
λ = eigenvalue of a matrix
µ = gravitational parameter of the Earth
ρ, δ, θ = magnitude, latitude, and longitude of the desired

linear angular momentum
σ = characteristic exponent
	 = state transition matrix
ω = angular velocity of an arbitrary rotational frame
ω̃ = cross-product operator of ω
ωe = rotation rate of the Earth about the sun
ω f = rotation rate of a rotational frame
ω f = angular velocity of a rotational frame
ωi = closed-loop oscillation frequency of the i th mode
(·)◦ = initial value of variable (·)

Introduction

A GENERAL control law to stabilize the relative motion about an
unstable trajectory in a Hamiltonian system and related meth-

ods of relative trajectory design are studied in this paper. Among the
possible applications of this work is formation flight about a halo
orbit in the Hill or a restricted three-body problem. A halo orbit is an
unstable periodic orbit in the vicinity of libration points in the sun–
Earth system. This work is motivated by potential future applications
of spacecraft formation flight for interferometric imaging of distant
stellar systems. Flying formations of spacecraft in the vicinity of L2

halo orbits has been recognized as a feasible environment for this ap-
plication. Results of this study will contribute to the possible appli-
cation of formation-flight techniques in this unstable environment.

The idea for using the center manifold of a halo orbit for for-
mation flight was proposed in Ref. 1 and generalized in Ref. 2. In
this paper we seek to develop a general design methodology, includ-
ing general control law and trajectory design, for the specification of
relative trajectories about an arbitrary orbit. For definiteness we con-
centrate on motion about a periodic halo orbit. Our current approach
to the design and control of formation-flight trajectories should be
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distinguished from previous work, such as that reported in Refs. 3
and 4, as those efforts focus on the control and design of forma-
tion flight in near-Earth orbits. The current work in this paper is
an extension of the work reported in Ref. 5, which investigated the
feasibility of the local-time algorithm for the description of relative
motion about a halo orbit and reported in Ref. 2, where the concept
of a stabilizing control was introduced. Here we investigate the gen-
eral rule from which different controllers are designed to stabilize
the relative motion and to reshape the relative trajectory.

This work is developed for application to interferometric imaging
using distributed spacecraft formations. The goal of this analysis is
to develop a general control law that allows formation-flight dynam-
ics to be assigned so that the relative motion between spacecraft in
the formation cover the image plane and reconstruct an image. Our
approach will be used in conjunction with innovative interferomet-
ric imaging approaches that can relieve the tight relative position
control constraints with which previous system concepts have had
to deal.6 Thus, by defining the preferred planes of motion for our for-
mation orbit we control the preferred imaging surfaces as a function
of time. In Ref. 6 it is shown that simple circular relative motions
in a formation can successfully satisfy the interferometric imaging
requirements; thus, we focus on the design of a circular orbit relative
to an unstable halo periodic orbit.

In this paper we find a condition under which the relative motion
about a general trajectory is stabilized. Then we apply our algorithm
to relative motion about a halo orbit in the Hill three-body problem.
The control law creates a linear, time-varying system about the pe-
riodic orbit, where all motion winds on tori about the periodic orbit.
It can be shown that these orbits are stable over both short and long
periods of time and that their winding number about the periodic
orbit can be controlled by the gain of the feedback law. Given a de-
sired relative orbit plane and shape, we develop several algorithms
to implement the necessary controller, and, by evaluating the �V
cost of these controllers over a halo orbit period, show the feasibility
of implementing these controls.

Specifically, we find that a negative definite force potential ma-
trix can generate stable motions relative to a nominal halo orbit.
With this result, we develop several approaches for trajectory de-
sign. We first investigate position-only feedback; however, caused
by the presence of a Coriolis force, we only find relative circular
trajectories that exist on the ecliptic plane, which restrict the inter-
ferometric imaging application. To find out-of-plane motion for a
position-only feedback control we must relax the circular trajectory
constraint and instead obtain near-circular trajectories.7 We next in-
vestigate position-and-velocity feedback controls that allow us to
generate a simple three-dimensional harmonic oscillation about the
trajectory, which gives us more freedom in design. Based on the
same approach, we develop a control law that enables us to perform
relative trajectory plane reorientation and to design formations with
fixed relative trajectory orientations in an inertial frame. Finally, we
evaluate the �V costs of implementing these controllers and show
that the required accelerations are small enough to be implemented
by a low-thrust engine.

Model of Spacecraft Motion
General Equations of Motion in a Rotational Frame

To model the formation flight of spacecraft, we consider the for-
mation as a constellation of spacecraft flying in the vicinity of a
nominal trajectory. The nominal trajectory is defined as the so-
lution to the nonlinear equations of motion in a rotational frame.
The dynamics of the spacecraft formation will, in turn, be defined
as the solution to the linearized motion about the nominal trajec-
tory. We now derive the relevant equations of motion for these
systems.

Assume the triad (x, y, z) is the coordinates of the nominal tra-
jectory in a frame rotating about the ẑ axis with a constant rotation
rate ω f . If the force potential is defined as U (R), we can write the
equations of motion in the rotating frame as

R̈ + 2ω f × Ṙ + ω f × (ω f × R) = ∂U (R)

∂R
(1)

where R = √
(x2 + y2 + z2)R̂ is the position vector of the space-

craft. In terms of coordinates, Eq. (1) can be expressed as

ẍ − 2ω f ẏ = ∂V

∂x
(2)

ÿ + 2ω f ẋ = ∂V

∂y
(3)

z̈ = ∂V

∂z
(4)

V = U (R) + 1

2
ω2

f (x2 + y2) (5)

We can view ω f as a free parameter and V as an arbitrary force
potential so that all space missions satisfying these equations of
motion can be analyzed. If ω f is taken to be zero, the preceding
equations of motion degenerate to those in an inertial frame.

Hill Problem
A spacecraft’s trajectory in the vicinity of a halo orbit in the sun–

Earth system is highly unstable and non-Keplerian. To compute
the nonlinear equations of motion, we use an approximation to the
restricted three-body problem, known as the Hill problem.8 The
three-dimensional motion is governed by equations of motion with
the same structure as Eqs. (2–4), where the frame is centered at the
Earth, x axis points toward the Earth from the sun, the z axis points
normal to the Earth orbital plane, and the y axis completes the triad.
In this problem, ωe is the rotation rate of the Earth’s orbit about the
sun, and the force potential is taken as

V = µ/r + 1
2 ω2

e (3x2 − z2) (6)

There exist two equilibrium points with coordinates [±(µ/3ω2
e )

1/3,
0, 0] (Ref. 8) in this system.

The Hill equations have been numerically integrated with proper
initial conditions to find a periodic halo orbit with a period of
179 days, similar to the Genesis halo orbit during its main mis-
sion phase.9 This orbit has two pairs of stable oscillation modes,
one with the same period as that of the rotating frame leading to
unity eigenvalues, with the other slightly longer leading to a pair
of eigenvalues on the unit circle, and one pair of characteristic ex-
ponents σ = ± 4.757 × 10−7/s (a characteristic time of 24.3 days),
one of which causes a hyperbolic instability. The choice of this or-
bit is somewhat arbitrary, as the methods we are developing can be
applied to a much wider range of nominal orbits.2

Linearized Dynamics
To derive equations for relative motion between the spacecraft, we

assume the spacecraft are on a nonperiodic orbit in the vicinity of the
nominal trajectory. Assume the nominal trajectory (which can cor-
respond to a spacecraft) has a trajectory defined as R(t; R◦, V◦) with
the property R(t + T ) = R(t). Naturally, the velocity, V(t; R◦, V◦),
is also periodic. Similarly, we can define the position and velocity
vectors for a neighboring spacecraft by r(t; r◦, v◦) and v(t; r◦, v◦).
Because the second spacecraft is initially in the vicinity of the first
spacecraft, linear systems theory can be applied to describe their
relative dynamics. We define X = [R; V], x = [r; v], and δx as the
difference between them, then the dynamics of δx can be approxi-
mated by5

δx = x − X (7)

δẋ = A(t)δx (8)

δx = 	(t, t◦)δx◦ (9)

A(t) =
[

0 I3 × 3

VRR 2ω f J

]
(10)
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J =


 0 1 0

−1 0 0

0 0 0


 (11)

	(t◦, t◦) = I6 × 6 (12)

where A(t) is periodic, 	 is the state transition matrix, and δx◦
is the initial offset from the first spacecraft, that is, the nominal
periodic orbit. Any other spacecraft in the vicinity of the nominal
trajectory will follow the same dynamics, albeit with different initial
conditions δx◦. Thus, the dynamics of a formation of spacecraft
can be understood by studying the properties of the state transition
matrix 	. This is the approach we will take throughout this paper.

Stabilizing the Relative Motion
The dynamics of long- and short-term relative motion are dis-

cussed more fully in Ref. 2, where we see that the relative motion of
the spacecraft over a short time span centered at ti can be understood
by analyzing the eigenvalues and eigenvectors of the matrix A(ti ),
as detailed in Ref. 5. Therefore, in deriving our control law we will
use these short-term dynamics to guide our thinking.

Our goal is to stabilize relative motions in the sense of Lyapunov
(not asymptotic stability), defined as follows10: An equilibrium point
xe of the system ẋ = A(t)x is stable in the sense of Lyapunov if for
any ε > 0, there exists a value δ(t0, ε) > 0 such that if ‖x(t0) −
xe‖ < δ, then ‖x(t) − xe‖ < ε, regardless of t , where t > t0.

In astrodynamics, stabilized trajectories will consist of oscilla-
tory motions about the nominal trajectory. Consider Eq. (8) over a
short time span centered at t = ti , and reduce it to a second-order
differential equation:

δr̈ − 2ω f Jδṙ − VRR(ti )δr = 0 (13)

To simplify the notation, we drop the time notation ti in the following
discussion. A feedback controller Tc at time ti can be specified as

Tc = −Vcvδṙ − Vcrδr (14)

so that the stabilized closed-loop equation at each time point is

δr̈ − 2ω f Jδṙ − VRRδr + Tc = 0 (15)

This is a nontraditional controller and is chosen to ensure a specific
class of dynamical motions about the trajectory, not to drive a tra-
jectory back to a target position. Thus, this controller should not be
classified according to the usual rules of proportional, proportional
derivative, etc.

Then the equations of motion in the feedback system are

δr̈ − (2ω f J + Vcv)δṙ − (VRR + Vcr)δr = 0 (16)

Let

S = 2ω f J + Vcv, Ṽ = VRR + Vcr

We can simplify Eq. (16) into the following form:

δr̈ − Sδṙ − Ṽ δr = 0 (17)

If Vcv and Vcr are chosen skew symmetric and symmetric, respec-
tively, the structure of this system is maintained, and S and Ṽ in
Eq. (17) are skew symmetric and symmetric, respectively. More-
over, if we can find a condition under which relative motions are
elliptic, the controller can then be obtained by simply subtracting the
original Coriolis and force potential matrices from the desired ones.
As this increases our choice for future orbit design, we first concen-
trate on finding the condition for stability rather than proposing a
specific control law.

Assume Ṽ in Eq. (17) is negative definite and consider a Lyapunov
function V(δr, δṙ),

V(δr, δṙ) = − 1
2 δrT Ṽ δr + 1

2 δṙT δṙ (18)

Then V(0) = 0 and V(δx) > 0 if δx �= 0, where δx = (δr, δṙ) (see the
Appendix). Additionally,

V̇(δr, δṙ) = −δṙT Ṽ δr + δṙT δr̈

= −δṙT Ṽ δr + δṙT Sδṙ + δṙT Ṽ δr

= δṙT Sδṙ

= 0 (19)

Because the requirement for Lyapunov stability is that the time
derivative of a Lyapunov function be less than or equal to zero, our
linear system is stable in the sense of Lyapunov. Also, because of
its structure, this result implies that our local time-invariant system
has all of its poles on the imaginary axis. This linear system can be
represented as

δẋ = Ã(ti )δx (20)

Ã(ti ) =
[

0 I

Ṽ S

]
(21)

Given Vcv zero or skew symmetric and VRR + Vcr negative defi-
nite, the time-invariant dynamical system defined by Eq. (16) is
stable. We note that this function does not guarantee stability of the
time-varying system or of the nonlinear system. These issues were
considered in more detail in Ref. 2.

An example of such a feedback control law was proposed in
Ref. 2. To implement that control at a given time ti , we evaluate the
local eigenstructure of the matrix A(ti ), find the characteristic ex-
ponents of the hyperbolic motion ±σ(ti ), and find the eigenvectors
that define the stable and unstable manifolds of this motion u±(ti ),
where the + denotes the unstable manifold and − denotes the stable
one. Then the applied control acceleration is

Tc = −σ(ti )
2G

[
u(ti )+u(ti )

T
+ + u(ti )−u(ti )

T
−
]
δr (22)

where G is the gain parameter and δr is the measured relative po-
sition vector, that is, the offset between the periodic orbit and the
spacecraft at time ti . This control law maintains the structure of the
problem and provides local and global stability if the gain constant
G is chosen sufficiently large.

Figures 1 and 2 provide two numerical examples. The controlled
trajectory remains stable after two halo orbit periods (about one
year), whereas the uncontrolled trajectory diverges after 66 days. In
these two examples the initial position offsets are 1 × 105 km, which
is much larger than the mission requirements, usually 1 ∼ 100 km. In
this example the linear control law just mentioned is used to control
a spacecraft subject to nonlinear dynamics. By using an extremely
large offset, we can verify that the controller performs well outside
of the linear regime. Such simulations give us an indication of the
robustness of this approach. After the control law in Eq. (22) is
applied, the force potential becomes negative definite, as shown in
Fig. 3.

Overview on Trajectory Design
Objectives

Our goal is to derive a feedback control law such that a space-
craft formation moving about an unstable trajectory can stabilize
its motion and orbit in a circular or near-circular orbit relative to
the trajectory with a fixed orientation in either the rotating or iner-
tial frame. In Eq. (14), if Vcv and Vcr can be designed to generate
such a specific class of motion relative to a nominal trajectory, they
can be easily uploaded and distributed across the spacecraft, which
then only require relative knowledge of their position or velocity
to implement. We do not address system-wide control issues such
as avoiding impact or close approaches. Our current approach is to
specify the eigenstructure of the resultant controlled state transition
matrix and then derive the general control law that will yield this
motion. In this paper we want to design three general cases: A, fixed
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Fig. 1 Control law T = −−σ2G[u+uT
+ + u−uT

−]δr with G = 10 is applied [Eq. (22)] Initial deviation is 1 ×× 105 km in the x direction. This plot shows the
stability in a nonlinear solution.

Fig. 2 Controller Tc = −−(Ṽrr−−Vrr) δr is applied to result in a desired force potential Ṽrr = −−2.7 ×× 10−12I3 × 3. Initial deviation is 1 ×× 105 km in
the x direction. This plot shows the stability in a nonlinear solution.

relative orbit plane in the original rotating frame; B, fixed relative
orbit plane in the inertial frame; and C, fixed relative orbit plane in
an arbitrary frame.

Local Dynamics Formulation
Having found a sufficient condition under which the closed-loop

linearized system is stable, we now concern ourselves with the
dynamics of the controlled system. In preceding sections, we ap-
proached the problem by considering stability at each point in time
and treating the instantaneous dynamics over every short time span
as time invariant instead of considering the original linearized time-
varying system over an entire period. We can understand our system
by investigating the eigenstructure of each Ã(ti ) (stabilized) matrix.

For the case of a completely stable map, there are three pairs of
imaginary eigenvalues, known as the modes of the system. The tra-
jectory described by each mode forms an elliptical orbit relative to
the nominal trajectory with the origin of the frame at its center. The
actual trajectory is the linear combination of these three modes. Be-
cause Ã(ti ) is not necessarily constant over the entire orbit period,
we cannot define one set of constants describing the relative motion
over the entire orbit period but can instead define a secular set of
“linear orbital elements”5 to describe the geometry of the trajectory.

By understanding the behavior of each mode over time, we can
understand how the relative motion of the formation will be modi-
fied over time. Moreover, the mathematical formulas link the eigen-
vectors of the dynamic matrix with linear orbital elements, which
converts this into a problem of eigenstructure properties.
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Fig. 3 Eigenvalues of control law in Eq. (22). We see that the V is negative definite.

Eigenstructure Assignment
It is well known that, for a controllable system, we can arbitrarily

place its poles.11 However, the desired closed-loop eigenvalues and
eigenvectors might not be attainable at the same time because this
is an overconstrained problem. This implies that closed-loop right
eigenvectors cannot be assigned arbitrarily, and only those that be-
long to the span of the corresponding allowable subspace can be
assigned precisely.12 Most researchers have dealt with this prob-
lem by using an optimization technique, such as Refs. 12 and 13,
with either output feedback or state feedback. These algorithms try
to “rotate” the subspace of eigenstructures such that the weighting
is minimum. With certain constraints the system must also satisfy,
stability can then be guaranteed.

This is a useful tool for control problems, which require poles on
the negative real plane. In our problem, however, these approaches
are not applicable. Our approach to formation flight requires that all
instantaneous closed-loop poles should lie on the imaginary axis.
Optimization of the eigenvector placement would in general move
those poles off the imaginary axis, which would destabilize the for-
mation dynamics. Therefore, we have investigated other approaches
to solve our problem.

Trajectory Design in the Rotating Frame
Position-Only Feedback: Algebraic Approach
General Equations

To understand the relationship between eigenvalues and eigen-
vectors, recall Eq. (17) for a three-degree-of-freedom system with
position-only feedback

δr̈ − 2ω f Jδṙ − Ṽ (t)δr = 0 (23)

Therefore, the characteristic equation for Eq. (23) is

det
[
λ2 I − 2ω f Jλ − Ṽ (t)

] = 0 (24)

Given our stability constraint, the eigenvalues are λ = ± jωi , where
ωi is the closed-loop oscillation frequency for i th mode and
i = 1, 2, 3. We can express those frequencies in terms of frame rota-
tion rate ω f , that is, ωi = kiω f , which must satisfy Eq. (24). Define
V̄ (t) = Ṽ (t)/ω2

f , and then the normalized characteristic equation

would be

det
[ − k2

i I − 2ki j J − V̄ (t)
] = 0 (25)

If αi ± jβi are the associated eigenvectors for each mode in the
normalized system at each time instant, the corresponding eigen-
vector problem can be stated as
 −k2

i − V̄xx ∓2ki j − V̄xy −V̄xz

±2ki j − V̄xy −k2
i − V̄yy −V̄yz

−V̄xz −V̄yz −k2
i − V̄zz





a1i ± jb1i

a2i ± jb2i

a3i ± jb3i


 = 0

(26)

where αi = (a1i , a2i , a3i ), βi = (b1i , b2i , b3i ). Considering only one
mode, we can rewrite Eq. (26) as a function of V̄i j .




a1 a2 a3 0 0 0

b1 b2 b3 0 0 0

0 a1 0 a2 a3 0

0 b1 0 b2 b3 0

0 0 a1 0 a2 a3

0 0 b1 0 b2 b3







V̄xx

V̄xy

V̄xz

V̄yy

V̄yz

V̄zz




= −k2




a1

b1

a2

b2

a3

b3




− 2k




−b2

a2

b1

−a1

0

0




(27)

which can also be expressed in the form of Pi V̄ = Qi (V̄), i = 1, 2, 3.
Because all three modes have to satisfy the same force potential,
Eq. (27) is valid for all three modes. Let

P =


P1

P2

P3


 (28)

Q =


Q1

Q2

Q3


 (29)

Then we can combine these three modes and write them as
PV̄ = Q(V̄), where P ∈ R

18 × 6 and Q ∈ R
18. This is an overcon-

strained simultaneous nonlinear equation with six unknowns and 18
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equations. The solution exists if and only if Q(V̄) ∈RA{P}. Both P
and Q are functions of k, α, and β, and k in turn is also a function
of V̄. Generally speaking, this problem is difficult to solve.

In a practical approach, we can pick a set of candidate eigenvectors
and eigenvalues and insert them into Eqs. (25) and (27) to verify
whether they satisfy both equations. To simplify the situation, we can
only specify one mode and let the other two modes be free. Upon
finding some candidate force potentials, we can then enforce the
negative definite condition, if possible, so that stability is guaranteed.

Forcing Circular Motion
The most specific case to consider is the design of a circular

relative trajectory. Following our preceding design method, we only
consider one mode and pick the negative force potential later. From
Ref. 5, we can conclude that α ⊥ β ⊥ ĥ and |α| = |β| = 1/

√
2

for a circular trajectory mode, where ĥ is the relative orbit normal
vector. Assume α= (â1, â2, â3)/

√
2, β= (b̂1, b̂2, b̂3)/

√
2, and ĥ =

(h1, h2, h3), where âi and b̂i denote the unit vector components of
α and β. Then ĥ = 2(β×α). Accordingly,

α̂ = ĥ × β̂

=




h2b̂3 − h3b̂2

h3b̂1 − h1b̂3

h1b̂2 − h2b̂1




β̂ = â × ĥ

=


−h2â3 + h3â2

−h3â1 + h1â3

−h1â2 + h2â1




Substituting these into Eq. (27) and performing some algebraic ma-
nipulation leads to two relations:




k2 + 2kh3 + V̄xx V̄xy −2kh1 + V̄xz

V̄xy k2 + 2kh3 + V̄yy −2kh2 + V̄yz

V̄xz V̄yz k2 + V̄zz


α= 0 (30)




−V̄xyh3 + V̄xzh2

(
k2 + V̄xx

)
h3 − V̄xzh1 + 2k −(

k2 + V̄xx

)
h2 + V̄xyh1

−(
k2 + V̄yy

)
h3 + V̄yzh2 − 2k V̄xyh3 − V̄yzh1 −V̄xyh2 + (

k2 + V̄yy

)
h1

−V̄yzh3 + (
k2 + V̄zz

)
h2 V̄xzh3 − (

k2 + V̄zz

)
h1 −V̄xzh2 + V̄yzh1


α= 0 (31)

Note that β also has to satisfy Eqs. (30) and (31). Because α is per-
pendicular toβ, the rank of Eqs. (30) and (31) cannot be greater than
one, and α and β must be located in the null space of both matrices.

Because the matrices in Eqs. (30) and (31) are not full rank, by
taking their determinants we can obtain relations between the factor
k and the entries of V̄ . Consider a specific case in which the off-
diagonal terms in V̄ are all zero. The determinants are

∣∣∣∣∣∣∣
k2 + 2kh3 + V̄xx 0 −2kh1

0 k2 + 2kh3 + V̄yy −2kh2

0 0 k2 + V̄zz

∣∣∣∣∣∣∣
= 0 (32)

∣∣∣∣∣∣∣
0

(
k2 + V̄xx

)
h3 + 2k −(

k2 + V̄xx

)
h2

−(
k2 + V̄yy

)
h3 − 2k 0

(
k2 + V̄yy

)
h1(

k2 + V̄zz

)
h2 −(

k2 + V̄zz

)
h1 0

∣∣∣∣∣∣∣
= 0

(33)

The expansion of Eq. (33) yields

2h1h2k(k2 + V̄zz)(−V̄xx + V̄yy) = 0 (34)

One of the possible solutions in Eq. (34) is k2 + V̄zz = 0, which
is consistent with Eq. (32). However, because we know the rank
of Eqs. (32) and (33) are not greater than one, this is not a quali-
fied solution. The other solution is V̄xx = V̄yy , and, from Eq. (32),
V̄xx = V̄yy = −(k2 + 2kh3). Therefore, β̂ = (1, 0, 0), α̂ = (0, 1, 0),
and ĥ = (0, 0, 1). On the other hand, −k2 = V̄xx + 2k = V̄yy + 2k.
We find that the characteristic equation, Eq. (25), is also satisfied.
Moreover, Eqs. (32) and (33) both degenerate to rank ≤ 1 with these
results, which shows the consistency in our derivation. This result
implies that, with the presence of a Coriolis force, circular relative
motion can only exist in the x–y plane; a numerical simulation is
shown in Fig. 4. This restricts the application of this control law
to interferometric imaging, where we wish to orient the formation
plane in an arbitrary direction.

In Ref. 7 we also develop a so-called “soft approach” to approxi-
mate trajectory design. This algorithm provides a simpler method to
perform a trajectory design with position-only feedback. Relatively
large errors can exist between the true and desired trajectories with
this approach, which also restricts the application. Thus we do not
consider it further in the current paper.

Position-and-Velocity Feedback
The difficulties experienced in our trajectory design in the pre-

ceding section is caused by the presence of the Coriolis force. To
create a non-Coriolis environment in the rotational system, we must
apply a velocity feedback term to null out the Coriolis force:

Tc = 2ω f Jδṙ − Vcr(t)δr (35)

Then the stabilized equations of motion are in the form

δr̈ − Ṽ (t)δr = 0 (36)

If we assume Ṽ (t) is constant over a short time interval, we can easily
derive the “instantaneous” motion. The characteristic equation is

det(ω2 I − Ṽ ) = det(M) det
(
ω2 I − �V

)
det(M−1)

= det
(
ω2 I − �V

)
= (

ω2 − λv1

)(
ω2 − λv2

)(
ω2 − λv3

)
= 0 (37)

where M is the eigenvector matrix and �V is the diagonalized force
potential. From linear theory, the force potential can be decomposed
as Ṽ = M�V M−1, and the eigenvectors satisfy the equation[

ω2
i I − Ṽ

]
ui = 0 (38)

Here we should note that the controlled Ṽ is negative definite
for stabilization purposes, implying that λvi < 0. Given this local
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Fig. 4 Vxx = Vyy and off-diagonal term being zeros are selected in this case. We can see that the relative circular trajectory only can exist on the xy
plane; a) integrated in the original nonlinear equations about a halo orbit and b) same orbit relative to the halo orbit in panel a.

Fig. 5 Relative circular trajectory is created in a non-Coriolis system: a) integrated in the original nonlinear equations about a halo orbit and b) same
orbit relative to the halo orbit in panel a.

description, we can solve for the motion (assuming local time in-
variance)

δr(t) =
3∑

i = 1

ρi ui cos
(√|λvi|t + φi

)
(39)

where ρi and φi are determined by initial conditions. This equation
tells us that, for each mode, the relative trajectory performs linear
harmonic oscillations along the direction of the eigenvector with
their associated eigenvalue as their frequency. The real trajectory is
just the linear combination of all three modes. Moreover, all of the
eigenvectors are orthonormal to each other because Ṽ is symmetric,
and so the eigenvector matrix M can be viewed as a rotation matrix.
To generate a desired trajectory, we can initially assemble a diag-
onal Ṽ matrix with proper frequency ratios and then choose initial
conditions to generate a desired relative trajectory. Following this,
we apply frame rotation by pre- and postmultiplication by a rotation
matrix to obtain a specific orientation of the orbit plane.

Figures 5 and 6 show an example of mode combinations, where
a circular and a figure-eight shaped trajectory are created, indicat-
ing that we now have considerable freedom to perform trajectory
design in this way. In general, if the frequencies are chosen to be
commensurate with each other, the resulting trajectories will be pe-
riodic. For our motivational application of interferometric imaging,

we are most interested in circular orbits; hence, we will generally
consider equal frequencies with initial conditions chosen to excite
the spacecraft into a circular orbit.

General Trajectory Design
The preceding discussion shows the convenience of designing

a trajectory with position-and-velocity feedback. The philosophy
behind this control law is to create artificial inertial frames, where all
of the motions are just combinations of simple harmonic oscillations.
Having accomplished our first goal of trajectory design—a fixed
relative orbit plane in the sun–Earth rotating frame—in this section
we explore how to achieve our other two goals: a fixed relative orbit
plane in the inertial frame and plane reorientation.

Transformation of Control Laws
We first discuss the transformation of control laws between frames

in uniform rotation relative to each other. In previous derivations we
have developed control laws with respect to the sun–Earth rotational
system; thus, to be consistent when designing our formation controls
we transform them back to the sun–Earth rotational system.

To generalize the derivation, we define three different systems:
1) The first is the inertial frame with all notations denoted by the

subscript i .
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Fig. 6 Relative figure-eight trajectory in a non-Coriolis system: a) integrated in the original nonlinear equations about a halo orbit and b) same orbit
relative to the halo orbit in panel a.

2) The second is the A-rotational frame with all notations denoted
by the subscript A. Assume that the A frame rotates with rotational
vector ωA = ωAẑ with respect to the inertial frame.

3) The last system is the B-rotational frame with all notations
denoted by the subscript B. Assume that the B frame rotates with
rotational vectorωB = ωBû, where û is an arbitrary unit vector, with
respect to the inertial frame. We note that the sun–Earth system is
an A-frame system with rotational vector ωe = ωe ẑ.

Next we consider a general transformation of control laws be-
tween a rotational frame with rotational vector ω= [ωx ωy ωz]T

and an inertial frame. Assume the excursion of a spacecraft in the
rotating frame is described as rr (t) (where the δ sign is dropped
for convenience), and its excursion in the inertial frame is ri (t). The
excursions in the inertial frame can be transformed by a rotation ma-
trix to rr (t) = R(t)ri (t) and Ṙ = −ω̃R, where ω̃ is the outer product
operator with ω= (ωx , ωy, ωz), and

ω̃ =


 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 (40)

Therefore, the following equations can be obtained:

rr (t) = R(t)ri (t) (41)

ṙr (t) = Ṙ(t)ri (t) + R(t)ṙi (t)

= −ω̃R(t)ri (t) + R(t)ṙi (t) (42)

r̈r (t) = ω̃ω̃R(t)ri (t) − 2ω̃R(t)ṙi (t) + R(t)r̈i (t) (43)

where ṙr and r̈r are the velocity and acceleration vectors observed in
the rotational frame. In our notation time derivatives are taken with
respect to the frame specified in the subscript; thus, ṙr is with respect
to the rotating frame and ṙi is with respect to the inertial frame.
Because R(t)ri (t) = rr (t) and R(t)ṙi (t) = ṙr (t) + ω̃rr (t) [Eqs. (41)
and (42)], Eq. (43) can be reformulated as

r̈r (t) = −ω̃ω̃rr (t) − 2ω̃ṙr (t) + R(t)r̈i (t) (44)

Once we specify the desired equations of motion for our formation
in the inertial frame, Eqs. (43) and (44) allow us to transform them
back to the rotational frame. Given a rotation axis about which to
rotate û and a rotation angle φ = ωt , we note that the rotation matrix
R(t) can be obtained from

R(t) = ûûT + cos φ(t)(I − ûûT ) − sin φ(t)ũ (45)

where ũ is the outer product operator [Eq. (40)] of û.
One immediate application of the preceding equations is to trans-

form a control law, which generates a desired motion in the inertial
frame into the A frame. Assuming that the desired equations of mo-
tion in the inertial frame are given as r̈i (t) = Vi (t)ri , where Vi is the
force potential matrix in the inertial frame, we substitute this into
Eq. (44) and apply R(t)ri (t) = rA(t) to obtain

r̈A(t) = −ω̃Aω̃ArA(t) − 2ω̃A ṙA(t) + R(t)Vi (t)RT (t)rA(t) (46)

Replacing the subscript A with e in Eq. (46), we obtain the required
transformation for the sun–Earth system:

r̈e(t) = −ω̃eω̃ere(t) − 2ω̃e ṙe(t) + R(t)Vi (t)RT (t)re(t) (47)

Comparing Eq. (47) with Eq. (16), we see that the required controller
Vcvṙr (t) + Vcrrr (t) in Eq. (14) is

Vcv(t) = −2ω̃e − 2ωe J (48)

Vcr(t) = R(t)Vi (t)RT (t) − ω̃eω̃e − VRR(t) (49)

where

ω̃e =


 0 −ωe 0

ωe 0 0

0 0 0




= −ωe J (50)

Therefore we obtain

Vcv(t) = 0 (51)
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Vcr(t) = R(t)Vi (t)RT (t) − ω2
e J J − VRR(t)

= VI (t) − ω2
e J J − VRR(t) (52)

where VI (t) = R(t)Vi (t)RT (t). Equations (51) and (52) can be ex-
plained as follows. If we observe motion in the rotational frame, it
will be affected by the Coriolis and centripetal forces. Conversely,
if we wish to control an inertial motion in the rotational frame, we
should keep the Coriolis force but subtract the centripetal force,
which is why Vcv = 0 but Vcr has an additional term ω2

e J J .
Next, we consider a desired motion governed by r̈B(t) =

VB(t)rB(t) in the B frame, where VB(t) is symmetric and repre-
sents the force potential. We have already shown how to force the
relative orbit plane to be fixed in the rotational frame. Moreover,
we know that a fixed trajectory in a rotational frame appears to be
rotating in the inertial frame. Therefore, if we want to perform a
trajectory plane reorientation with respect to an inertial frame we
can fix the trajectory in a rotational frame until the trajectory plane
reaches the desired inertial orientation.

To obtain the required control law, we substitute the preced-
ing equations of motion into Eq. (43), with R(t)ri (t) = rB(t) and
ṙB(t) = R(t)ṙi (t) − ω̃B R(t)ri (t), and we obtain

r̈i (t) = 2RT (t)ω̃B Rṙi (t) + RT (t)[VB(t) − ω̃Bω̃B]R(t)ri (t) (53)

We can specify the required controller in the inertial frame as

Vcv(t) = 2RT (t)ω̃B R(t) (54)

Vcr(t) = RT (t)[VB(t) − ω̃Bω̃B]R(t) − Vi (t) (55)

Trajectory Plane Reorientation
To perform a trajectory plane reorientation, we use our ability to

fix a plane in an arbitrary rotating frame, which results in a constant
rotation of the plane in the inertial frame. When the desired orien-
tation is reached, we switch the controller to resume the original
dynamics.

This algorithm can be applied to a rotating frame as well. In
the preceding position-and-velocity feedback section, we created a

Fig. 7 Plane reorientation is demonstrated in this example. The final trajectory faces the x axis as designed. However, because of the nonlinear effect,
the final trajectory is not purely circular.

pseudo-inertial frame in the sun–Earth rotating frame by nulling out
the Coriolis force. Therefore, to apply the preceding algorithm we
can treat our sun–Earth system as an inertial frame by simply adding
an additional controller Tc1(t) = −2ωe J ṙ(t).

Consider the following scenario: A spacecraft formation is placed
in a fixed circular trajectory relative to the periodic orbit in the
sun–Earth rotating frame with its orientation defined by its relative
angular momentum vector hb. It is desired to reorient the formation
to reach a new plane defined by the angular momentum vector ha .
To carry out this reorientation, the formation plane should be rotated
about a rotation axis û defined by the intersection of the two planes,
and obtained from the relation

û = (hb × ha)/|hb × ha | (56)

Therefore, the rotation vector is ω= ωû, where ω is arbitrary and
is chosen according to how rapidly the formation should change its
orbit plane orientation. After the desired plane is reached, the control
law shifts back to its original form, and a fixed circular trajectory is
resumed again.

To execute a plane reorientation with respect to the sun–Earth
rotational system by applying Eq. (53), we first add an additional
velocity feedback Tc1(t) = −2ωe J ṙ(t) as mentioned earlier to gen-
erate a pseudo-inertial frame, and then apply Eq. (35) to obtain a
fixed circular trajectory in the B frame, which rotates about ωB

with respect to the sun–Earth pseudo-inertial frame. The modified
controller is

Vcv(t) = 2RT (t)ω̃R(t) − 2ωe J (57)

Vcr(t) = RT (t)[Vr (t) − ω̃ω̃]R(t) − VRR(t) (58)

When the desired orientation is reached, Eq. (35) is applied again
to fix the trajectory in its new orientation.

Figure 7 shows a numerical example of this operation. In this
example, we apply a position-and-velocity feedback in Eq. (35) to
create a circular trajectory. The original angular momentum hb is
chosen with inclination of 30◦ and longitude of 90◦ (facing the y
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axis). Given a new plane with ha = x̂ , we can apply Eqs. (56–58) to
induce a plane reorientation. After the desired orientation is reached,
Eq. (35) is applied again. In Fig. 7 we can clearly see that the final
trajectory faces the x axis. However, because of nonlinear effects,
the final trajectory is not purely circular.

Fixed Trajectory in the Inertial Frame
Another important application of our preceding derivation is to

create a circular trajectory relative to a halo orbit with fixed orienta-
tion in the inertial frame. Because our original equations of motion
were derived in the sun–Earth system, a rotating frame, we would
like to convert the necessary control law to this frame, which is
already shown in Eqs. (51) and (52). This, however, makes the con-
trol law degenerate to a position-only feedback, and the equations
of motion are similar to Eq. (23):

δr̈ − 2ωe Jδṙ − [
VI (t) − ω2

e J J
]
δr = 0 (59)

but are still different from our preceding discussion. In Eq. (52)
we cancel the centripetal force so that the trajectory will remain
fixed in the inertial frame, whereas, in Eq. (23) the force potential
is arbitrarily assigned. Recall that we originally desired a fixed cir-
cular trajectory in the rotating frame using position feedback only.
However as shown in our earlier derivation, only one specific orbit
plane orientation could achieve this goal. With the current result
we see that a fixed trajectory in the inertial frame can be achieved
with position-only feedback control. We note that this orbit will be
uniformly rotating in the frame rotating with the Earth–sun line.

Figure 8 shows a numerical simulation of a fixed relative orbit in
the inertial space. We see that the trajectory retains a constant ori-
entation in the inertial frame. Combined with the preceding plane
reorientation control, we can now easily switch a spacecraft forma-
tion from one fixed inertial orientation to another, all as they travel
about the moving nominal spacecraft trajectory. The spacecraft for-
mation relative orbit will, in general, maintain its same shape and
size as it traverses to its new orbit plane.

Fig. 8 Numerical simulation about fixed circular trajectory design in the inertial frame.

Cost of Implementation
Cost of the Various Approaches

One important factor for the realizability of a control law is its
cost. Here we define cost as the integral of control acceleration over
time. Assuming that the greatest oscillation frequency in the sys-
tem is ωmax, the total cost of the control laws we propose can be
bounded as

|�V| =
∫ t

0

|a(t)| dτ

=
∫ t

0

|Vcvδṙ + Vcrδr dτ

≤
∫ t

0

(|Vcvδṙ| + |Vcrδr|) dτ

≤
∫ t

0

(ωmax‖Vcv‖2 + ‖Vcr‖2)|δr| dτ

≤
∫ t

0

(ωmax‖Vcv‖2 + ‖Vcr‖2)(ωmax‖	rv‖2 + ‖	rr‖2)|δr0| dτ

≤ |δr0|
[∫ t

0

(ωmax‖Vcv‖2 + ‖Vcr‖2)(ωmax‖	rv‖2

+ ‖	rr‖2) dτ

]
(60)

where ‖ · ‖2 is the 2-norm of a matrix, defined as
√

[λmax(AAT )],
where λmax denotes the maximum eigenvalue of AAT , and 	 is the
state transition matrix with

	(t, 0) =
[
	rr 	rv

	vr 	vv

]
(61)

We have discussed a variety of ways to design a formation: al-
gebraic approach, soft approach, position-and-velocity feedback,
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plane reorientations, and fixed orbit planes in the inertial frame.
With the preceding definition we can examine the costs of these
approaches. Figures 9 and 10 provide numerical simulations of fuel
usage in these approaches. All of them offer information on the
upper bound of fuel usage and actual costs in a specific case.

Table 1 gives a general comparison of costs for the different oper-
ations shown in Figs. 9 and 10. The position-and-velocity feedback
has more cost than the position-only controller because we need to
spend fuel to null out the Coriolis force. The inertially fixed circular
trajectory costs more because fuel is spent generating rotational mo-
tion in the original rotating frame. However, these levels of fuel con-

Table 1 Acceleration and fuel bounds for various control
strategies for generating circular orbits with period ∼36 days

Type of control law ≤ a,a km/s2 �V/yr,a km/s/yr

Position only 4.30 × 10−12 1.36 × 10−4

Soft approach 4.98 × 10−12 1.57 × 10−4

Position and velocity 4.66 × 10−12 1.47 × 10−4

Inertially fixed trajectory 5.81 × 10−12 1.83 × 10−4

Plane reorientation 6.97 × 10−12 2.20 × 10−4

aAcceleration a and �V are per km of amplitude in the formation. Thus, to control
a 100-km offset from the nominal costs 100 × �V per year.

a)

b)

c)

d)

Fig. 9 Upper bound on total cost per unit initial offset and the cost of a specific example with r0 = 1 km for a) a circular trajectory generated
by a position-only feedback with constant frequency over an entire period; b) a near-circular trajectory generated by a “soft” approach over an
entire period; c) a circular trajectory generated by a position-and-velocity feedback over an entire period; and d) a fixed circular trajectory shown
in Fig. 8.

sumption are still reasonable, and we conclude that our algorithms
are amenable to being implemented using low-thrust propulsion.

Minimum Cost for Fixed Trajectories in the Inertial Frame
In this section we investigate minimizing the cost to create a fixed

circular trajectory in the inertial frame. Equation (60) implies that
the controller is a function of system oscillation frequencies: the
higher the frequency assigned, the higher the cost. Therefore, we
can lower the cost by decreasing the oscillation frequencies, which
are defined by the force potential matrix. As long as we keep the
desired potential matrix negative definite, stability is guaranteed.
However, to create a circular trajectory in the inertial frame we need
to subtract the centripetal term from the desired force potential. This
constraint means that we cannot design a force potential arbitrarily
for the sake of stability. Consider the upper bound on cost in this
case:

|�V| =
∫ t

0

|a(t)| dτ

=
∫ t

0

|[VI (t) − ω̃ω̃ − VRR(t)]rr (t)| dτ (62)
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Fig. 10 Upper bound on total cost per unit initial offset in the case of plane reorientation and the cost of a specific example with r0 = 1 km.

where

VI (t) = R(t)Vi (t)RT (t)

= M(t)


−ω2

1(t) 0 0

0 −ω2
2(t) 0

0 0 −ω2
3(t)


 MT (t) (63)

VRR(t) = 3µ

r 3
r (t)

rr (t)rT
r (t) − µ

r 3
r (t)

I3 × 3 +


3ω2

e 0 0

0 0 0

0 0 −ω2
e




(64)

ω̃ω̃ = ω2
e J 2 (65)

Let vi be the i th column of M(t), and

rr = c1v1 + c2v2 + c3v3

= M(t)c (66)

Therefore, the integrand becomes

VI − ω̃ω̃ − VRR = M





−ω2

1 − 2ω2
e 0 0

0 −ω2
2 + ω2

e 0

0 0 −ω2
3 + ω2

e




+
(−3µ

r 3
r

ccT + µ

r 3
r

I3 × 3

)
 MT

= M(t)[�(t) + K (t)]M(t)T (67)

Table 2 Comparison of acceleration and fuel bounds for generating
inertially fixed circular orbits with different frequency combinationsa

(k1, k2, k3) ≤ a,b km/s2 �V/yr,b km/s/yr

(1.01, 1.01, 1.01) 8.45 × 10−13 2.67 × 10−5

(1.43, 1.01, 0.71) 1.53 × 10−12 4.83 × 10−5

(5.03, 5.03, 5.03) 1.88 × 10−12 5.93 × 10−5

(7.11, 5.03, 3.56) 5.73 × 10−12 1.81 × 10−4

(10.83, 10.83, 10.83) 6.91 × 10−12 2.18 × 10−4

aWe assume ωi = ki ωe for the i th mode.
bAcceleration a and �V are per kilometer of amplitude in the formation. Thus, to
control a 100-km offset from the nominal costs 100 × �V per year.

For simplicity, we drop t in the later derivation, and Eq. (62)
becomes

|�V| =
∫ t

0

∣∣[M(� + K )MT ]rr

∣∣ dτ

≤
∫ t

0

∣∣(M�MT )rr

∣∣ dτ +
∫ t

0

∣∣(M K MT )rr

∣∣ dτ

=
∫ t

0

∣∣∣∣∣
3∑

i = 1

�i ci vi

∣∣∣∣∣ dτ +
∫ t

0

|M K c| dτ

Because M is orthonormal, implying that the vi are perpendicular
to each other, we can conclude∣∣∣∣∣

3∑
i = 1

�i ci vi

∣∣∣∣∣=

√√√√ 3∑
i = 1

�2
i c2

i (68)

where �1 = −ω2
1 − 2ω2

e , �2 = −ω2
2 + ω2

e , �3 = −ω2
3 + ω2

e . By the
Cauchy–Schwarz inequality,√√√√ 3∑

i = 1

�2
i c2

i ≤

√√√√ 3∑
i = 1

�4
i

√√√√ 3∑
i = 1

c4
i (69)
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For stability the closed-loop force potential must be negative def-
inite, that is, VI (t) − ω̃ω̃ < 0, implying that ω1 > ωe, ω2 > ωe, and
ω3 > 0. Therefore, |�V| has its minimum value when ω1 ∼ ωe,
ω2 ∼ ωe, ω3 = ωe. Table 2 gives a general comparison of costs for
different combinations of desired oscillation frequencies. These re-
sults indicate that the above derivation for minimum cost is valid.

Conclusions
This paper develops control laws to stabilize an unstable orbit and

implement formation flight designs for a reasonable fuel cost. The
technique we propose defines a single feedback control law that can
be distributed to all of the spacecraft in the formation. The control
law is nontraditional in that it creates a new dynamical environment
about the unstable orbit where the spacecraft in the formation can
follow a desired path. After applying this control law, the spacecraft
need to be given proper initial conditions for the entire formation to
evolve in a consistent manner. The control law allows for specific
planes of motion to be defined for the formation, which can either
be fixed in inertial space or in an arbitrary rotating coordinate frame.
Transitions of the formation between different plane orientations are
easily handled by the formation simultaneously switching to a differ-
ent control law, which causes the orbit plane to uniformly rotate to a
new orientation. Specific examples of these formation-flight control
laws in the vicinity of an unstable halo orbit in the Earth–sun system
are provided and show that they can be implemented for reasonable
fuel costs. Specifically, the required accelerations for maintaining
our formations range from 4 × 10−12 to 7 × 10−12 km/s2 (per km
of formation amplitude), with the corresponding �V costs ranging
from 1.4 × 10−4 to 2.2 × 10−4 km/s/yr (per kilometer of formation
amplitude). Using these control laws, it is possible to force a forma-
tion of spacecraft comprising a distributed interferometric observa-
tory to lie on an image plane perpendicular to an imaging target line
of sight for an arbitrary period of time, even as the entire constella-
tion is traveling along the halo orbit. Moreover, the spacecraft in the
formation will be traveling in a mutual circular orbit about the nom-
inal trajectory, a configuration that allows an interferometric obser-
vatory to completely cover the wave-number plane in half a period,
allowing for complete reconstruction of an image. The approach
outlined here is a feasible way to operate a large number of satel-
lites in an interferometric observatory using a relatively simple, and
uniform, control methodology. Future issues of interest would be
the robustness of this control approach to modeling and navigation
errors, the effect of force perturbations, and the level of additional
control needed to ensure fixed baselines between the satellites.

Appendix: Proof of Lyapunov Stability
In Eq. (18),

V(δr, δṙ) = − 1
2 δrT Ṽ δr + 1

2 δṙT δṙ

Given Ṽ negative definite, we conclude −δrT Ṽ δr ≥ 0 and the
quantity equals zero if and only if δr = 0. Then,

V(δr, δṙ) = − 1
2 δrT Ṽ δr + 1

2 δṙT δṙ

= − 1
2 δrT Ṽ δr + 1

2 ‖δṙ‖2

≥ 0 (A1)

Therefore, V(δr, δṙ) = 0 if and only if δr = 0 and δṙ = 0.
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