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This study describes a theoretical analysis of free-molecular flows between two plates, both equipped with vacuum
pumps, with an aim to investigate the facility effects of large chambers equipped with distributed cyrogenic vacuum
pumps. Three free-molecular models are proposed to study the unsteady flow behavior, and to calculate the average
number density and average velocity of the rarefied background gas molecules between the two plates. The first
model is based on mass conservation and predicts that the unsteady evolution is a multiple time scale process. The
second model is a classical steady Kinetic model, whereas the third model is the most advanced Kinetic model that
includes chamber wall effects. In the last two models, a detailed balance of flux along different flow directions and
reflection relations lead to exact solutions. All three models include the chamber facility effects, especially pump size
and pump sticking coefficient. Simulations with the direct simulation Monte Carlo method are performed and the
results are compared with the analytical results. The analytical results from these models can be used to estimate the
average background pressure and velocity in large vacuum chambers equipped with multiple pumps for

experiments and simulations.

Nomenclature
D chamber diameter
d = atomic diameter
f(C) = velocity distribution function
H,L = chamber length
Kn = Knudsen number
k = Boltzmann constant
m = mass flow rate into vacuum chamber
m = atomic mass
n = number density
ny, = number density for particles passing through station X

from one side
ny_ = number density for particles passing through station X
from the other side

Ny number density for flux into the vacuum chamber
n = surface normal

P, = chamber backpressure

R = gas constant, or chamber end section radius

r = distance vector between two points

r = distance between two points

S = chamber cross-sectional area or pump size

K = arearatio, =S,/S.

T = temperature

U,V = mean velocity
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v, = thermal velocity characterized by pump temperature

Vo = thermal velocity characterized by wall temperature

w; = particle weight

o = pump sticking coefficient

y = specific heat ratio

€ = particle conductance percentage from chamber wall to
one chamber end

A = mean free path

P = background density

Lo = initial background density

T = semidecaying period

X = particle conductance percentage from one chamber end
to the other end

Q = chamber volume, or solid angle in velocity phase space
or physical space

subscript

b = background

c = chamber

in = inflow

w = wall

1,2 = pumplor2

A, B chamber end A, B

1. Introduction

ACUUM chambers have wide applications for a variety of

purposes such as materials processing and testing of spacecraft
electric propulsion systems. The main goal of vacuum chambers is to
provide and maintain a low pressure environment. For example, in
experiments of testing a cluster of high-power electric propulsion
(EP) devices, such as plasma thrusters, vacuum chambers are usually
equipped with cryopumps [1-3], and the backpressure in the vacuum
chamber is maintained at about 107>~10~* Pa with the thrusters in
operation. At such a low pressure, the background flow inside the
vacuum chamber is usually free-molecular.
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One fundamental concern about the vacuum chamber is to
understand the effects of the chamber characteristics on the chamber
performance, such as the average background pressure and average
velocity in the chamber. These facility characteristics include the
pump size, the pump sticking coefficient , the sidewall length, the
chamber wall temperature which is usually 300 K, and the cyrogenic
pump temperature which is usually maintained at 10-20 K. These
facility characteristics can have significant impacts on the vacuum
chamber background flow and it is important to properly quantify
these facility effects. For example, in EP experiments with large
vacuum chambers generally equipped with multiple cyrogenic
pumps, the real cyrogenic pump sticking coefficient can be much
lower than its nominal value, because there will generally be a
propellant frost built up on the cryogenic pumps [4]. For this
situation, to accurately estimate the actual sticking coefficient, it is
crucial to accurately predict the background pressure and
background velocity in the chamber. More generally speaking, a
study of facility effects can help to answer the following
questions:

1) For a given set of thruster operating conditions and given
facility characteristics, what values can be expected for the average
background pressure and average background velocity in achamber?
Itis crucial to have a clear understanding of this question because the
background pressure and background velocity are the two major
properties indicating the performance disparity for EP test devices
between experimental conditions and real space operation
conditions. In space, the ambient pressure and velocity is zero,
whereas in a large vacuum chamber, there is always a finite
background pressure, and a background average velocity towards the
pumps.

2) What are the exact effects of the facility on the background gas?

3) What is the optimal condition that a facility can achieve by
adjusting facility properties? Answering these three questions can
provide guidelines to improve existing chambers or to design new
chambers.

A study of the background flow can have significant influence on
numerical simulations as well. For example, in particle simulations
of plasma plume flows in large vacuum chambers, usually a large
full-scale 3-D simulation is replaced by a simple two-dimensional or
axis-symmetric simulation. In such a simplified simulation,
traditionally the background flow is replaced with static particles
whose velocities are assigned from a zero-centered Maxwellian
distribution. However, as pointed out by our previous study [5-7], in
chambers equipped with one-sided pumps at one chamber end, the
real background flow usually does nor follow a zero-centered
Maxwellian distribution, and under extreme situations, the average
background velocity of the background particles can reach over
100 m/s. Another interesting result from our previous study is the
semidecaying period formula for the unsteady background flow. For
large vacuum chambers, such as the large vacuum test facility at the
University of Michigan, several seconds are required for the
background flow to reach a steady-state condition, hence it is a
challenge to perform three-dimensional particle simulations of
plume flows in the chamber with a background flow [6,7]. The results
of this study will be helpful for numerical simulations of plume flows
in vacuum chambers.

Recently, we performed several studies on the facility of large
chambers [5-7]. These studies investigated the background flow
using simple models of free-molecular flows between two plates
equipped with one-sided or two-sided cyrogenic pumps on or near
one chamber end. The background flow is separated from the main
plume flow inside the chamber. Through the top plate, a net gas flow
rate is assumed to enter the chamber, which represents the reflected
plume flow at one chamber end, and the thermal speed of the gas flow
is characterized by the wall temperature. On the other plate equipped
with pumps which are maintained at a low pump temperature, when
particles hit the pump surface, they will either stick to the pump and
thus be removed with a probability of «, or reflect into the chamber
with a probability of 1 — « having a thermal speed characterized by
the pump temperature. Analyzing the fluxes along two directions and
the number density relations at different locations leads to complete
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Fig. 1 Illustration of the flow problem for models 1 and 2.

solutions of the background flow, including expressions for the
velocity distribution function and the number density.

This article reports our recent progress in a continuing
investigation of facility effects for large vacuum chambers equipped
with distributed cyrogenic pumps. The problem studied is the free-
molecular flow between two plates both equipped with pumps,
which is a fair approximation for large vacuum chambers with
distributed pumps. For example, the 12V chamber at Arnold
Engineering Development Center [8] is a large chamber with
distributed pumps: there are large cryogenic pump plates located at
the bottom of the chamber working as the primary pumps and smaller
pumps working as the secondary pumps on the top of the chamber.
The problem is illustrated by Fig. 1: through the top plate of area S_.,
there is a diffusion flow characterized by the wall temperature and a
mass flow rate into the space between the two plates; both plates are
equipped with pumps; the pumps are characterized by individual
pump areas S; and S,, the same pump temperature, and the same
pump sticking coefficient. Particles move between the two plates
freely. When the particles strike a wall, they reflect with a thermal
velocity characterized by the wall temperature. If particles strike a
pump surface, then by a probability of « the particles stick to the
pump, or by a probability of 1 — « they reflect back towards the other
plate with a thermal speed characterized by the pump temperature.
Note for the reflections on pumps and walls, complete
accommodations with the wall or pump surface are assumed.
Sidewall effects are included in this study as well. To simplify the
study and without lose generality, we assume the top plate is small
and the size is set to a fixed value S /S, = 0.2. For this study, we still
use the assumption that the plume flow does not directly hit the pump.

In real applications such as chambers for EP device experiments,
the chamber is usually quite long, L/R > 1. The chamber length is
one of the facility characteristics that can have a significant effect on
the background flow, and we classify the chamber to be a short
chamber or a long chamber based on the ratio of chamber length to
chamber radius for a cylindrical chamber [5,7]. The long chamber
wall effects will be discussed with two approaches illustrated in our
previous study [5-7]. In the first approach, sidewall length effect is
summarized with a specific parameter representing the percentage of
particles traveling from one chamber end to the other chamber end
without any collisions with the chamber side walls. The other
treatment is to simply set the ratio between the wall and pump plate
temperatures, T,/ T ,, to unity. This second approach is based on the
fact that in long wall situations, almost all particles reflected from the
pumps on one chamber end will collide with the chamber wall before
they arrive at the other chamber end; hence when they arrive at the
other chamber end, their thermal velocities are characterized by the
wall temperature instead of the pump temperature. Details of these
two approaches can be found in our previous study [5-7], and both of
them will be applied in this study as well.

The following sections present the results of several analytical
models and numerical simulations to validate the analytical
solutions. It is worthy to mention that this is a well-defined classical
free-molecular flow problem with realistic application background.
Even though it will be shown that the solutions to this problem are
rather complex, these solutions are more general than those for the
problem of one-sided pumps which we investigated previously [5,7].
The analytical results from this study are applicable to estimate the
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average background number density and velocities, which is
significant for the evaluation of vacuum chamber performance and
particle simulations of plume flows in a vacuum chamber. To our
knowledge, there are similar analytical results in the literature.

II. Model 1: From Mass Conservation Relation

Similar to our previous work [5,7], this study assumes a constant
density distribution between the two plates equipped with one-sided
pumps. Using the mass conservation law for gas in the chamber, the
following relation must hold:

dp _d(fpdv) 1(. 1 1

ar —Tdt—§(m—1paSlV1 _Zpaszvz) (D
where V, and V, are the average thermal velocities towards pumps 1
and 2 with pump surface areas S, and S,, respectively. This ordinary
differential equation is solved using the following two boundary
conditions:

1) Attime r = 0, gas begins to effuse into the chamber through the
top plate, the pumps begin to operate, and the average density
between the gap is py, hence p(t = 0) = p,.

2) When the time is sufficiently large, a steady flow is established
in the chamber: dp(t — oc0)/dt = 0.

The solution for this equation is expressed as Eq. (2), which
consists of one unsteady term and one steady term:

([) _ 4m ex Ot(SIVI + S2V2) /
PR= 10T 48V, + 8,V 4Q
4m
+ -
a(S\V, + 85,V2)

2

Pressure in a vacuum chamber is generally measured with an
ionization gauge. The pressure corresponding to such experimental
measurements [1] is:

Py(t) = p()RT, = [poRTw

4}’}.1 Cl(S]V] + S2V2)
B | _E i T k),
a(S;Vy + 5,V,) w:| exp[ 4Q
4m

T L— 3
a(S;Vy + 8,V,) )

At steady state, for fixed chamber properties, the pressure is
proportional to the mass flow rate:

PyS./(m \/2RT,) = 2/2RT,,S./[a(S;V, + S, V)] (4

If the backpressure and the mass flow rate are known, for example,
through experimental measurements, then the pump sticking
coefficient can be calculated using the following relation:

o = 4RT, /[P, (S,V, + $,V>)] )

Unfortunately, by including the top pump, this simple model
cannot provide an expression for the average velocity between the
two plates, though it can be reasoned that the net flow direction is
towards the bottom plate as long as the bottom pump has a nonzero
size and a nonzero sticking coefficient.

A. Determining the Thermal Speeds V; and V,
1. Short Chamber Situation

For a short chamber case, the expressions for V; and V, are
complex. With the existence of the small pump on the top plate, along
both directions, a fraction of particles have thermal velocities
characterized by the wall temperature V,, = /8RT,/m, and a
fraction have thermal velocities characterized by the pump
temperature V,, = \/8RT, /.

A reasonable expression for V| can be constructed by careful
consideration of the following facts:

1) When S, =0, all particles moving towards pump 1 have a
thermal velocity V, =V,,.

2) When S, = S, and o = 0, all particles moving towards pump 1
have a thermal velocity V|, = V.

3) When S, =S, and o =1, all particles hitting pump 2 are
absorbed and no particles move towards pump 1. Hence the average
velocity is V| = 0.

With consideration of the above three facts, the simplest linear
construction for V, is

1
V= ass 0 - $2/S:)/8kT,, [ (mm) + (1

—a)(52/5.)/8KT, [ (mm)] (©6)

Constructing V, can follow a similar approach. There are three
groups of particles moving towards pump 2: one group consists of
particles that entered directly through the top plate; one group is
resulted from reflections on the top plate wall; and the last group is
due to reflections on the top pump.

1) When S| = 0, there is no pump on the top plate, and all particles
moving towards pump 2 have a thermal velocity V, = V,,.

2) When S| = S, and o = 0, all particles reflected from the top
plate towards pump 2 have a thermal velocity V,, while there is
another group of particles with a mass flow rate that moves with a
thermal speed V.

3)When S| = S, and @ = 1, all particles hitting the top pumps are
absorbed and no particles are reflected towards the bottom pump.
Hence, the thermal velocity for this situation is V, = V.

With a consideration of the above three effects, a proper
construction for V, is

Vo,=[1-A( —®)S,/S.]+v8kT,/(m)

+ A —a)(8,/S.)/8kT,/(rm) (7
where A is a parameter to be determined.

2. Long Chamber Situation

Under the long chamber situation, the expressions for V; and V,
are greatly simplified as V|, =V, = \/8RT,, /.

Obviously, though the V| and V, expressions in the short chamber
situation are more accurate, they are more complex for practical
purposes, especially with the need to determine the parameter A for
V,. Hence, for simplicity, in this study, we adopt the velocity
expressions for long chamber wall situations. This treatment greatly
simplifies the final results with a decreased accuracy. However,
model 1 is a relatively crude model from which only approximate
trends are expected.

B. Discussion

This crude model, especially Eq. (3), relates several facility
properties such as the pump size, the mass flow rate, and the
propellant property R; only the pump temperature is not included.
There are three conclusions from model A:

1) Itis evident from Eq. (3) that there exists a semidecaying period
for the flow evolution:

T, = 4Q/[a(S V) + S, V,)] (8)
or

Ty =4/ (aS, V), T =42/ (aS, V) )
Obviously, the density evolution involves multiple time-scales,
especially if different, detailed expressions for V| and V, are
considered.

2) No matter how efficiently the pumps work, there is a certain
amount of finite backpressure between the plates. This backpressure
is represented by the second term of Eq. (3). The expression also
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indicates that with fixed pump parameters, at the final steady state,
the background pressure is proportional to the mass flow rate.

3) When S, = 0, the analytical results for both short and long
chambers degenerate consistently back to the results obtained in our
previous work [5,7].

The pressure can be calculated from Eq. (4) with known facility
properties, including cryogenic pump sticking coefficient, pump
sizes, proper estimations of V| and V,, and a given mass flow rate.
This model illustrates that the steady background pressure is
inversely proportional to the sticking coefficient when the mass flow
rate is fixed. At small values of «, a 1% difference in the coefficient
may result in a significant backpressure variation, whereas for large
values of « the normalized pressure is not very sensitive to this
parameter.

III. Model 2: Steady Detailed Kinetic Model

This model is a steady, detailed kinetic model illustrated by Fig. 1
as well. This model considers the detailed flux balance in the
flowfield, hence it can predict more accurate results than the first
model. When the gas flow between the two plates reaches a final
steady state, fluxes along the two directions must be exactly balanced
everywhere in the chamber. This property requires several number
density relations. Analysis of these flux and number density relations
is the key to the formulation of this steady-flow model. One
important relation for this study is the number density for a group of
particles reflected from a plate with a different temperature. To
preserve the equal mass flux, the following relation must hold:

ny/Ti =T, (10)

where the subscripts 1, 2 represent the incoming and reflected groups
of particles, respectively [9].

With the general short chamber assumption, there are four number
density relations in the flowfield, and they represent different groups
of particles traveling along two directions with thermal speed
characterized by the wall temperature and the pump temperature, as
illustrated in Fig. 1, and they form a complete velocity distribution
for the free-molecular flow between the two plates:

()

m _ mC? m _ mC?

M4\ 2uT, exp( 2kT",.) + 1y kT, exp( 2kT,,)’ >0
m _ mc? m _ mC?

M-\ /7T, exp( 2kT,,,) RECEN exp( 2kT,,) . €<0

an

where n,, represents the number density of particles moving
towards the bottom plate, with thermal velocities characterized by
the wall temperature; n,, represents the number density of particles
moving towards the bottom plate, with thermal velocities
characterized by the pump temperature. Similar definitions are used
for n,_ and n,_ to represent the number densities of particles moving
upwards. From the preceding velocity distribution function, it is
evident that the flow between the two plates cannot be described
using a Maxwellian distribution, and the average velocity is
generally not zero.

Following the reflection relation, Eq. (10), the velocity
distribution function, Eq. (11) and F ig. 1, there are four number
density relations existing in the flowfield as a result of reflections on
both plates, and a set of solutions is obtained from these relations.

np=nin+n(1=58,/S) +ny (1=58,/8)T,/T, (12)

nyy =n_S1/Sc(1 =) [T,/ T, +n,_(1—@)S,/S,  (13)

ni=n (1=8,/8) + np (1= 8,/8.),/T,/T, (14)

nye =n13.8/S.(1 —a) /T, /T, +ny (1 —a)S,/S, (15)

where n;, = m/(mS./2RT,/r), and it is the number density of
inflow gas through the top end. Further denote M=
(1 - S]/S(‘)(l - aSZ/S(:)’ N= (1 - a)S]/Sc(l - aSZ/S(:)’ and
after straightforward derivations, the final solutions for the steady
free-molecular flow between the two plates are

nyy =n(l=N)/(1-=N—M) (16)
ny, = ninN Tw/Tp/(l -N-— M) (17)
n_ = nyu(1—=35,/S.)/(1 =N —M) (18)

ny = ninSZ/Sc(1 - Ol) Tw/Tp/(1 —N-— M) (19)

The ratios among these number densities are n, :n,, :n|_:n, =
1-NNT,/T,1-S8,/8.8,/S.(1-a)\/T,/T,, and any of
these four groups of particles can be the dominating group. The
normalized background mean velocity and the pressure correspond-
ing to experimental measurements are as follows:

U _ a(SZ/Sc)
2RT, /72— N~ 58,/ + N + (1 — )8,/ 1YT,/T,}
(20)
P,S.
i /2RT,
_NTR2=N—-5/S. + [N+ (1 —a)S,/S.]y/T,/Tp} @
- 41 —N—-M)

Note the backpressures are calculated with P, = nkT,, because an
ionization gauge is generally used in experiments to measure the
background pressure.

The preceding results are expressions for general short chamber
situations. By simply setting T,/T,, = 1, the results for long wall
situations are obtained:

nyy =n(1=N)/(1 =N —M) (22)
nyy =np,N/(1—=N—M) (23)
ni_=ny(1-5,/8)/(1 =N —-M) (24)
nym = npS,/S.(1—a)/(1 =N — M) (25)

We want to point out that the incoming flux is implicitly included
in Eq. (12), whereas the outflux relation is implicitly satisfied by the
four number relations. Hence, even though we do not explicitly list
the flux balance equation, the flux into the chamber via the top plate
and out of the chamber via two pumps is implicitly balanced. The
validity of this model will be illustrated via comparisons with
numerical simulations.

It is interesting and necessary to verify the compatibility of these
new results with our previous results of free-molecular flows
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between two plates equipped with one-side pumps on the bottom plate only [5,7]. When S, =0, M =1—«S,/S., N=0, n,, =0,
Ny = ny/(@S,/S.),n_ = (1—8,/S)ny,/(as),and n,_ =[(1 — a)/a]\/T,,/T,n;,. Hence, the new analytical results degenerate consistently
to our previous results as expected and a perfect compatibility is obtained.

IV. Model 3: Steady Detailed Kinetic Model with Wall Effect

This model is an advanced steady kinetic model illustrated by Fig. 2. Different from model 2, this model considers the sidewall effect using a
geometry parameter x. With a side wall, the incoming number density at one chamber end can be attributed to two effects: a fraction of particles
travels from side wall to the chamber end with a transportation percentage of €, and a fraction of particles travels from the other chamber end
without any collisions with the chamber wall with a transport percentage of x [5,6]. It is not necessary to evaluate the first parameter € because it
will be canceled, whereas the evaluation of the other key parameter x involves two steps: first, compute the solid angle at one specific point on one
chamber end subtended by the other chamber end, with the following solid angle formula [10]:

.ndS 27 R 2d
Q:/rn3 Z/ Hd‘/’[ 2 2 71 213/2 (26)
s T 0 o (2 + H?>—=2rncosn + n?)¥

The final format of this integral involves the Heuman’s Lambda function and the complete elliptic integral of the first kind [ 10]. The second step
is to average the solid angle over all points on this chamber end. Though there is an analytical result for the first step, it is extremely difficult to
obtain an analytical expression for the second step, which is required to evaluate the analytical results from this model. Hence, the transportation
coefficient y is evaluated numerically. For the two numerical simulation cases in this study, x equals 0.05 and 0.63 for cylindrical chamber
L/R =9/3 and 0.9/3, respectively [5,6].

In this model, we assume at chamber ends A and B, there are two groups of incoming particles and two groups of reflected particles, as
illustrated in Fig. 2. Hence, the velocity distribution functions can be expressed as follows:

m _ mc? m _ mC?
A1/ 27T, exp( 2kT1,,) + nar- [z exp( 2le7)’ c>0
fa(C) = (27)
n m_exp| —2C ) 4+ n m_exp| — 2C C<0
AL+ /2T, OXP\ ~ 21, A2+ 2T, CXP\ T uT, |
m _ mC? m _ mC?
nB1— /27T, exp( 2kT,,,) + e [7mr, exp( 21<Tn)’ C<0
fs(C) = (28)
n m_ oy _ mC? +n m_ oy _ mC? C>0
Bl+ 4/ 27kT, SXP\ — 27, B2+ 2T, XP\ ~uT, )

At both chamber ends, the incoming number densities for particles with a thermal speed characterized by the wall temperature consist of two
parts; one from the other chamber end and one from the sidewall:

Naly = XNpi— + €Ny, Ngiy = XNaj— T €ny, (29)
The number densities of particles with a thermal speed characterized by the pump temperature are
a2y = XNpa—s Mgy = XNaz- (30)

There are four reflection relations at both chamber ends:

na- = (1 =8/S)nary +na (1 =8,/S)\J T/ T + 1in (31)
nap- =81/Sc(1 =) y/To/Tpnary + 1424 81/S.(1 — ) (32)
ng_=(1- Sz/sc)n31+ +ngy(1— S>/S.) Tp/Tw (33)
npy =8,/S.(1 —a@)ng, \/—T_Ji + gy S2/S (1 — @) (34)

Finally, the mass flux into the chamber is balanced by the mass flux absorbed by the two pumps:
m= nA1+aS1me + }’lA2+aS1mVp + nBH(XSszw + n32+aSQmV1, (35)

The final solutions for the above nine equations are quite complex. Denote M =1—S,/S., N=(1~-S8,/S)/T,/T,x, P=S,/
Sc(l_(x)\/ Tw/T ) QZXSI/SC(I_O[)’ R= l_SZ/Sm Sz(l_S2/Sc)X\/ Tp/Tw’ K=S2/Sc(1_a) Tw/T ) T=XS2/
S(1-a), C=asS,V,, D=aS,V,x, E=aS,V,, F=aS,V,x, =1+ M — xSP)(1 =TQ) — (xSQ — xN)TP, Y= (1 -TQ)(1+
XR) + (xSQ — xN)K, then the solutions can be expressed as

— (in/m) + (1 = TQ)(x/P)IC + FP + (D + FQ)(TP)/(1 — TQ)Im;,
B+ ™ (W/®)[C+ FP+ (D + FQ)(TP)/(1 —TQ)| + (D + FO)K/(1 —TQ) + E

(36)



100 CAIL BOYD, AND SUN

Wall 8,-S,.T, 4 ”f
End A ‘ T
l l PumpT, S, | [
Nyo My Mpor Mags | side
! Wall
nw SW>
AR
/
D H
Ngye  Dei+ Ny, g,
l Pump T, S, | Y
End B }

Wall$-S, T, |

Fig. 2 Illustration of model 3 (not to scale).

v
Male = g i+ _énin(l_TQ) @37
K TP
Npy— :—1 — TQnBH +—1 ~7T0 N+ (38)

Ngp— = Pngy + Ong,_

ngi_ = Rnpgy + Snp_
(39)

ng— =Mnp . + Nngy_ + ny,

Moy = XNpo—, Npyy = XNpo— (40)

The normalized average background velocity and pressure are
evaluated by averaging the values at two chamber ends:

Uy  natngiy—ngy —np+ (g +ngy —nay —ngy )/ T,/T,

L \ \O
K]S L23
L o = o

n © - - L
- g Q. o N
d o
06| g p
B o
= L
04}
02
0 | | - TR TR . 1 I W
0.2 0.4 0.6 0.8 1

Fig. 4 Contours of velocity distribution U,,/+/2RT, (S;/S.=0.2,
S,/S. =0.4).

P,S, ﬁ(
=W n n n n
W JIRT,  8my, A* RNV S (VSN o U R o ()
+npgyy + 0 +np ) (42)

At the end of this section, we want to point out that model 3 is a
relatively advanced model because it is capable of analytically
estimating the chamber sidewall effects. Figures 3 and 4 show
contours of average background pressure and average velocity in the
chamber with different sidewall length represented by x and
absorption coefficient represented by «. The pump sizes are fixed at
S:/S.=0.2 and S,/S. =0.4. We can conclude from these two
pictures that when o < 0.5, the value of d(P)/dx, which is the

VZRT,  Ja(ngps + naoy + s + naos + npig + gy +ng_ +ng )

[ °
08 © ®
i s a®

| N
I
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N
06 © )
= B
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0 [ TERR A I T N TR R VR
0.2 0.4 0.6 0.8 1
o

Fig. 3 Contours of pressure distribution P,S,/m /2RT,, (S;/S. = 0.2,
S,/S. =0.4).

(41

indicator of wall length effect on the background pressure, is greater
than zero; when « > 0.9, d(P)/dx < 0; whereas in the range of 0.5
and 0.9 for «, d(P)/9x can take positive or negative values. This fact
indicates that the chamber wall has a complex influence on the final
flow state. This fact will be illustrated later with numerical
simulations.

V. Numerical Simulations

For vacuum chambers equipped with distributed pumps, there are
no experimental measurements available, hence the validity of these
models relies on comparisons with numerical simulations. Because
the flow between the two plates is free-molecular, it is ideal to
validate the preceding analytical results with the direct simulation
Monte Carlo (DSMC) method [11]. This study uses a specific DSMC
package named MONACO [12] to perform simulations.

DSMC simulations are physically accurate by including
collisions, even though collisions occur very infrequently. The
DSMC method simulates collision effects in rarefied gas flow by
collecting groups of particles into cells. Pairs of particles inside a cell
are selected at random and a collision probability is evaluated that is
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proportional to the product of the relative velocity and the collision
cross section for each pair. The probability is compared with a
random number to determine if that collision occurs. If so, some form
of collision dynamics is performed to alter the properties of the
colliding particles. The no time counter method [11] is adopted to
determine the collision rate. In this study, momentum collisions, or
elastic collisions, involving exchange of momentum between the
participating particles are included in the DSMC method. The
variable hard sphere [11] model is employed and the collision cross
section of xenon is:

0,(Xe,Xe) =2.12 x 10718 g2 m? 43)

where o is the relative velocity and w = 0.12 is related to the
viscosity temperature exponent for xenon. In all elastic interactions,
the collision dynamics is modeled using isotropic scattering together
with conservation of linear momentum and energy to determine the
postcollision velocities of the colliding particles. In total, over 140
axisymmetric simulations of background xenon gas flows in a
cylindrical chamber are performed. In half of these simulations, the
intermolecular collision module in the package is deactivated,
whereas for the rest of simulations, the intermolecular collision
module is activated. Hence, these simulation results provide both real
physical flow results and ideal free-molecular flow results.

In this study, a cylindrical simulation domain is adopted and
partially illustrated by Fig. 5. The top and bottom sides are the
chamber ends, the left side is the symmetric axis, and the right side is
the outer surface. The cylindrical end section radii are set to 3 m, and
the gap between the two plates is set to either 9 m or 0.9 m,
representing long and short chamber situations, respectively. To
simplify the situation, we fix the top pump size by setting
S,/S. = 0.2. The mass flow rate into the chamber through the top
plateis setto i = 6.17 x 107 kg/s. The pump temperature is set to
15 K, because cyrogenic pumps are usually maintained at low
temperature of 10-20 K in operation. The wall temperature is set to
room temperature 300 K. At the initial time step, an ambient density
or vacuum condition is assumed. A mesh size of 15 x 30 cells is
adopted in the simulation to achieve relatively high resolution. The
“no concrete pumps’ treatment [5] is adopted on both plates. In this
approach, no specific locations on the two plates are specified as
pumps. When a particle hits a plate, a random number is selected to
compare with the particular area ratio S, /S, or S,/S.. If the random
number is smaller than the area ratio, then this particle hits the pump,
otherwise it hits the chamber end. By following this approach, it is
not necessary to generate a new mesh for each new case, and it is an
effective way to simulate small pump areas. Once a particle hits a
pump, then another random number is generated, if this number is
smaller than the pump sticking coefficient then this particle sticks to
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Fig. 5 Contours of mean free path, m, with collisions (¢ = 0.3,
8,/S.=03,L/R=9/3,T, =300 K, T, =15 K).
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the pump and is removed from the simulation, otherwise the particle
is reflected from the pump with a thermal velocity characterized by
the low pump temperature. In the DSMC simulations, particles are
introduced into the simulation domain through one chamber end with
given mass flow rate and given thermal speeds characterized by the
wall temperature. The time step and particle weight, which represent
the amount of real molecules with one particle, vary in different
cases. Most simulation details are the same as the simulations in our
previous study [5,7] except there is an extra small pump on the top
plate.

A. Evaluation of Average Quantities

Walker’s experimental results [1] show that the background
pressure depends on pump locations, but to include the pump
location effect will need a two-dimensional model, and it is not the
goal of this study. The primary concern of this study is to provide
formulas to estimate the average background pressure and average
background velocity in the chamber. Hence, the detailed background
flowfield structures are neglected. At each time step, an average
density and an average velocity for the whole domain are computed
by counting all particles in the simulation domain and averaging their
velocities:

pl) = (Z(w,-zv,-)) m/Q (44)

U = (Z U,.) /N 45)

where N, is the total number of particles used in ith cell in the DSMC
simulation; U; and N are the jth particle velocity and total number of
particles in the domain.

B. Comment on Accuracy

The major purpose of this study is to provide several analytical
expressions to evaluate the average background pressure and
average background flow velocities. Because the flow is free-
molecular, the DSMC is an accurate simulation method to provide
accurate flow solutions. By counting all particles in the chamber and
averaging their velocities, the preceding two equations provide
accurate average results in the whole chamber. By including
collisions, these DSMC simulations are expected to provide more
accurate results than the analytical results. By neglecting collisions,
other DSMC simulations are expected to provide exact free-
molecular flow results at extreme conditions which are closer to
analytical results. Hence, these particle simulation results will be



102 CAIL BOYD, AND SUN

—— ——8E+16 //
:\__7_5E+‘\6 —/

o8b—— 705E+1 6/

- 6.75E+16
p—""""
2 P
>
[~ Symmetric line
04} Diffuse wall
0.2

0

0 0.2 0.4 0.6 0.8 1
r/R
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used to compare the effectiveness of the analytical models. The
detailed distributions in these two-dimensional simulations may be
affected by subtle changes in boundary treatments, but the average
number density and average velocity in the chamber are not sensitive
to these changes in boundary treatment. This scheme was
successfully applied in our previous studies [3,7].

Figure 5 shows the contours of mean free path for the case of
a=0.4,S,/S,. = 0.3 and with particle collisions. It is obvious that in
the flowfield, the mean free path is larger than 6 m, which is the
diameter of the cylindrical simulation domain. Hence, a free-
molecular flow will be achieved. Most of the simulations in this study
have a higher degree of rarefaction than this case by a larger value of
aorS,/S,.

Figures 6 and 7 show two number density distributions from
DSMC simulations for a long chamber. Gas flows into the chamber
from the top plate, and with a consideration of reflections, both the
top and the bottom plates are essentially sources where particles
effuse into the chamber. Though this study is not focused on
flowfield details, these two typical figures are helpful to understand
the results. The simulation parameters for these two figures are the
same except that the intermolecular collision module is turned off for
Fig. 7. Hence, Fig. 7 is a free-molecular flow result. It is obvious that
these two figures are quite similar, but the first figure has a lower
average density. The similarity is a result of the same chamber
geometry, whereas the difference arises by including or notincluding
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molecular collisions. By including collisions, particles are impeded
in crossing the dense layers close to both chamber ends, they are
reflected back, and absorbed by the pumps on the chamber ends.
Whereas for free-molecular flow, in the second figure, particles are
free to pass through the dense layers close to both ends and enter the
middle of the chamber. Hence, for free-molecular flows, with less
absorption effects, a higher average number density is anticipated
under some specific parameter combinations, and these results will
be further illustrated later.

Figure 8 shows several average density evolution results from
model 1 and DSMC simulations. From this figure, it is evident that
both the analytical results and the DSMC simulation results predict
several semidecaying periods and final steady densities. The free-
molecular DSMC simulation yields a higher final average number
density than that with molecular collisions. With collisions, the
semidecaying period is shorter because collisions aid the process of
forming an equilibrium state. The analytical results overpredict the
semidecaying period, and the difference can be attributed to the
simplified velocity V| = V, = V,,. In general, model 1 is the crudest
model without any detailed flux balance at all.

Figures 9 and 10 show two series of average backpressure with
varying S,/S,, and o = 0.4, 0.8, respectively. Analytical results
from the three models and DSMC simulations are included. It is
evident that all of the models predict the correct trends, and for
o = 0.8 the gaps in both analytical and numerical simulations
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Fig. 10 Average density (normalized by (m/mS.)/2x/RT,,, o = 0.8).
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decrease. Figure 9 indicates that the free-molecular DSMC
simulations yield higher average densities than those simulations
without molecular collisions, whereas in Fig. 10, all simulation
results are quite close. Models 1 and 3 have improved performance
when §,/S,, increases. Another important difference between these
two figures is that in the first figure with o« =0.4 <0.5, no
intersection occurs in both the simulation data and model 3 results;
whereas in the second picture with o = 0.8, the analytical long
chamber wall and short chamber wall curves intersect, and the
simulation data intersect as well. These results are consistent with our
previous observation about d()/d(x) from Fig. 3. Hence, though
model 3 underpredicts the average background pressure, it is capable
of quantifying the effects of chamber wall length.

Figures 11 and 12 show two series of average number density
results with fixed S,/S, = 0.4, 0.8, and varying «. It is evident that
all of the models predict the correct trends and for S,/S, = 0.8, both
analytical and number simulation results are in good agreement. In
general, model 2 still has the best performance. Itis interesting to note
that model 3 predicts that at o = 0.6-0.9 the short chamber curve and
the long chamber curve intersect, and numerical simulations confirm
these intersections, more obviously shown in Fig. 12. These o values
at the intersections are different from the results obtained in our
previous study of single pump situations due to the secondary small
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pump. It is difficult to determine this value analytically with the
complex results from model 3.

Figures 13 and 14 show two series of average background velocity
results with fixed o = 0.4, 0.8, but varying S, /S.. Itis evident that all
of the models predict the same trends as the numerical simulations.
For o = 0.8, the free-molecular simulations have lower average
velocity values than those simulations with molecular collisions. The
reason for this result is, by neglecting the collisions, more particles
are reflected back from the bottom pump with negative velocities.
Hence, a lower average background velocity is expected. For these
velocity results, model 2 with 7,,/T,, = 1 and model 3 have better
performance than model 2 when compared with numerical
simulation results.

Figures 15 and 16 show two series of average background velocity
results with fixed S,/S. = 0.4, 0.8, and varying «. All analytical
models predict the correct trends. For most combinations of
parameters, the simulations without considering collisions have a
lower average background velocity than those simulations with
considering molecular collisions. The reason is simple: because the
large pump is located at the far chamber end, without considering
collisions, all particles reflected at the pump will move to the other
end or wall with negative velocities. With considering collisions, a
portion of those reflected particles will move back to the primary
pump and be absorbed again, due to the dense collisions around the
primary pump, hence, less negative velocities will be included in the
computation for the average velocity.
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VII. Conclusions

In this study, we proposed three models to study the average
background pressure and the average velocity between two plates
both equipped with cyrogenic pumps. The results indicate that the
analytical results are more complicated than the situations in our
previous study. However, the results from this study are more general
and can degenerate consistently to our previous study.

To validate the analytical results from the three models, we
performed about 140 DSMC simulations, with and without

intermolecular collisions. Generally, the analytical and numerical
results have the same trends, whereas models 2 and 3 offer quite good
agreement to the DSMC simulations.

Similar to our previous study, several conclusions can be drawn
for the background free-molecular flows: the background flow is not
static with zero average velocity and cannot be described as a full
Maxwellian distribution, and the long semidecaying period prohibits
a full 3-D simulation of plume flows in the whole chamber. Hence,
extra attention is necessary for the background flow construction
when simulating plume flows in large vacuum chambers with a
particle approach such as the DSMC method.
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