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Linking enterprise-wide business decision making with engineering decision making is
demonstrated by integrating the enterprise utility optimization and the engineering prod-
uct development approach under a multilevel optimization framework. The analytical
target cascading process is used to set the right targets for the engineering design process
that maximize utility at the enterprise level. A new methodology is proposed that sys-
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presented to demonstrate the methodology.
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I. Introduction

Designing a large-scale artifact involves multidisciplinary efforts in marketing, product development and
production. There has been a number of efforts to integrate customer preference information in engineering
design, e.g., Donndelinger and Cook,1 Besharati, et al.,2,3 Li and Azarm,4 Wassenaar and Chen,5 Cooper,
et al.,6 Gu, et al.,7 Michalek, et al.8 They have demonstrated that a relationship exists between marketing
and engineering in the enterprise. In this article the enterprise is defined as the organization that designs
and produces an artifact to maximize its utility (e.g., profit). For simplicity, marketing and production are
defined as the enterprise level and product development is defined as the engineering design.

Emphasis on enterprise-driven design models has led to incorporating demand and profit models that
capture both producer and consumer needs. For example, Wassenaar and Chen5 developed demand mod-
els utilizing discrete choice analysis9 in a decision-based design (DBD) framework.5,7, 10,11 This approach
identifies the key customer attributes, i.e., product attributes that are of interest to customers. In Wasse-
naar’s approach12,13 an optimal set of attribute targets is obtained at the enterprise level to maximize the
net revenue of a firm. Considering engineering needs the socioeconomic and demographic background of
customers, and time. The key customer attributes are assigned in the form of targets to be achieved in the
engineering design process. To achieve the targets the engineering design efforts often involves multidisci-
plinary expertise and this design process can be realized by using multidisciplinary design optimization14,15

(MDO) approaches.
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In the original DBD framework proposed by Hazelrigg,10 the DBD approach is represented in a single
optimization problem where decisions on product design and market strategies are made simultaneously. In
practical implementations, it is unlikely to exercise a single optimization for a large, complex system. Also
from the viewpoint of organizational infrastructure, decomposition and multilevel distributed approaches
must be introduced. Figure 1 illustrates this decomposed hierarchical framework [see Cooper, et al.,6

Michalek, et al.8]. The enterprise-level product planning problem maximizes the utility V with respect
to the target performance TU and the rest of the enterprise variables xe subject to product development
capability. At the engineering level, the objective is to minimize the deviation between the performance
target and the response of the product R while satisfying the feasibility constraints g,h. An optimal set of
attributes (i.e., targets) found at the enterprise level, however, may not lead to optimal engineering designs
due to constraints introduced at the product development level. Thus engineering feasibility enforces adjust-
ment of the attributes at the enterprise level. This adjustment may shift the enterprise utility value from its
original optimal value. In return, however, a consistent feasible design is obtained satisfying the engineering
constraints. Hence it is critical to have a systematic decision making tool to ensure preference consistency
throughout product planning at the enterprise level and product development at the engineering level.

Engineering Product Development

TU RLTarget Performance Achievable Performance

Enterprise-Level Product Planning

Maximize
Utility (e.g., profit of a firm) V

with respect to 
Target performance TU

Enterprise variables xe
subject to

Product development capability

Minimize 
Deviation from target 

with respect to 
Product design variables x

subject to
Engineering design constraints

UTR −

0xg ≤)( 0h(x) =

Figure 1. Interaction between enterprise
product planning and product development.

To achieve the targets identified from product planing an-
alytical target cascading (ATC)16–19 can be utilized for the
product development process.6,8 ATC is a multilevel, multi-
disciplinary design methodology to find an optimal system de-
sign ensuring consistency among subsystems or disciplines and
achieving the overall product targets assigned at the top of the
hierarchy. In the field of MDO, several design architectures
have been developed to support collaborative multidisciplinary
design environment using distributed design optimization, e.g.,
concurrent subspace optimization (CSSO)20 and collaborative
optimization (CO).21 A comprehensive review of the multi-
disciplinary design optimization architectures is provided by
Kroo.15

The key difference between ATC and most of the previ-
ous MDO formulations, including CO, is that, with ATC,
the original problem is decomposed hierarchically at mul-
tiple levels, while the interconnections between the mul-
tiple subsystems at each level are considered and coordi-
nated at one level above. The ATC problem Pij associ-
ated with the jth element at the ith level of the hierarchy

is formulated in Eq. (1). Responses R̂ij =
[
R̃ij ,Rij

]T

=
rij(R(i+1)k1 , . . . ,R(i+1)kcij

,xij ,yij) are computed by means of
analysis and/or simulation models. The vector of all optimiza-

tion variables is x̂ =
[
xij ,yij ,y(i+1)k1 , . . . ,y(i+1)kcij

,R(i+1)k1 , . . . ,R(i+1)kcij
, εRij , ε

y
ij

]T

and xij is the vector

of local design variables. R̃ij corresponds to responses linked to local targets and Rij corresponds to
responses linked to cascaded targets. εRij and εyij are the tolerance optimization variables for ensuring con-
sistency. Superscripts (·)U and (·)L denote values passed down and up from the upper and lower levels,
respectively. The vector T denotes local targets. gij and hij are local design constraints. Weights w are
assigned to the deviation terms in the objective.

Pij : min
xij

wR̃
ij

∥∥∥R̃−Tij

∥∥∥ + wR
ij

∥∥Rij −RU
ij

∥∥ + wy
ij

∥∥y − yU
ij

∥∥ + εRij + εyij

subject to∑
k∈Cij

∥∥∥R(i+1)k −RL
(i+1)k

∥∥∥ ≤ εRij
∑

k∈Cij

∥∥∥y(i+1)k − yL
(i+1)k

∥∥∥ ≤ εyij

gij(R̂ij ,xij ,yij) ≤ 0 hij(R̂ij ,xij ,yij) = 0

(1)

Most of the other work considered up to this point (e.g., CO21 and BLISS22) has been concerned with
decomposing a problem into a series of problems, all at one non-hierarchical level, but then solving the
problem using bi-level optimization formulations. ATC operates by formulating and solving a minimum
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deviation optimization problem for each element in the hierarchy. Compared to the existing bi-level opti-
mization formulations, the multilevel hierarchical modeling facilitated by the ATC approach better matches
a multi-layered organizational decision making infrastructure, where subsystems and components can be
supplied by different organizational units or outsourced to independent companies.

At the initial stage of the product development process, the targets for the engineering design are set by
maximizing the utility at the enterprise level that reflects preferences of customers/producers. The initial
(utopia) targets are not usually perfectly achievable at the engineering level. On the other hand, the best
available feasible design (i.e., with the minimum deviation from the targets) at the engineering level may not
correspond to the best utility at the enterprise level. An alternative feasible design at the engineering level
with a higher deviation (i.e., less favored alternative) from the utopia targets may correspond to a better
utility at the enterprise level. The proposed approach offers a systematic way to match the design utility
at both product planning and product development process. It allows exploration in the engineering design
space, often represented with a disconnected feasible domain, and guides the solution process to a better
design in the enterprise context.

The problem formulation and the solution algorithm are proposed in the following sections. The proposed
approach is demonstrated using three examples: an analytical example with a single optimum in the utility,
an analytical example with multiple local optima in the utility and a vehicle suspension design example that
includes customer preference choices.

II. Enterprise Model

The enterprise level objective is to maximize a utility, such as the profit of a firm. As shown in Figure 2,

Max V=V(Q,P,C)=QP-C

Demand 
Q

Cost 
C

Price 
P

Enterprise Level

Engineering Level

ATC Process

TU RLTarget Performance Achievable Performance

 

Demand Q = Q (A, S, P, t)

Key customer 
attributes

Socioeconomic attributes

 C = C(A, E, yex, Q, t)   Lifecycle 
cost 

Exogenous variables 

Net revenue   V = QP – C 

price

Time

Figure 2. Bi-level enterprise decision flow and net revenue model.

the demand Q plays a critical role in assessing both revenue and expenditure, and ultimately the profit (i.e.,
net revenue V ). To use the enterprise model to guide engineering product development, Q is expressed here
as a function of the key customer attributes A, socioeconomic attributes S of the market population, price
P and time t; the expenditure C (i.e., life cycle cost including manufacturing cost and others) is a function
of the customer attributes A, the engineering attributes E, exogenous variables yex, demand Q and time t.
The key customer attributes A are product features (next to brand, price, and warranty) that a customer
typically considers when purchasing the product and the engineering attributes E are product properties
that are of interest only to design engineers. Targets for the ATC process T are the targets for both A and
E. To assist engineering decision making, the relationships of A and E with design options are established
through engineering analyses.

Demand modeling using Discrete Choice Analysis (DCA) and Conjoint Analysis (CA) have been widely
used in the marketing and transportation communities [Green and Srinivasan,23 Ben-Akiva and Lerman,9

Koppelman and Sethi24]. Researchers in the design community [Besharati, et al.,3 Li and Azarm,4 Wassenaar
and Chen,5 Michalek, et al.8] have also had success in integrating such models in their work. In this article
the DCA approach is adopted for demand modeling and the multinomial logit (MNL) model is used because
it has a closed form and the Gumbel9 error distribution closely approximates the normal distribution.

The choice probability MNL model is shown in Eq. (2), where Prn(i) is the probability that respondent n
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chooses alternative i, J is the choice set that is available to individual n, and W is the observable/deterministic
part of the utility function:

Prn(i) = eWin∑
j∈J

eWjn (2)

This formulation implies that the probability of choosing an alternative increases monotonically with an
increase in systematic or deterministic utility of that alternative and decreases with the increase of systematic
utility of any or all of the other alternatives. Also, this form implies that when one is choosing between
two alternatives, all other alternatives are irrelevant. This offers some computational convenience since it
allows for the addition/removal of an alternative to/from the choice set without affecting the structure or
parameters of the model.

III. Problem Formulation and Solution Algorithm

The original unconstrained enterprise level utility optimization problem is

P 0
ent : max

T,xe

U(T,xe) (3)

where the objective is to maximize the utility U that is a function of targets T for the engineering problem
and of other enterprise variables xe. After solving Eq.(3), the utopia target T∗ that maximizes the utility
U is assigned to the engineering problem. Then the engineering problem finds an optimal response RL0 to
the utopia target with the minimum deviations (see Figure 1).

In most engineering design cases, it is uncommon to meet the utopia target perfectly due to the trade-off
nature of the multiple target values or physical feasibility (i.e., no feasible design is available to meet the
targets perfectly). Based on the engineering response RL0 the utility is adjusted with the corresponding
values for T and xe.

If the feasible domain in the engineering problem is disconnected, the engineering design with the min-
imum deviation from the targets may not correspond to the maximum utility value. Figure 3 illustrates
one-dimensional and two-dimensional cases where the minimum deviation from the utopia target does not
match the best available utility. Points A and B are both engineering local optima with the minimum devi-
ation from the target. The deviation for the point A is smaller, but the corresponding utility is not higher
than that of point B.

The proposed algorithm leads the engineering design to match the enterprise-driven preferences (i.e.,
targets) by systematically exploring a multiply-connected feasible design space at the engineering level. The
final design is consistent with the targets and improved in the enterprise utility sense. To enable the move
from one feasible domain to another, an additional constraint Caux is imposed in the enterprise problem based
on the engineering response RL0 as shown in Eq. (4). The physical meaning of the additional constraint
is that it imposes a minimum geometric distance from the utopia target so that the enterprise problem is
forced to find another target for the engineering problem.

Caux : ‖T−RL0‖ ≥ ∆ = ‖T∗ −RL0‖ (4)

For example, in Figure 4 the engineering problem returns point A to the enterprise problem with the minimum
deviation from the utopia target T∗. A circular inequality constraint is imposed on the utopia target at the
center, with the distance between the utopia target and the engineering response as its radius. The modified
enterprise problem P

′

ent (Eq. 5) generates a new target T
′
for the engineering problem (see Figure 4). Based

on the new target the engineering problem finds point B as the optimum with the minimum deviation from
the new target T

′
. Point B is farther from the original utopia target, however the corresponding utility is

higher than that of point A. As a result, point B is selected as the optimal engineering design that has a
better utility value.

P
′

ent : max
T,xe

U(T,xe)

subject to
Caux : ‖T−RL0‖ ≥ ∆ = ‖T∗ −RL0‖

(5)
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T1

UFeasible

Feasible

Infeasible

T2

A

B

*T

U

T
*T

∆ ′∆

Infeasible FeasibleFeasible

A B

(a) One-dimensional case (b) Two-dimensional case

Figure 3. Utilities with engineering feasible domain imposed. Points A and B are both engineering local optima
with the minimum deviation from the target. The deviation for the point A is smaller, but the corresponding
utility is not higher than that of point B.

T1

T2
U

A

B

Feasible

Feasible

Infeasible

*T T′

Figure 4. A circular constraint imposes

a new target T
′
for the engineering prob-

lem.

After solving the modified enterprise problem Eq. (5), how-
ever, the new target for the engineering problem may not neces-
sarily lead to another disconnected feasible domain. To visualize
this situation in Figure 5 a unimodal utility function is plotted
with the engineering feasible domain overlapped. The shaded re-
gion denotes the infeasible engineering domain, while there exist
disconnected feasible domain on both sides of the infeasible do-
main. At the first iteration the engineering problem returns a
response (T ∗−∆). A constraint as shown in Eq. (4) is added to
the enterprise problem and the new target is assigned at (T ∗+∆).
The new target (T ∗+∆) does not force the engineering problem
to find the minimum deviation from the target R

′
that is at the

boundary of the other feasible domain because the right feasi-
ble domain is farther than the original left engineering feasible
domain. Thus the engineering design returns to the previous re-
sponse at (T ∗−∆). To avoid returning to the previous solution,
additional slope information is utilized to adjust the radius of the
restricted feasible domain in the enterprise problem.

U

T*T

∆∆

∆+*T∆−*T

α

φ

∆′γ∆

∆≈∆′
φ
α

Infeasible FeasibleFeasible

R′∆′+ γ*T

Figure 5. Updating the radius ∆ in the
additional constraint in the modified en-
terprise problem: the slope is considered
to set the radius of the constraint (Eq.(4))

After finding the minimum deviation engineering design at
(T ∗−∆), the gradient of the utility function α is obtained. When
the next target for the engineering problem (T ∗+∆) is obtained
by solving the modified enterprise problem, the gradient of the
utility function φ is also obtained. If the engineering problem
returns the same response (T ∗ −∆), then the constraint radius
is increased up to ∆

′
with the consideration of the gradient ratio:

∆
′
≈ α

φ
∆. (6)

An updated target (T ∗+γ∆
′
) is assigned to the engineering prob-

lem and the engineering problem returns R
′

as response, where
γ is the step size for updating the new radius of the constraint
that takes a value between 0 and 1.

Hence the enterprise problem repeats assigning a new target
if the engineering problem returns the same response as far as
the utility improvement is expected. Eq. (6) provides the upper
limit for increasing the radius of the constraint as it is based on
a linear approximation of the utility function as shown in Figure
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Figure 6. Solution algorithm

As soon as an engineering level design
is found with a better utility, the solution
process stops, i.e., the goal of the solution
algorithm is to find a feasible engineer-
ing design with a better utility. The pro-
posed algorithm does not attempt to find
the global optimum, rather it explores
the engineering feasible domain to find
alternative feasible design with a better
utility if it exists in a disconnected feasi-
ble domain. It is also assumed that the
engineering problem always finds the best
solution, i.e., a feasible design with the
minimum deviation from the target ei-
ther by local or global search algorithm.
The proposed algorithm is summarized as
Algorithm III.1 (see also Figure 6).

Algorithm III.1

Start with x0.

Solve the original enterprise problem
(P 0

ent) and find the utopia target T∗.

Solve the engineering problem (Peng) by
using the ATC and obtain the response
RL0 with the minimum deviation from
the target T∗.

Add an additional constraint Caux in the
enterprise problem and find a new tar-
get Ti by solving the modified enterprise
problem (P

′

ent).

Solve the engineering problem and obtain
the response RLi with the minimum deviation from the target Ti.

If RLi ≈ RL(i−1), increase ∆ in Caux in P
′

ent and solve P
′

ent and the engineering problems again.

Repeat until convergence.

End.

IV. Demonstration

Three examples are presented to demonstrate the above ideas. Two analytical examples show progress
to a better enterprise level design while successfully exploring a disconnected feasible engineering domain.
The first one has a single utility optimum and the second has multiple local utility optima at the enterprise
level while the engineering feasible domain is disconnected. The lower level problems are decomposed at
multiple levels and are solved using ATC. A vehicle design problem involving suspension system design is
also studied for enterprise profit maximization utilizing real customer purchase data for the demand model
along with market share behavior with demographic information.

A. Analytical Examples

1. Utility with Single Optimum

An analytical geometric programming problem17 is modified to demonstrate the proposed algorithm. Top
enterprise level problem is denoted as the upper level problem and the bottom level product development

6 of 14

American Institute of Aeronautics and Astronautics



problem is denoted as the lower level problem. Targets T1, T2 are assigned to the lower level problem Eq.
(8) after solving the upper level problem Eq. (7).

P 0
ent : min

T1,T2
− U =

√
(T1 − 2)2 + (4T2 − 1)2 +

√
(T1 − 2)2 + (4T2 + 1)2

(7)

min
x1,x2,...,x14

(x1 − T1)2 + (x2 − T2)2

subject to
g1 : (x−2

3 + x2
4)/x2

5 ≤ 1 g2 : (x2
5 + x−2

6 )/x2
7 ≤ 1

g3 : (x2
8 + x2

9)/x2
11 ≤ 1 g4 : (x−2

8 + x2
10)/x2

11 ≤ 1
g5 : (x2

11 + x−2
12 )/x2

13 ≤ 1 g6 : (x2
11 + x2

12)/x2
14 ≤ 1

g7 : −(0.1(x1 − 3)2 + 4.5− x2)(−(x1 − 16)2 + 2− x2) ≤ 0
h1 : x2

1 = x2
3 + x−2

4 + x2
5 h2 : 10x2

2 = x2
5 + x2

6 + x2
7

h3 : x2
3 = x2

8 + x−2
9 + x−2

10 + x2
11 h4 : x2

6 = x2
11 + x2

12 + x2
13 + x2

14

−20 ≤ x3, x4, ..., x14 ≤ 20

(8)

The lower level problem Eq. (8) is decomposed at two levels (see Figure 7) and solved by ATC. After
the top level problem is solved, the targets T1, T2 are assigned to the lower level problem Ps. After solving
Ps, the bottom level problems Psub1, Psub2 are solved based on the targets xU

3 , xU
6 , xU

11 found in that Ps

problem. Note that x11 is a linking variable, i.e., common design variable that is shared by Psub1 and Psub2.
After the iterative ATC process between Ps and Psub1,Psub2 converges, the overall response with respect to
the targets T1, T2 is passed up to the enterprise level problem and the utility is adjusted completing one
iteration in Table 1.

3
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εεε
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111098

2
1111

2
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)()(Min   :
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xxxx
xxxxP UU

sub −+−

465

14131211

2
1111

2
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,
subject to

,,,     w.r.t.
)()(Min   :

h,gg

xxxx
xxxxP UU

sub −+−

UU xx 113 , 1
113 , LsubL xx 2

113 , LsubL xx
UU xx 116 ,

21,     w.r.t.

Max   :

TT

UPenterprise

21,TT

Figure 7. Decomposed problem hierarchy following analytical target cascading.

Note that the lower level problem Eq. (8) has disconnected feasible domain with respect to T1, T2.
The disconnected feasible domain is plotted over the utility domain in Figure 8. For the unconstrained
upper level problem, the optimal target, i.e., utopia target, is found at T∗ = (2.0, 0.079). Based on
the utopia target, the lower level problem finds an optimal response with the minimum deviation at
RL0 = (4.006, 4.601). Based on the lower level response RL0, a constraint in Eq. (4) is added to the
upper level problem and the upper level problem is solved again to assign a new target T

′
to the lower

level problem. An updated lower level solution RL1 is found near the previous solution RL0, i.e., the
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Feasible

Feasible

Infeasible *T
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1LR

Feasible

Infeasible

Feasible

(a) Utility with single optimum (b) Utility with multiple optima

Figure 8. Disconnected feasible domains are mapped over the utility space. The arrows represent the gradient.

lower level response is found in the same feasible domain. A newly assigned target T
′′

based on the
slope information (Eq. (6)) from the modified upper level problem guides the lower level problem to
find the optimal response RL2 in other feasible domain. The corresponding utility value for RL2 is bet-
ter and the lower level response is accepted as a solution. At the optimum, the solution is found at
(x3, . . . , x11) = (15.30, 1.50, 5.09,−0.069, 0.21, 4.77, 0.30, 2.57, 0.28, 2.55, 2.58,−0.84, 2.84, 2.71). The iteration
process is summarized in Table 1. Note that the responses are getting closer to the all-at-once (AAO) solu-
tion that is obtained when the decomposed problems in Eq. (7) and Eq. (8) are solved in a single integrated
problem.

Table 1. Iteration History: Utility with Single Optimum

Iteration Target Target Desired Response Response Actual
T1 T2 utility R1 R2 utility

1 2.000 0.079 -2 4.006 4.601 -37.029
2 6.478 -0.005 -10.093 4.772 4.814 -39.855
3 9.372 -0.005 -15.610 14.177 -1.323 -29.243

AAO Solution 14.333 -0.780 -25.52

2. Utility with Multiple Local Optima

The utility function at the upper level with multiple local maxima is defined as follows:

Pent0 : max
T1,T2

U = 2 + 0.01(T2 − T 2
1 )2 + (4− T1)2 + 2(4− T2)2 + 7 sin(0.55T1) sin(0.6T1T2). (9)

After solving the problem in Eq. (9), targets T1, T2 are assigned for the lower level design problem:

min
x1,x2,...,x14

(x1 − T1)2 + (x2 − T2)2

subject to
g1 : (x−2

3 + x2
4)/x2

5 ≤ 1 g2 : (x2
5 + x−2

6 )/x2
7 ≤ 1

g3 : (x2
8 + x2

9)/x2
11 ≤ 1 g4 : (x−2

8 + x2
10)/x2

11 ≤ 1
g5 : (x2

11 + x−2
12 )/x2

13 ≤ 1 g6 : (x2
11 + x2

12)/x2
14 ≤ 1

g7 : −(10(x1 − 4.3)2 + 5.2− x2)(−3.3(x1 − 4.15) + 1− x2) ≤ 0
h1 : x2

1 = x2
3 + x−2

4 + x2
5 h2 : x2

2 = x2
5 + x2

6 + x2
7

h3 : x2
3 = x2

8 + x−2
9 + x−2

10 + x2
11 h4 : x2

6 = x2
11 + x2

12 + x2
13 + x2

14

−20 ≤ x3, x4, ..., x14 ≤ 20.

(10)
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The lower level problem is decomposed and solved as in the first example. The contour plot of the utility
function with the overlapped lower level constraints is presented in Figure 8. For the unconstrained upper
level problem, the optimal (utopia) target is found at T∗ = (3.837, 4.695). Based on this target, the lower
level problem finds an optimal response with the minimum deviation at RL0 = (4.259, 5.216). Based on
response RL0 a constraint, as shown in Eq. (4), is added to the upper level problem and the upper level
problem is solved again to assign a new target T

′
to the lower level problem. The additional constraint

guides the search process to find another local optimum in the utility space and assigns a new target
for the lower level problem. The lower level problems finds an optimal solution RL1 in the other region
of the feasible domain. After checking that the corresponding utility value for RL1 is better than the
previous one, the lower level response is accepted as a solution. At the optimum, the solution is found at
(x3, . . . , x11) = (2.63, 3.38, 2.19, 0.94, 1.05, 3.03, 1.10, 0.92,−1.13,−0.96, 1.45, 0.85, 1.87, 1.68). The iteration
process is summarized in Table 2.

Table 2. Iteration History: Utility with Multiple Optima

Iteration Target Target Desired Response Response Actual
T1 T2 utility R1 R2 utility

1 3.837 4.695 1.903 4.259 5.216 -10.17
2 2.470 3.356 1.365 2.634 3.383 0.846

AAO Solution 2.718 -3.233 0.921

These two analytical examples demonstrate that the proposed approach successfully explores the enter-
prise utility space to meet the enterprise objective with a consistent feasible engineering design.

B. Suspension Design

In this section a realistic vehicle suspension design is studied to maximize the enterprise level profit objective.
The market consists of twelve sedans.

1. Medium Size Vehicle Demand Model

VEHICLE PROFIT MODEL
T = [FRONT/REAR 

SUSPENSION STIFFNESSES]

REAR     
SUSPENSION

FRONT COIL 
SPRING

FRONT 
SUSPENSION

REAR COIL 
SPRING

ENTERPRISE  LEVEL

SUBSYSTEM LEVEL

COMPONENT LEVEL

FRONT
SUSPENSION 
STIFFNESS

SPRING 
STIFFNESS

SPRING 
STIFFNESS

REAR
SUSPENSION 
STIFFNESS

Figure 9. Schematic of vehicle profit
and suspension design model.

A demand model is created to analyze the effect of incremental en-
gineering design changes on the market share of the vehicle19 (see
Figure 9). Discrete Choice Analysis (DCA) models can be used to
model the decision making behavior of individuals that choose one
alternative from a finite set of mutually exclusive and collectively ex-
haustive alternatives. A key concept in DCA is the use of random
utility to address unobserved taste variations, unobserved attributes,
and model deficiencies. Random utility entails the assumption that
the individual’s true utility Uin consists of a deterministic or observ-
able part Win and a random unobservable disturbance εin.

Uin = Win + εin (11)

A quantitative process based on multinomial analysis is used to gen-
erate the demand model. The deterministic part of the utility can be
parameterized as a function of observable independent variables (key
product attributes x, socioeconomic and demographic attributes xe,
and price P) and unknown coefficients β, which can be estimated by observing the choices respondents make
and thus represent the respondents’ preference. The β coefficients and utility functions are indicated with
the subscript n, representing the nth respondent, the index i refers to the ith choice alternative. There is no
functional form imposed on the utility function W, i.e., W can be additive, multiplicative, quadratic, etc.
However, for the purposes of this paper, an additive form of the utility function, linear in the β coefficients
is used.

Win = f(xi ,Pi ,xe,n : βn)
(12)
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The demand model Q makes predictions on the change in market share, i.e., change in the number of
vehicles sold of a particular make. Enterprise level utility is defined as the total profit, Eq. (13). Price of a
vehicle P is a constant and Csusp and C0 represent the cost for the suspension subsystems and for the rest of
the vehicle system, respectively. Based on vehicle quality survey data from J.D. Power and Associates, the
coefficients for the demand model are obtained using MNL as shown in Table 3, and the suspension cost is
assumed to be linearly proportional to the suspension stiffnesses. For the current study values for a domestic
sedan with P = 20, 000, C0 = 18, 100, af = 0.05 and ar = 0.05, are used.

Π = Q(P − Csusp − C0)
= Q(ksf , ksr)(P − afksf − arksr − C0)

(13)

Starting with a baseline specification that includes alternative specific constants (ASC), i.e., essential
product attributes and demographic variables, the demand model is improved incrementally by adding
additional attributes to the model. Alternative specific constants are added to represent the average
preference of individuals for an alternative relative to a reference alternative and also to account for the
average effect of all explanatory variables. The estimated models are then evaluated on several criteria
including behavioral realism or their ability to model customer behavior in line with the analyst’s expec-
tations and goodness of empirical fit to the data. The coefficients in the model should have signs and
magnitudes that are consistent with our understanding. For example, one would expect that the coeffi-
cient for the explanatory variable related to fuel economy to be positive, i.e., one would typically expect
more cars to be sold when there is an improvement in fuel economy. Similarly, one would generally ex-
pect a dip in market share when the retail price of the car is hiked. Current demand model indicates
that softer front suspension and stiffer rear suspension lead to the most profit for the market (Figure
10). In Figure 10 the shaded regions indicate a disconnected feasible domain for the suspension design.

*T

A
B

T′

Figure 10. Vehicle demand model: profit
change with respect to suspension stiff-
ness changes. The shaded areas represent
feasible suspension design domain. The
baseline vehicle suspension stiffnesses are
ksf = 25.5(kN/m) and ksr = 19.5(kN/m).

The statistical goodness of fit is evaluated using likelihood
estimates and pseudo R-square values, a performance measure
evaluated with the equally likely or zero model and the constants
only model as reference model. The equally likely model is a
model that has no parameters, i.e., the individual is assumed to
have equal probability of choosing any of the alternatives in the
choice set available to him. The constants only model includes
only a full set of constants, i.e., constants corresponding to each
of the alternatives with one of the alternatives chosen as the base
alternative, as explanatory variables. The model estimation is
carried out by maximizing the log likelihood using STATA.25

ρo = 1− LL(model)
LL(0)

ρc = 1− LL(model)
LL(c)

(14)

LL(0 ) and LL(c) are the log likelihood estimates of the zero and
constants only models.

2. Implementation

The demand model developed is used to assess the impact of sus-
pension design changes on vehicle profit (see Figure 9). Twelve

vehicles (seven models and twelve trims) are considered in the demand model representing the midsize car
segment. Considering other segments, for example, sports models or pick-up trucks, would run the risk of
yielding models that have a heavy demographic bias and are therefore not very sensitive to changes in prod-
uct attributes. The assumption is that customers only consider vehicles from the midsize car segment, and
specifically the twelve vehicle trims, when making their decision. While modeling suspension characteristics,
a number of product attributes including retail price, resale value, annual percentage rate (APR) for auto
loan, fuel economy, vehicle dependability index (VDI: a quality measure, expressed in terms of defects per
100 parts), vehicle length, and demographic attributes like customer age and income are included. Note

10 of 14

American Institute of Aeronautics and Astronautics



that demographic attributes can only be included as alternative specific variables9 due to the nature of the
MNL. Here 11 income variables corresponding to alternatives 2 to 12 are used and they are evaluated with
alternative 1 as a reference. Similarly, the age variable is assumed to be equal for all domestic cars and is
evaluated with respect to imported cars. The number of survey correspondents was 3881. Front and rear
suspension spring stiffnesses are used to model suspension characteristics.

Table 3 includes results of the model estimation and several observations can be made. Negative signs

Table 3. Results of Demand Model Estimation

Variable type Description β Coefficient t-value 95% Confidence interval
Income 2 0.13 6.41 (0.09, 0.18)
Income 3 0.01 0.48 (−0.03, 0.05)
Income 4 0.06 2.57 (0.01, 0.11)
Income 5 −0.10 −4.2 (−0.15,−0.05)
Income 6 −0.08 −3.37 (−0.13,−0.03)

Demographic Income 7 0.07 2.99 (0.02, 0.11)
Income 8 0.08 3.22 (0.03, 0.12)
Income 9 0.08 3.25 (0.03, 0.14)
Income 10 0.19 9.38 (0.15, 0.23)
Income 11 0.05 2.29 (0.01, 0.10)
Income 12 0.04 1.18 (−0.02, 0.10)

Demographic Age 0.13 12.37 (0.11, 0.15)
Retail Price −1.57 −4.14 (−2.31,−0.82)
Resale Value 2.15 2.54 (0.49, 3.80)

Vehicle Dependability Index −1.69 −1.49 (−3.92, 0.53)
Annual Percentage Rate −1.05 −1.34 (−2.58, 0.49)

Product Fuel Economy 0.64 1.51 (−0.19, 1.46)
Vehicle Length −0.60 −0.5 (−2.95, 1.74)

Front Suspension Stiffness 1.75 3.11 (0.65, 2.85)
Rear Suspension Stiffness 0.88 1.28 (−0.47, 2.24)

Table 4. Iteration History: Maximizing Profit with Vehicle Suspension Design Change

Iteration Target Target Desired Response Response Actual
ksf (kN/m) ksr (kN/m) utility ($) R1 R2 utility ($)

1 30.2 19.5 80460 25.0 19.5 -8935
2 28.6 24.5 33701 29.4 25.0 27234

of retail price, VDI, APR and vehicle length mean that customers prefer lower values for these variables,
i.e., customers prefer cheaper cars, lower interest rates, fewer defects and cars that facilitate easy parking.
Positive sign for fuel economy means that customers prefer higher gas mileage and positive signs for the
suspension stiffnesses mean that stiffer suspensions are preferred. A stiffer suspension generally translates
to better handling and load-carrying abilities but also results in a harsher ride. In this context, the current
choice model indicates that customers value handling characteristics more than ride quality. Also, since we
are dealing with variables normalized with respect to their extreme values, the magnitude of the coefficients
should reflect their relative importance.

Table 4 summarizes the iteration process for the algorithm. The utopia target for suspension design is
given at T∗=(30.2, 19.5)(kN/m) with profit $80,460 corresponding to the peak point on the utility surface
in Figure 10. Due to engineering feasibility the design with the minimum deviation from the utopia target
is found at point A=(25.0, 19.5)(kN/m) with -$8,935 profit (i.e., loss). Based on this design, the algorithm
imposes a limiting constraint (Eq. (4)) to the enterprise problem. The modified enterprise problem finds
a new optimal target with the maximum utility at T

′
=(28.6, 24.5)(kN/m) with $33,701 profit. This new
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target guides the ATC process to reach B=(29.4, 25.0)(kN/m) with the improved profit $27,234. Note that
the utopia targets assigned to the ATC problem are not achievable. However, the algorithm guides the
iteration process to a design where the best available utility is obtained. Detailed suspension and coil spring
designs by ATC are summarized in Table 5 - 8.

V. Conclusions

Enterprise product planning has been systematically linked to the product development process. The
proposed algorithm performed successfully in the examples. It is common not to achieve aggressive product
performance targets perfectly, and the proposed algorithm allows design exploration within the capability of
the product development teams often represented with a disconnected feasible domain. When the product
design feasible domain is disconnected due to the discrete nature of the product components or manufacturing
limitations with the OEMs, the proposed algorithm systematically assigns different targets for the engineering
teams to meet the enterprise objective better. Analytical target cascading was successfully incorporated to
achieve the performance targets with the minimum deviations while maximizing the utility at the enterprise
level with the guidance of the proposed algorithm.

Future work involves adopting the nested multinomial logit model that can be more effectively incorpo-
rated in the multilevel decision making scenarios as well as in heterogeneous market segments (e.g., con-
sidering sedans with sport utility vehicles). Also, the sensitivity of product attributes to profit from the
enterprise model can be utilized in the engineering design model.

Appendix

Table 5. Front Suspension Design

Front suspension subsystem design Optimal value Lower bound Upper bound
Linear coil spring stiffness (N/mm) 113.4 30 160
Spring free length (mm) 375.1 300 650
Torsional stiffness (N-m/deg) 30 20 85
Overall front suspension stiffness (N/mm) 29.3 19 30.2
Suspension travel (m) 0.099 0.05 0.1

Table 6. Rear Suspension Design

Rear suspension subsystem design Optimal value Lower bound Upper bound
Linear coil spring stiffness (N/mm) 70.5 30 160
Spring free length (mm) 472.4 300 650
Torsional stiffness (N-m/deg) 69.3 20 85
Overall rear suspension stiffness (N/mm) 25 19 30.2
Suspension travel (m) 0.099 0.05 0.1

Table 7. Front Coil Spring Design

Front coil spring component design Optimal value Lower bound Upper bound
Wire diameter (m) 0.015 0.005 0.03
Coil diameter (m) 0.077 0.05 0.2
Pitch 0.04 0.04 0.1
Linear coil spring stiffness (N/mm) 114.3
Spring bending stiffness (N-m/deg) 28.5
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Table 8. Rear Coil Spring Design

Rear coil spring component design Optimal value Lower bound Upper bound
Wire diameter (m) 0.02 0.005 0.03
Coil diameter (m) 0.154 0.05 0.2
Pitch 0.05 0.05 0.1
Linear coil spring stiffness (N/mm) 73.4
Spring bending stiffness (N-m/deg) 59.3
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