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The 3D nature of vortex breakdown, while widely recognized, has seldom been included in the analytical investigations and,
until recently, the numerical simulations of this phenomenon. The principle asymmetric effects are examined by considering
the impact that a weak perturbation has on an axisymmetric vortex. It is demonstrated that large axisymmetric strain rates are
required for a nonaxisymmetric perturbation to grow. Simulations bear out this fact by showing significant asymmetric
behavior only after a critical swirl is exceeded which leads to breakdown in an axisymmetric flow. This result supports
previous investigations which predict breakdown for an axisymmetric flow, despite their inability to fully capture the
complexity of the breakdown topology. Furthermore, this finding indicates that vortex breakdown may be a predominantly
axisymmetric occurrence which is complicated by 3D effects. (Author)
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Abstract

The three-dimensional nature of vortex break-
down, while widely recognized, has seldom been
included in the analytical investigations and, un-
1il recently, the numerical simulations of this phe-
nomenon. The principle asymmetric effects are
examined by considering the impact that a weak
perturbation has on an axisymmetric vortex. It
is demonstrated that large axisymmetric strain
rates are required for a non-axisymmetric per-
turbation to grow. Simulations bear out this fact
by showing significant asymmetric behavior only
after a critical swirl is exceeded which leads to
breakdown in an axisymmetric flow. This res-
ult supports previous investigations which pre-
dict breakdown for an axisymmetric flow, des-
pite their inability to fully capture the complex-
ity of the breakdown topology. Furthermore, this
finding indicates that vortex breakdown may be
a predominantly axisymmetric occurrence which
is complicated by three-dimensional effects.

Introduction

A wide variety of large amplitude perturba-
tions of swirling flows have been classified as vor-
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tex breakdown since the disruption was first ob-
served by Peckham and Atkins!. These different
flows have been classified with flow visualization
by both SarpkayaZ? and Faler and Leibovich3 into
as many as six different types ranging from the
general “bubble” and “spiral” forms to the more
exotic “double helix”. In general, vortex break-
down is characterized by the presence of a stag-
nation point in a vortex-dominated flow and a
loss in the coherence of the vortex structure fol-
lowed by a rapid decay into turbulence. Applic-
ations of vortex breakdown occur for both in-
ternal and external flows. The ability to predict
and control the presence of vortex breakdown
can lead to improved mixing in flame holders as
well as more efficient and more robust aircraft
wings.

While vortex breakdown has been studied
and analyzed for over forty years, a theory has
yet to be accepted which can describe both its
formation and its evolution. Early efforts to un-
derstand this phenomenon focused on wave the-
ories, hydrodynamic instability, and a separa-
tion analogy4. The approaches using wave the-
ories postulated either an abrupt transition sim-
ilar to a hydraulic jump?® ® or an accumulation
of waves which could not propagate upstream?.
Recently, more detailed studies of vortex dynam-
ics have yielded insight into the feedback mech-
anisms which lead to the formation of axisym-
metric breakdown® 9, Numeric simulations have
indicated that the appearance of breakdown can
be correlated to a transition from supercritical
flows to subcritical flows!®. 1t has also been
demonstrated!? 12. 13 that non-unique solutions
exist for swirling flows over a range of vortex
strengths and that these solutions exchange sta-



bilities at a critical swirl ratiol4.

Each of these theories offer insight into fa-
cets of vortex breakdown, but none adequately
describes both the occurrence and topology of
breakdown. Additionally, a necessary limitation
of many of the theories to date has been the as-
sumption of axisymmetric flow. Although the
bubble form of breakdown is largely axisymmet-
ric, the internal structure has many asymmet-
ries. The influences of the asymmetry and the
alternative forms of breakdown on stability and
breakdown formation have yet to be fully ex-
amined. This study attempts to fill some of
this void. Additional non-axisymmetric simu-
lations have been performed by Spalll®, Ma and
Leibovich!6, Tromp and Beranl?, and Lucas!8.
This project, however, is unique by concentrat-
ing on the evolution of each of the azimuthal
modes.

Approach

The flow is modeled using the unsteady, in-
compressible, Navier-Stokes equation written in
cylindrical coordinates. This equation is Fourier-
decomposed in the azimuthal direction resulting
in a coupled system of partial differential equa-
tions. Specifically, the flow field variables are
represented by the truncated Fourier series

f(rv 8, 2, t) = fo(T‘, Z, t)+
No

n=1

where (r, 8, z) specify the cylindrical coordinates
and t represents time. The non-axisymmetric
terms, f,, are complex with the imaginary com-
ponent representing a phase shift of 90 degrees
from the real component. Ny is the number of
Fourier modes used to represent the flow and a
bar over a symbol indicates its complex conjug-
ate.

Analytic basis

The local strength of each Fourier mode can
be represented by an energy-like magnitude term,

E (fn(r, z,0)e™™ 4+ fo(r, 2, t)e'"g) , (1)
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gn = 3 || W, — Uy ||?, where u,, is the nth Four-
ier component of the velocity and Uy, is similarly
a Fourier component of a base flow. This quant-
ity can be shown to obey an advection-diffusion
equation with source terms stemming from pres-
sure work, viscous dissipation, and interaction
with other Fourier modes. In the following runs,
the pressure term was insignificant compared to
the other sources of g,. While the viscous dis-
sipation rate was of the same order as the non-
linear interactions, it was highly localized about
the axis.

If a smooth axisymmetric flow is weakly per-
turbed with an n = 1 disturbance of magnitude
O(e), the quadratic nature of the non-linear inter-
action term indicates that the magnitude of the
higher azimuthal modes will initially be O(e").
This cascade in amplitude can be modified if the
strain is locally increased or if a radial maode is
triggered with a significant growth factor. Us-
ing this amplitude information, the Fourier de-
composed momentum equation can be linéar-
ized to find that the non-axisymmetric disturb-
ance has a feedback term with a gain which is
roughly proportional to the strain rate in the
base flow. This potential for feedback indicates
that rapid growth of non-axisymmetric modes
can be triggered by an increase in the local strain,
such as occurs near the stagnation point at the
leading edge of a “bubble” breakdown.

To study the global interaction between the
various modes, the integral over the volume of
the velocity’s Fourier-mode magnitude, ¢, will
be evaluated throughout a flow field.

L pR(2)
Qo= [ [ qurdraz 2)
0 0

This quantity gives an indication of the relat-
ive significance of each azimuthal mode in the
flow. Integrating the differential equation for ¢,
over space leads to an equation for Qn(t). Us-
ing Gauss’s theorem, the changes in (), can be
identified with changes along the boundary and
volumetric changes. Convection of g¢,, pressure
work, and viscous stress are boundary effects,
while viscous dissipation, and a non-linear inter-
action with other Fourier velocity modes are the



volume sources.

Numeric scheme

The rotational form of the unsteady, Fourier-
decomposed, incompressible Navier-Stokes equa-
tions are solved in primitive variables using an
Orszag-Kells operator splitting!® scheme to break
the equation into an advection step, a pressure
update which forces mass conservation, and a
viscous correction:

————————unﬂ/:t— u” = —gu" X w" — —;-u"‘l X w1
nt+2/3 _ n+1/3
= Atu = —VH"! where (3)
AtVEH™! = v a3
untt _ gnt2/3 Y o nn
- = . = 1 +1
At ReV w
1}-2_37 V2ynt2/s,

In these equations, u is the velocity and w is the
vorticity. This numerical approach is second-
order accurate in time. Radial derivatives are
evaluated using Chebyschev collocation and axial
derivatives are obtained from finite-differences.
The convolution sums arising from the Fourier-
decomposition are explicitly calculated to avoid
aliasing. The Laplacian operator appearing in
the pressure Poisson equation and the viscous
correction is implicitly inverted using a block
Thomas algorithm. In order to decouple the non-
axisymmetric radial and azimuthal velocity sys-
tem in the viscosity correction, the linear com-
binations (uy, & wy)™*! were solved for in the
Helmholtz equation. This leads to two decoupled
sets of equations which can then be separated to
find the radial and azimuthal velocities.

The sinusoidal nozzle geometry used by pre-
vious investigators!? 9 is also adopted here. This
geometry creates a favorable pressure gradient
which prevents the breakdown from propagating
upstream of the nozzle and affecting the inlet
boundary condition. To remove wall boundary
layer separation from this study, the velocity was
allowed to slip along the nozzle, leading to the
outer boundary representing a rigid axisymmet-
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ric streamtube. To decrease the impact on ac-
curacy of operator splitting in the interior of the
domain, a higher-order pressure boundary condi-
tion is applied at this boundary?0. The outflow is
parabolized by neglecting the second derivative
in the axial direction. This boundary condition
is justified by the flow’s tendency to return to
a supercritical state due to viscous effects. The
axis boundary conditions are obtained from con-
straints imposed as a consequence of the Fourier
decomposition. Finally, the inlet velocity profile
is specified to provide control over the flow en-
tering the domain.

Results from this code have been favorably
compared to both experimental and analytic res-
ults. Detailed comparisons have been made to
Al, an axisymmetric, finite-volume code writ-
ten by Darmofal?, which uses a streamfunction-
vorticity formulation. The solutions from these
two codes agree very well in both spatial and
temporal variations as illustrated in Figure 1.
This figure compares the streamfunction con-
tours in the vicinity of a breakdown bubble. The
upper half of the flow is an Al calculation on a
30 x 300 grid, while the lower half is the res-
ult of the present code calculated on a 18 x
150 grid. The slight waviness in the contours
is largely due to a combination of integrating the
velocity to find the streamfunction and the use of
bi-linear interpolation in obtaining the contours
rather than spectral interpolation.

Results

A moderate core Reynolds number of 500
was used for the following runs, eliminating the
need for a turbulence model. The inlet had a
radius of 2 core radii and converged to 90% of
this value before growing to a test section of 2.2
core radii. The grid and geometry are depicted
in Figure 2 and used 17 collocation points in the
radial direction and 100 points in the axial dir-
ection. Grid resolution studies indicate that this
grid is sufficient for swirl ratios up to about 1.3.
The Chebyschev coefficients in the radial direc-
tion showed an amplitude decrease of about five
orders of magnitude for a solution with break-



down, indicating adequate resolution.

The axisymmetric flows used as base solu-
tions were obtained by beginning with a non-
swirling flow and gradually increasing the circu-
lation by a small amount. The flow was allowed
to converge and the process was repeated to ob-
tain a series of solutions ranging from a non-
swirling case to flows exhibiting breakdown. A
non-dimensional circulation, I'/§W,, is used to
parameterize the solutions, where I' is the far-
field circulation, § is the core radius, and W,
is the free-stream axial velocity. Steady-state
axisymmetric breakdown is predicted to occur
for swirl ratios greater than the critical swirl of
about 1.14,

Perturbation dependency on base flow

The axisymmetric base flows were perturbed
at the inlet by an n = 1 axial velocity disturb-
ance with an amplitude of 1% of the inlet’s axial
velocity. The radial distribution of the disturb-
ance, r?exp(—12r?), is similar in shape to an
unstable ring mode. After growing linearly in
time to its maximum strength, the disturbance's
magnitude was held constant. Both n = 1 and
n = 2 modes were used for these simulations.

For non-breakdown base flows, the perturb-
ation was convected about the axis and decayed
with virtually no effect on the base flow. This
is exhibited by using Qg to measure the axisym-
metric perturbation from the base flow. For swirl
ratios less than the critical ratio for breakdown,
Qo is O(1076). Similarly, the effects of the per-
turbation does not significantly stimulate the n =
2 modes until the critical swirl is reached. For
non-breakdown swirl ratios, Q; is @(10™*) and
decays slightly with increasing swirl ratio as a
consequence of increased dissipation as it is con-
vected about the axis at faster and faster rates.

As the critical swirl is exceeded, the pass-
ive nature of the disturbance changes drastically.
Not only does the n» = 1 disturbance grow, but
also its effect on the axisymmetric and n = 2
mode becomes dramatic. Figure 3 depicts the
variations in @y and the rapid increase as the
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critical swirl is surpassed is evident. As the crit-
ical swirl is exceeded, @7 jumps by nearly two
orders of magnitude, reflecting the larger non-
axisymmetric velocities which are present,

Perturbation flow evolution

As indicated in the previous section, perturb-
ing a flow with axisymmetric breakdown leads
to considerably different flow solutions than pre-
breakdown flows. Figure 5 displays streaklines
from an axisymmetric base flow with breakdown
(swirl ratio = 1.2). These streaklines originate
in a circle with a radius of about 2% of the core
radius and centered on the axis. Note that the
same starting points will be used for all sub-
sequent streakline figures. For the base flow,
the lines clearly indicate both the axisymmet-
ric recirculation region and the stagnation point
on the axis. Figure 4 depicts the variations of
Qo, @1, and Q2 with time after perturbing the
axisymmetric flow with a 1% non-axisymmetric
disturbance. As before, the axisymmetric solu-
tion prior to perturbation is used as the base
flow for obtaining ¢);. The initial growth of Q
is a result of increasing the amplitude at the in-
let. This is followed by the basic convection of
the disturbance through the flow domain. Until
about t* = tW,, /6 = 25, when the perturba-
tion is beginning to affect the breakdown, there
is'little impact on Qg or Q)3 and the flow shows
only weak non-axisymmetric effects. However,
the variations in these modes grow rapidly bey-
ond this point.

Figure 6 through Figure 13 depict the evolu-
tion of the flow solution in additional increments
of 25 non-dimensional time units. Both streak-
line visualization and maps of ¢; and its source
term due to non-linear mode interaction are de-
picted. For this solution, pressure work has no
significant effect and viscous dissipation is con-
centrated near the axis. At t* = 50, the non-
axisymmetric magnitudes have nearly peaked,
but there is still a stagnation point on the axis.
The streaklines indicate the turning from the axis
and the beginning of a spiral as the vortex core is
disturbed from the axis. By t* = 75, the stagna-



tion point has moved off the axis and the spiral
is becoming more pronounced. The sharp turn
has smoothed a bit and the asymmetry is evid-
ent in the solution at t* = 100. As the structure
precesses about the axis, the stagnation point
periodically approaches the axis and increases
the turning of the core away from the axis. This
is illustrated in the streaklines at t* = 125 which
* depicts a more rapid flow turning than those at
t* = 100. From this point on, the structure of
the solution changes little, but it continues to
precess. Unlike the cases with a lower base swirl
ratio, this solution did not reach a steady-state,
but this quasi-steady solution with precession
appears to be the end result. This observation
is substantiated by the lack of variation in @);.

The contour plots depict the variations of ¢3
and its principle source term as a function of
space and time. The contours of ¢; are spaced
with a difference of 0.02 between levels, while the
contours of the Fourier-mode interaction source
are spaced with a difference of 0.001. Gray con-
tours indicate sinks. At t* = 50, the n = 1
mode is strong with a peak magnitude of about
1 and has significant strength over most of the
region downstream of breakdown. Its magnitude
is being pulled into other modes inside the vor-
tex core, but is being reinforced by other modes
outside of the core. As time progresses, more of
this moéde is passed into its harmonic, the n = 2
mode. Additionally, the interaction source be-
gins to focus itself into paired regions of sources
and sinks as the vortex core is pulled from the
axis. By t* = 125, when the stagnation point is
closer to the axis, the n = 1 mode is dominant
near where the core turns away from the axis,
as it must be to effect this change. Addition-
ally, a “tail” of significant asymmetry extends
downstream. The sources have aligned them-
selves into two paired regions. In the upstream
region, the sink is near the axis, while this or-
der is reversed downstream. Since the dominant
n = | velocity component is axial, these regions
represent sources of asymmetric azimuthal vor-
ticity.
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Conclusions

Three-dimensional, unsteady, numerical sim-
ulations of breakdown flows indicate that while
the assumption of axisymmetry imposes a signi-
ficant limitation in determining the specific struc-
ture of breakdown, it does not seem to affect
the prediction of its occurrence. While more de-
tailed work is needed to confirm this result, it
is in good agreement with the experimental and
analytic results which indicate that flows down-
stream of breakdown are linearly unstable.

The integrated velocity magnitude of each
Fourier mode in the flow has also been examined.
This quantity has only two volumetric source
terms: viscous dissipation and non-linear inter-
action from other Fourier modes. The viscous
dissipation term is negative definite and tends to
reduce non-axisymmetric effects near the axis.
The non-linear interaction term is more com-
plicated, but represents, for weak perturbations
to an axisymmetric flow, a feedback term which
is proportional to the axisymmetric strain rate.
This term not only pulls energy from the axisym-
metric mode, but also distributes it to other har-
monics.

Simulations have been performed which track
this quantity and indicate that there is no signi-
ficant growth in the perturbation until the crit-
ical swirl is exceeded. Base flows with lower
swirl ratios lead primarily to viscous dissipa-
tion. The large strain rate, such as seen near
the leading edge of an axisymmetric bubble, is
necessary to reinforce the asymmetric perturba-
tion and lead to growth.

Further work is being performed to determ-
ine the impact that the perturbation’s magnitude
has on its effects, as well as considering addi-
tional disturbance modes. The modifications in
axisymmetric structure as swirl is increased fur-
ther beyond the critical swirl will also be ex-
amined.
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Figure 1: Comparison of axisymmetric breakdown bubble between current code (lower) and
AX{upper)
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Figure 2: Computational grid and nozzle geometry (Only every other grid line drawn).
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Figure 3: Steady-state n = 1 integrated velocity magnitude (Q1) vs. inlet swirl ratio.
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Figure 4: Development of Fourier modes with time, Swirl = 1.2.

Figure 5: Streaklines for axisymmetric base flow, Swirl = 1.2.

Figure 6: Streaklines for perturbed flow, Swirl = 1.2, t* = 50.
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(b) Non-linear Fourier-mode interaction source (contour spacing of 0.001)

Figure 7: » =1 energy map, t* = 50.

Figure 8: Streaklines for perturbed flow, Swirl = 1.2, ¢* = 75.

(b) Non-linear Fourier-mode interaction source (contour spacing of 0.001)

Figure 9: n = 1 energy map, t* = 75.
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Figure 10: Streaklines for perturbed flow, Swirl = 1.2, t* = 100.

(b) Non-linear Fourier-mode interaction source (contour spacing of 0.001)

Figure 11: n = 1 energy map, t* = 100.

Figure 12: Streaklines for perturbed flow, Swirl = 1.2, #* = 125.
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(b) Non-linear Fourier-mode interaction source (contour spacing of 0.001)

Figure 13: n = 1 energy map, t* = 125.
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