
COORDINATION SPECIFICATION OF THE ANALYTICAL TARGET
CASCADING PROCESS USING THE χ LANGUAGE

L.F.P. Etman
Eindhoven University of Technology, Eindhoven, The Netherlands

and
M. Kokkolaras and P.Y. Papalambros

University of Michigan, Ann Arbor, Michigan
and

A.T. Hofkamp and J.E. Rooda
Eindhoven University of Technology, Eindhoven, The Netherlands

ABSTRACT

Optimal design problems of large-scale and complex
engineering systems are typically decomposed into a
number of smaller and tractable subproblems. Ana-
lytical target cascading (ATC) is a methodology for
translating overall system design targets to individ-
ual specifications for the subsystems and components
that make up the system based on a hierarchical par-
tition. We propose to use the χ language and soft-
ware tools to specify and implement the coordination
of the analytical target cascading process. ATC is im-
plemented as parallel processes that exchange data via
channels, which represent the links between the sub-
problems. The process specifications define how indi-
vidual processes communicate with other coupled pro-
cesses. We show the advantages of χ for coordinating
the ATC process by means of an illustrative example,
and demonstrate that different coordination strategies
can be implemented and evaluated efficiently.

1 INTRODUCTION

A key challenge in early product development stages
of complex products is to propagate desirable product
characteristics, defined by product’s specifications (or
targets), to the various subsystems and components in
a consistent and efficient manner. Consistency means
that all parts of the designed system should end up
working well together, while efficiency means that it-
erations at later product development stages, which are
costly in time and resources, should be avoided.

Analytical target cascading is a methodology for the
design of large engineering systems at the early prod-
uct development stages (Kim, 2001). First, the de-
sign problem is partitioned into a hierarchical set of
subproblems associated with systems, subsystems, and
components. Design specifications (or targets) are de-
fined at the top level of the multilevel design formula-

tion and “cascaded down” to lower levels. Design sub-
problems are formulated at each level so that compo-
nents, subsystems, and systems are designed to match
the cascaded targets consistent with the overall system
targets. The main benefits of target cascading are re-
duction in design-cycle time, avoidance of design iter-
ations late in the development process, and increased
likelihood that physical prototypes will be closer to
production quality. Target cascading also facilitates
concurrency in system design, allowing the outsourc-
ing of subsystems and components to suppliers. Tar-
get cascading offers a robust framework for multilevel
design and has been demonstrated (Michelena et al.,
2002) to be convergent under standard convexity and
smoothness assumptions, whereas other similar prob-
lem formulations exhibit convergence difficulties.

The ATC process has been applied successfully to a
wide range of vehicle design applications (Kim et al.,
2000, Kim et al., 2001, Michelena et al., 2001, Kim
et al., 2002). It has also been extended to the design
of product families (Kokkolaras et al., 2002). The key
to the success of the ATC process lies in coordinat-
ing the solution process of the subproblems. Several
coordination strategies are presented in (Michelena et
al., 2002). They recursively solve one subset of two
coupled subproblems at a time. Although they do not
address this, their strategies allow the concurrent solu-
tion of subproblems (e.g., at the same level of the hier-
archy). For larger decompositions the implementation
of the ATC coordination may become complicated and
prone to errors, even if one refrains from the parallel
solutions of the subproblems.

A more precise description of the ATC coordination,
especially in regard to concurrency, would be advan-
tageous. Etman et al. (2002) suggest to use a pro-
gramming language founded on concurrency theory
for this purpose. They adopt the χ specification lan-

1
American Institute of Aeronautics and Astronautics

9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
4-6 September 2002, Atlanta, Georgia

AIAA 2002-5637

Copyright © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



guage (Kleijn and Rooda, 2001; Rooda, 2000) that is
based on concepts of Communicating Sequential Pro-
cesses (CSP) (Hoare, 1985). They show that such a
language enables to model and implement the coordi-
nation of coupled subproblems in multidisciplinary op-
timization (MDO) including the possibly parallel be-
havior of the subproblems.

This paper proposes the use of χ to specify and im-
plement the coordination process of ATC. Our inten-
tion is to demonstrate the advantages of χ by evaluat-
ing the performance of alternative coordination strate-
gies for a multilevel target cascading problem. The
paper is organized as follows. The mathematical for-
mulation of the analytical target cascading process is
given in the next section. The coordination specifi-
cation of ATC is put into the χ perspective in Sec-
tion 3. An illustrative example is presented in Sec-
tion 4, where different coordination strategies are im-
plemented by means of χ and evaluated. Conclusions
are drawn in Section 5.

2 TARGET CASCADING FORMULATION

The analytical target cascading process is presented us-
ing a general notation, from which the design problem
for each element (i.e., system, subsystem, or compo-
nent) can be recovered as a special case. The formu-
lation allows for design specifications to be introduced
not only at the top level for the overall product, but also
“locally” to account for individual system, subsystem,
and/or component requirements. To represent the hi-
erarchy of the partitioned design problem, the set E i

is defined at each level i, in which all the elements of
the level are included. For each element j in the set
Ei, the set of children Ci j is defined, which includes
the elements of the set Ei�1 that are children of the el-
ement. An illustrative example is presented on Figure
1: At level i � 1 of the partitioned problem we have
E1 � �B, C�, and for element “B” on that level we
have C1B � �D, E�. There are two types of responses:

Elements j

i = 0 j = A

L
ev

el
s

i

i = 1 j = B j = C

i = 2 j = D j = E j = F j = G

Figure 1: Example of hierarchically partitioned design
problem

responses R̃ linked to “local” targets (e.g., at the top
level), and responses R linked to “cascaded” targets,
i.e., linking two successive levels in the problem hi-

erarchy. The design problem Pi j corresponding to the
j-th element at the i-th level is formulated as follows:

min
x̄i j

�R̃i j �Ti j���Ri j�RU
i j���yi j�yU

i j�

�εR
i j � εy

i j

subject to ∑
k�Ci j

�R̂�i�1�k� R̂L
�i�1�k� � εR

i j

∑
k�Ci j

�y�i�1�k�yL
�i�1�k� � εy

i j (1)

gi j�R̂i j�xi j�yi j�� 0�

hi j�R̂i j�xi j�yi j� � 0�

where R̂i j �
�
R̃t

i j�R
t
i j

�t
� ri j�R̂�i�1�k1

� � � � � R̂�i�1�kci j
�

xi j�yi j�, Ci j � �k1� � � �kci j�, and ci j is the number of
child elements. Note that an element’s response de-
pends on the element’s design variables as well as on
its children’s responses. In the above problem formu-
lation,

� x̄i j �

�
xt

i j�y
t
i j�y

t
�i�1�k1

� � � � �yt
�i�1�kci j

� R̂t
�i�1�k1

� � � � �

R̂t
�i�1�kci j

�εR
i j�ε

y
i j

�t

is the vector of all optimiza-

tion variables,

� xi j is the vector of local design variables, that is,
variables exclusively associated with the element,

� yi j is the vector of linking design variables, that
is, variables associated with two or more elements
that share the same parent,

� R̂i j is the vector of all responses,

� εR
i j is the tolerance optimization variable for coor-

dinating the responses of the children of the ele-
ment,

� εy
i j is the tolerance optimization variable for coor-

dinating the linking design variables of the chil-
dren of the element,

� Ti j is the vector of local target values,

� RU
i j is the vector of response values cascaded

down to the element from its parent,

� yU
i j is the vector of linking design variable values

cascaded down to the element from its parent,

� R̂L
�i�1�k is the vector of response values cascaded

up to the element from its k-th child,

� yL
�i�1�k is the vector of linking design variable val-

ues cascaded up to the element from its k-th child,

� gi j and hi j are vector functions representing in-
equality and equality design constraints, respec-
tively.

2
American Institute of Aeronautics and Astronautics



3 ATC COORDINATION SPECIFICATION

Analytical target cascading requires the iterative solu-
tion of the optimization subproblems according to the
hierarchical structure of the decomposed problem. In
this iterative coordination process the subproblem tar-
gets and design variables need to be found such that
they are consistent with respect to the top level objec-
tives and the coupling constraints of the subproblems.

Several different iterative coordination strategies
may lead a consistent system design. Michelena et
al. (2002) proved that a class of ATC coordination
strategies are guaranteed to converge under standard
smoothness and convexity assumptions. However, it is
not known a priori which strategy is the most efficient.
This may even be problem dependent. In this respect
one may also want to distinguish between the number
of subproblems that can be solved in parallel. It would
be advantageous to have a coordination language with
a clear concept of concurrency that enables rapid im-
plementation and investigation of alternative ATC co-
ordination strategies. The purpose of the present pa-
per is to demonstrate this by means of the specification
language χ (see Etman et al. (2002)).

This section explains how the ATC coordination can
be specified as a coupled system of χ processes. A
process will be instantiated for each design problem
Pi j. This process specifies the sequence of statements
to exchange data with its parents and children, and to
carry out a numerical optimization of subproblem Pi j.
In the general form of Section 2, such an ATC sub-
problem process receives target and constraint values
from its parent and children, respectively, and returns
updates after the associated optimization problem has
been solved. The exact process specification for prob-
lem Pi j depends on the coordination scheme that is em-
ployed to solve the overall ATC problem.

3.1 Downwards-only sequential coordination

Consider first a coordination scheme that solves op-
timization subproblems iteratively in a downwards
level-by-level sequence. That is, optimization sub-
problems are solved subsequently in increasing level
order: i � 0�1� � � � �N�0� � � � �N etc., where i � 0 and
i � N represent top and bottom level, respectively.

In the downwards-only coordination, the top-level
process Ctop for problem P0 (index j is dropped at
the top level since there is only one element) starts
by carrying out an optimization to determine response
and linking variable targets that will be cascaded to its
children. At the first iteration, Ctop uses some user-
provided initial guess of the response and linking vari-
able values regularly passed up from its children. After
Ctop has cascaded its targets, it waits until it receives
updated values of children response and linking vari-
ables. It then carries out a new optimization, compares

the new vector of optimization variables to the previ-
ous one, examines convergence of the children pro-
cesses, and either converges or reiterates.

A second type of process is needed for the
intermediate-level subproblems Pi j that have both
a parent and one or more children, i.e., i �
1� ���N�1. For the downwards-only scheme, such an
intermediate-level process Cmid carries out the follow-
ing sequence of steps: Receive targets from the parent;
carry out an optimization (at the first iteration use an
initial guess for the children response and linking val-
ues); cascade determined targets to the children; wait
until all the children have sent updated response and
linking values; and finally pass updated values to the
parent.

Thirdly, we need bottom-level processes Cbot for the
bottom-level subproblems PN j. A bottom-level process
waits until it receives targets from its parent, carries out
an optimization, and returns updated values.

The downwards-only coordination scheme for a
decomposed problem as depicted in Figure 1 is
specified simply by coupling instances of top-level,
intermediate-level, and bottom-level processes. No ad-
ditional process is needed to control the overall coor-
dination. Initially, all processes are waiting to receive
target data from their parents, except for the top-level
process. The top-level process carries out an optimiza-
tion and cascades targets down to its children. The
intermediate-level processes may carry out their opti-
mizations in parallel; all the other processes are wait-
ing to receive new data. The computed targets are cas-
caded down. This proceeds until the bottom-level pro-
cesses have been reached and have carried out their
optimizations. The bottom-level processes pass up up-
dated response and linking target values to their par-
ents, which update their parents without carrying out
any new optimizations. In this manner, updated target
values are rebalanced up level-by-level until the top-
level process is finally reached. If convergence has not
occurred, a new ATC iteration starts.

Note that the tree of processes does not need to
be symmetrical. The same coordination arises if one
branch has more levels than another branch. In case the
ATC partition consists of just two levels, the coordina-
tion specification contains only top-level and bottom-
level process instances.

Finally, a repository process R is introduced to facil-
itate the monitoring of all processes during the ATC it-
erations. The subproblem processes send updated val-
ues of their optimization variables to this process R.
These optimization variable values will be stored by
R. After completion of the ATC, the complete itera-
tion history is available from R and may be used for
further analysis.

3
American Institute of Aeronautics and Astronautics



3.2 Definition of χ processes

The χ specifications of the processes in the
downwards-only sequential coordination scheme are
presented below. The following variable types are in-
troduced:

����vx � realmx

�vr � realmr

�vy � realmy

�vys � vyms

�vrs � vrms

�vxbtop � x�vx
� ys�vys� rs�vrs
� epsr�real� epsy�real

�vxbmid� x�vx� y�vy
� ys�vys� rs�vrs
� epsr�real� epsy�real

�vxbbot � x�vx� y�vy
�par � wr�real�wy�real

�ns�nat
�nx�nat�ny�nat
�nys�nat�nrs�nat

(χ-1)

Herein, types vx, vr, and vy denote vector arrays of
reals of fixed (maximum) length mx, my, and mr, re-
spectively; χ is a strongly typed language requiring
that the dimensions of arrays are known at compilation
time (Etman et al., 2002). Types vys and vrs are ma-
trix arrays of sizes ms�mr and ms�my, respectively.
Types vxbtop, vxbmid, and vxbbot are tuples contain-
ing two or more data-elements of type vx, vy, vys, vrs,
or real. These three tuple types match the optimiza-
tion variables of the top-level, intermediate-level, and
bottom-level design problems, respectively. The ele-
ments in the tuples can be accessed through their iden-
tifiers defined before the dot operator. Finally, type
par is defined as a tuple of reals and nats to store the
scaling values used in the optimization problem of the
process, the number of children of the process, and the
actual array dimensions used in the process.

Using this type definitions, the χ specification of the
top-level process Ctop is:

����Ctop� f : �vxbtop�vr�vrs�vys�par�
� vxbtop�vr

�b : �!vr�vy�ms

�c : �?vr�vy�bool�ms

�e :!vxbtop�s :!void
�T : vr�xb0 : vxbtop� p : par
� tol : real � �

	� r : vr�rLs : vrs�yLs : vys
�xb : vxbtop�cvrg : bool�cvrgs : boolms

� i�n : nat
	cvrg :� ��	
�;rLs :� xb0�rs;yLs :� xb0�ys
;n :� 0
; 
xb�r� :� f �xb0�T �rLs�yLs� p�
;��
cvrg�n � maxiter

��n :� n�1
; i :� 0
;�� i � p�ns

��b�i!
�xb�rs��i� �xb�ys��i�
; i :� i�1

�
; i :� 0
;�� i � p�ns

�� c�i?
rLs�i�yLs�i�cvrgs�i�
; i :� i�1

�
; 
xb�r� :� f �xb0�T �rLs�yLs� p�
; e!xb
; cvrg :� topnorm�xb0�xb� p�� tol
; cvrg :� checkcvrg�cvrg�cvrgs� p�ns�
; xb0 :� xb

�
; s!
�	

(χ-2)

The first element f of the parameter list of Ctop de-
fines the Matlab function that will carry out the opti-
mization. Parameters b and c represent the send and
receive port arrays, respectively, through which data
is sent to and received from the children of C top. The
fourth parameter e is a send port to repository R to up-
date the coordination history; the fifth parameter s is a
synchronization port to R to notify when the ATC co-
ordination has been finished. The last four parameters
are the top-level response targets, the initial values of
the optimization variables, the subproblem parameter
values, and the convergence tolerance, respectively.

The following local variables are introduced in C top:
a response vector r, matrices rLs and yLs of response
target values and linking variable target values, respec-
tively, that have been passed up from the children, a
tuple of optimization variables xb, a boolean variable
cvrg, a boolean array cvrgs, and two natural variables
i and n. Ctop starts by carrying out an initial, one-time
only optimization. The following sequence of tasks
is then repeated: cascading targets, receiving updated

4
American Institute of Aeronautics and Astronautics



target values, carrying out optimization, checking con-
vergence, and updating optimization variables.

Ctop is declared locally converged if the square of the
norm of the difference between previous and current it-
erates is smaller than some predefined value tol, i.e., if
�x̄�n�� x̄�n�1��2

2 � tol. Note that the vector of opti-
mization variables x̄ has different instantiations for the
top, intermediate, and bottom levels. Ctop is declared
globally converged if convergence has occurred for the
“local” optimization problem as well as for all the chil-
dren optimization problems. The function checkcvrg
returns ���� if this is the case. To this end, the children
pass up their convergence status in addition to the up-
dated response and linking variable values. C top stores
the convergence status of its children in the boolean
array cvrgs. The functions topnorm and checkcvrg are
specified as χ functions. The ATC process is termi-
nated when Ctop has converged or the maximum num-
ber of iterations has been reached. A synchronization
is sent to repository process R to acknowledge this.

The intermediate-level process Cmid is specified in a
similar way:

����Cmid� f : �vxbmid�vr�vy�vrs�vys�par�
� vxbmid�vr

�a :?vr�vy
�b : �!vr�vy�ms

�c : �?vr�vy�bool�ms

�d :!vr�vy�bool
�e :!vxbmid�xb0 : vxbmid� p : par
� tol : real � �

	� r� rUS : vr�rLs : vrs�yUS : vy�yLs : vys
�xb : vxbmid�cvrg : bool�cvrgs : boolms

� i : nat
	 rLs :� xb0�rs;yLs :� xb0�ys
;�� ����

��a?
rUS�yUS�
; 
xb�r� :� f �xb0�rUS�yUS�rLs�yLs� p�
; e!xb
; i :� 0
;�� i � p�ns

��b�i!
�xb�rs��i��xb�ys��i�
; i :� i�1

�
; i :� 0
;�� i � p�ns

�� c�i?
rLs�i�yLs�i�cvrgs�i�
; i :� i�1

�
; cvrg :� midnorm�xb0�xb� p�� tol
; cvrg :� checkcvrg�cvrg�cvrgs� p�ns�
; xb0 :� xb
; d!
r�xb�y�cvrg�

�
�	

(χ-3)

Cmid has four communication ports: a and d are
receive and sent ports coupled to the parent; b and
c are receive and sent port arrays (bundles), the el-
ements of which are coupled to the children through
channels. Cmid receives response and linking variable
targets through port a; cascades targets to its children
through ports b�i; receives updated response and link-
ing variable values as well as the status of conver-
gence of children-problems through ports c�i; and fi-
nally passes updated values and convergence status to
its parent through port d. This sequence is repeated
indefinitely. After Cmid has received the target values
cascaded down from its parent, it carries out the local
optimization defined by function f , using initial op-
timization variable values xb0 and subsystem param-
eters p. After the convergence status of the children
has been received, the local and overall convergence
of Cmid is determined as described for Ctop; however, a
modified norm function (midnorm) is used. T

The bottom-level process Cbot is specified next. Cbot

receives targets through port a, carries out the opti-
mization defined by f , and passes up updated values
and convergence status through port d:

����Cbot� f : �vxbbot�vr�vy�par�
� vxbbot�vr

�a :?vr�vy�d :!vr�vy�bool
�e :!vxbbot
�xb0 : vxbbot� p : par� tol : real � �

	� r� rUS : vr�yUS : vy�xb : vxbbot�cvrg : bool
	 �� ����

��a?
rUS�yUS�
; 
xb�r� :� f �xb0�rUS�yUS� p�
; e!xb
; cvrg :� botnorm�xb0�xb� p�� tol
; xb0 :� xb
; d!
r�xb�y�cvrg�

�
�	

(χ-4)

Finally, there is a repository process R that collects
optimization results every time a problem is solved,
and stores them in lists:

5
American Institute of Aeronautics and Astronautics



���� R�t :?vxbtop
�m : �?vxbmid�nm�b : �?vxbbot�nb

�s :?void� tol�sca : real � �
	�vt : vxbtop� td : vxbtop�

�vm : vxbmid�md : �vxbmid��nm

�vb : vxbbot�bd : �vxbbot��nb�b : bool
	 td :� �� ;md :� ini mid��;bd :� ini bot��
;�� ����; t?vt

�� td :� td���vt�
�� j : nat� 0��nm : ����;m� j?vm
��md� j :� md� j���vm�

�� j : nat� 0��nb : ����;b� j?vb
��bd� j :� bd� j���vb�

�� ����; s?
��b :� pp�td�md�bd� tol�sca�

�
�	

(χ-5)

R has ports to all subproblem processes in the coor-
dination. R has three different port parameters since
the optimization variables tuple differs for the top-
level, intermediate-level, and bottom-level processes,
respectively. Additionally we have a synchronization
port to the top-level proces for the acknowledgement
of the ATC finish. The key statement of R is a repetitive
selective waiting statement. The repetitive selective
waiting statement waits until a new iteration update is
received from one of the subproblem processes or until
a synchronization is received from the top-level pro-
cess. R stores the iteration updates of the subproblems
in seperate lists designated to each of the processes. If
the synchronization communication is carried out, the
lists of the subproblems are post-processed by function
pp for inspection of the ATC iteration history.

3.3 Alternative coordination schemes
Additional coordination schemes can be obtained by
modifying slightly the specifications of the subprob-
lem processes. For example, a downwards-upwards
sequential coordination scheme (i � 0�1� � � � �N �
1�N�N�1� � � � �1�0� etc.) is obtained by simply insert-
ing the line

;
xb�r� :� f �xb0�rUS�yUS�rLs�yLs� p�

after the statement

;�� i � p�ns
��c�i?
rLs�i�yLs�i�cvrgs�i�

; i :� i�1
�

in the Cmid process specification (χ-3). By doing this,
intermediate-level processes carry out an additional

optimization every time updated values are rebalanced
up.

Michelena et al. (2002) consider nested coordina-
tion schemes. For example, the nested coordination
that corresponds to the scheme depicted in Figure 2, is

Supersystem

System

Component

Subsystem

Figure 2: Top-down nested coordination.

obtained by simply inserting an iteration loop between
the receive and send statements with respect to the
parent-related communication. In this manner, com-
munications with the children are nested with respect
to communications with the parent. The repetition
statement is inserted into (χ-3) as follows.

;�� ����
��a?
rUS�yUS�

;��
cvrg�n � maxiter
��n :� n�1

; 
xb�r� :�
f �xb0� rUS�yUS�rLs�yLs� p�

� � �

; xb0 :� xb
�

;d!
r�xb�y�cvrg�
�

4 EXAMPLE

We will now demonstrate the implementation of dif-
ferent coordination strategies using the χ language on
a simple but illustrative analytical optimization prob-
lem.

6
American Institute of Aeronautics and Astronautics



4.1 Mathematical formulation of example problem

Our example is based on the geometric programming
problem presented in Kim (2001):

min
z�0

z2
1 � z2

2

s.t.
z�2
3 � z2

4

z2
5

�1� 0 ;
z2
5 � z�2

6

z2
7

�1� 0

z2
8 � z2

9

z2
11

�1� 0 ;
z�2
8 � z2

10

z2
11

�1� 0 (2)

z2
11 � z�2

12

z2
13

�1� 0 ;
z2
11 � z2

12

z2
14

�1� 0

z2
1� z2

3� z�2
4 � z2

5 � 0 ; z2
2� z2

5� z2
6� z2

7 � 0

z2
3� z2

8� z�2
9 � z�2

10 � z2
11 � 0

z2
6� z2

11� z2
12� z2

13� z2
14 � 0

The solution of problem (2) is known to be equal to z =
[2.84 3.09 2.36 0.76 0.87 2.81 0.94 0.97 0.87 0.80 1.30
0.84 1.76 1.55]. Kim (2001) decomposed this problem
using the equality constraints as responses within a bi-
level hierarchical structure and demonstrated the ap-
plication of the ATC process. Here, we decompose the
original problem into three levels as shown in Figure
3; z5 is the linking variable that couples the subprob-
lems of the intermediate level. Note that z11 is a link-

Problem 0

11

11

L

L

R

y

11

11

U

U

R

y

12

12

L

L

R

y12

12

U

U

R

y

Problem 11 Problem 12

Problem 22

21

L
R 22

L
R

21

U
R 22

U
R

Problem 21

Figure 3: Hierarchical structure of decomposed prob-
lem

ing variable coupling the two problems of the bottom
level. The ATC formulation does not allow subprob-
lems to share variables unless they are children of the
same parent. Since the purpose of this example is to
illustrate the χ implementation of alternative coordi-
nation strategies, we treat z11 as a parameter using its
known optimal value.

The subproblems are formulated in the next subsec-
tions following the notation presented in Section 2; the
index j is dropped for the top-level problem since there
is only one element.

Top-level problem Problem P0 is formulated as

min
R11 �R12�y0�εy

0�εR
0

�R0�T0�� εy
0 � εR

0

subject to �y0�yL
11���y0�yL

12� � εy
0 (3)

�R11�RL
11���R12�RL

12� � εR
0 �

where R11 :� z1, R12 :� z2, y0 :� z5, R0 �
r0�R11�R12� � z2

1 � z2
2, and T0 � 0. Note that z1, z2,

and z5, correspond to the formulation of the original
problem, and that z5 is a linking variable computed at
the problems of the intermediate level and coordinated
at the top level.

Intermediate-level problems There are two prob-
lems at the intermediate level. Problem P11 is formu-
lated as

min
R21�y11�x11�εR

11

�R11�RU
11���y11�yU

0 �� εR
11

subject to �R21�RL
21� � εR

11� (4)

g11�R21�x11�y11�� 0

where R21 :� z3, x11 :� z4, y11 :� z5,

R11 � r11�R21�x11�y11� �
�

z2
3 � z�2

4 � z2
5, and

g11�R21�x11�y11� � �z�2
3 � z2

4�z
�2
5 �1. Problem P12 is

stated as

min
R22�y12�x12�εR

12

�R12�RU
12���y12�yU

0 �� εR
12

subject to �R22�RL
22� � εR

11� (5)

g12�R22�x12�y12�� 0

where R22 :� z6, x12 :� z7, y12 :� z5,

R12 � r12�R22�x12�y12� �
�

z2
5 � z2

6 � z2
7, and

g12�R22�x12�y12� � �z2
5 � z�2

6 �z�2
7 �1.

Bottom-level problems There are two problems at
the bottom level. Problem P21 is given by

min
x21

�R21�RU
21�

subject to g21�x21�� 0 (6)

where x21 :� �z8�z9�z10�, p � 1�3�� z11�, R21 �

r21�x21� �
�

z2
8 � z�2

9 � z�2
10 � p2, and

g21�x21� �

�
�z2

8 � z2
9�p

�2�1
�z�2

8 � z2
10�p

�2�1

�
�

The formulation of problem P22 is

min
x22

�R22�RU
22�

subject to g22�x22�� 0 (7)

7
American Institute of Aeronautics and Astronautics



where x22 :� �z12�z13�z14�, p � 1�3�� z11�, R22 �

r22�x22� �
�

z2
12 � z2

13 � z2
14 � p2, and

g22�x22� �

�
�p2 � z�2

12 �z
�2
13 �1

�p2 � z2
12�z

�2
14 �1

�
�

4.2 Implementation of coordination using χ
The χ implementation of the three-level ATC exam-
ple requires a number of processes as specified in
Section 3. We assign the following constant values
first:

���
�mx : nat � 3
�mr : nat � 1
�my : nat � 1
�ms : nat � 2
�nm : nat � 2
�nb : nat � 2
�maxiter: nat � 1000
�nan : real��9�9e99

(χ-6)

where mx is the maximum length of design variable ar-
rays (there are maximum three local design variables
in any of the subproblems), mr is the maximum length
of response variable arrays, my is the maximum length
of linking variable arrays, ms is the maximum num-
ber of children in any subproblem (2 in the top-level
problem), nm is the number of intermediate-level pro-
cesses (P11 and P12), and nb is the number of bottom-
level processes (P21 and P22). Moreover, we define the
maximum number of iterations maxiter and a “not-a-
number” value nan that is used for empty entries in the
fixed-length arrays.

The system that couples the processes is instanti-
ated according to Figure 4. The top-level problem

botC botC

C

midC

top

Cmid

b.1a.0

R h.1h.0

g s

b.0 a.1

c.0 d.0 e.0 f.0

k.0 k.1

Figure 4: Processes and channels in the three-level
ATC example.

P0 requires a process instantiation of Ctop. Each of
the two children of P0 requires an instantiation of the
intermediate-level processCmid, representing problems
P11 and P12. The bottom-level subproblems P21 and P22

are represented by two process instantiations of Cbot.
Finally, repository process R needs to be instantiated.

These six processes have to be coupled to each other
by channels of appropriate data type. The channel
names are defined in Figure 4. For example, C top sends
data of type vr�vy to each of its children via channel
array a, and receives data of type vr� vy� bool from
its children via channel array b. Ctop shares two ad-
ditional synchronization send channels with repository
R: one to send iteration updates, and one to acknowl-
edge the completion of the ATC coordination. The
intermediate-level process Cmid representing design
problem P11 receives data of type vr�vy from Ctop via
channel a�0 and sends data of type vr� vy� bool via
channel b�0. The Cmid process representing P11 also
communicates through channels c�0 and d�0 with the
Cbot process that represents its child P21. Problems P12

and P22 are represented in a similar fashion. The two
Cmid processes and the two Cbot processes send updates
to repository R through channel arrays h and k, respec-
tively.

Note that channels a to f are channel arrays of size
ns � 2. However, P11 has only one child, and there-
fore only the first elements of the channel arrays c and
d are used, i.e. c�0 and d�0. The same holds for P12

and channel arrays e and f . The constant ns cannot be
defined as a separate parameter in the process defini-
tion; χ is a strongly typed language and does not allow
(channel) array type specifications of variable size. At
present, χ also does not allow to specify the actual ar-
ray sizes used in a process upon instantiation of the
process in a system.

The subproblem optimizations are carried out using
the Matlab optimization toolbox function �������,
which is an implementation of the sequential quadratic
programming (SQP) algorithm. We use the square of
the l2-norm as the metric of the deviation terms in the
objective and constraints of Problem (1). The func-
tion calls are realized by means of a χ-python inter-
face (Hofkamp, 2001), developed such that χ can call
Python functions like native χ functions. Python is a
scripting language designed to glue pieces of software
to each other. This interface can be used to link χ with
any other desired software package. In our case, we
have used pymat to couple χ through Python with Mat-
lab (see Etman et al., 2002).

The system specification is given below:

8
American Institute of Aeronautics and Astronautics




�
� S�tol� sca : real� �
	�a�c�e : ��vr�vy�ms

�b�d� f : ��vr�vy�bool�ms

�g : �vxbtop�h : ��vxbmid�nm

�k : ��vxbbot�nb
�s :�void

	Ctop�P0�a�b�g�s�
0�0�
�

nan�nan�nan�
�

1�0� �
1�0��
�

1�0� �
1�0�� �0�0�0�0�
�
sca�sca�2�0�0�1�1� � tol�

�Cmid�P11�a�0�c�d�b�0�h�0
�

1�0�nan�nan� �
1�0�
�

nan� �
nan��
�

1�0� � 
nan�� �0�0�0�0�
�
sca� sca�1�1�1�0�1� � tol�

�Cmid�P12�a�1�e� f �b�1�h�1
�

1�0�nan�nan� �
1�0�
�

nan� �
nan��
�

1�0� � 
nan�� �0�0�0�0�
�
sca� sca�1�1�1�0�1� � tol�

�Cbot�P21�c�0�d�0�k�0
�

1�0�1�0�1�0� �
nan��
�
nan�nan�0�3�0�0�0� � tol�

�Cbot�P22�e�0� f �0�k�1
�

1�0�1�0�1�0� �
nan��
�
nan�nan�0�3�0�0�0� � tol�

�R�g�h�k� s� tol�sca�
�	

(χ-7)

All processes in system S are instantiated with the ap-
propriate channels and parameters. All optimization
variables in the tuple xb0 of processes Ctop, Cmid, and
Cbot are given an initial value of one, except for the εR

i j

and εy
i j variables which are initialized at zero. The pa-

rameter array p contains the scaling parameter value w
for the ε terms in the objective function of problems
P0, P11, and P12, and the number of children, local de-
sign variables, linking variables, and children response
and linking variable target values (assumed equal for
all children) for each process Ctop, Cmid, and Cbot . The
χ specification ends with:


��� �tol�sca : real� � 	�S�tol�sca��	 (χ-8)

denoting that after compilation a system execution of
S can be carried with tolerance tol and scaling w as
input.

4.3 Results

We have implemented three coordination schemes for
our three-level target cascading problem. Denoting
top, intermediate, and bottom levels with 0, 1, and 2,
respectively, the sequences are

Scheme I (downwards only): 0� 1� 2� 0

Scheme II (downwards/upwards): 0� 1� 2� 1� 0

Scheme III (nested): 0� 1� 2� 1� 2 � � �0

It has been observed that scaling the ε terms in
the objective of problems 3 - 5 has an effect on the
convergence behavior of the ATC process. Therefore,
numerical experiments have been performed with
different values for the termination criterion tolerance
and scaling parameter sca (same for all ε terms). The
results are summarized in Tables 1 - 3. There are two
rows for each scaling parameter value; in the top row
we report accuracy of obtained results, represented by
the square of the l2-norm of the difference between
obtained and exact solution. In the bottom row, and
for schemes I and II, we report the number of required
target cascading iterations. The computational cost
can then be determined for each scheme according
to the following considerations: For scheme I, the
top-level problem is solved n � 1 times, where n is
the number of target cascading iterations, and each
intermediate-level and bottom-level problem is solved
n times. Since intermediate-level and bottom-level
problems are solved in parallel, the total computa-
tional cost in terms of solved optimization problems
is therefore n � 1 � n� n � 3n� 1. For scheme II,
the top level problem is solved n � 1 times, each
intermediate-level problem is solved 2n times, and
each bottom-level problem is solved n times; total
cost equals to 4n � 1. For scheme III, the bottom
row includes three numbers: starting from the left,
these are the number of times nt that the top-level
problem has been solved, and the numbers of times
nl and nr that the left and right intermediate-level and
bottom-level problems have been solved, respectively.
Note that for each side of the tree (left and right), the
number of intermediate-level problems is equal to the
number of solved bottom-level problems. The total
cost is then given by nt �2max�nl�nr�.

The variation of accuracy and computational cost
(as defined above) for each coordination scheme is de-
picted in Figures 5 and 6, respectively, for the termi-
nation tolerance value of 10�6. These plots look quite
similar for tol � 10�8. However, for tol � 10�10, the
behavior is quite different, as can be seen in Figures 7
and 8.

Although this example is quite simple and serves ,
we can draw some interesting conclusions: For low
tolerance values, the scaling parameter yielding the
highest accuracy differs between scheme I (1e4) and
schemes II and III (1e6). For high tolerance values,
the scaling parameter yielding the highest accuracy is
the same for all schemes (1e4). The accuracy of the
obtained results does not improve dramatically as the

9
American Institute of Aeronautics and Astronautics



Table 1: Results for coordination scheme I
sca Termination tolerance

1e-6 1e-8 1e-10
1e2 0.87526 0.87532 0.87565

9 10 17
1e3 0.03840 0.03773 0.03720

20 31 98
1e4 0.00597 0.00196 0.00151

45 129 295
1e5 0.02541 0.02486 0.02442

8 16 76
1e6 0.02602 0.02597 0.02596

8 12 15
1e7 0.02567 0.02564 0.02563

9 11 14
1e8 0.02595 0.02595 0.02592

9 10 16

Table 2: Results for coordination scheme II
sca Termination tolerance

1e-6 1e-8 1e-10
1e2 0.87513 0.87543 0.87541

6 9 15
1e3 0.03825 0.03772 0.03725

21 32 149
1e4 0.03204 0.03204 0.00150

6 6 313
1e5 0.03371 0.03326 0.03246

9 17 70
1e6 0.00863 0.00839 0.00838

11 16 20
1e7 0.01105 0.00849 0.00849

7 18 20
1e8 0.04686 0.04686 0.00870

3 3 18

Table 3: Results for coordination scheme III
sca Termination tolerance

1e-6 1e-8 1e-10
1e2 0.87507 0.87559 0.87552

7 11 12 11 20 23 12 45 46
1e3 0.03825 0.03798 0.03780

22 41 42 26 51 49 27 105 56
1e4 0.03205 0.03205 0.00712

7 12 12 49 191 97 6 11 12
1e5 0.01770 0.00932 0.03418

6 11 12 10 12 22 14 92 39
1e6 0.00998 0.00839 0.03131

11 13 20 18 20 36 6 185 17
1e7 0.03014 0.03102 0.03394

9 14 17 13 33 25 14 121 46
1e8 0.04686 0.04686 0.02650

4 6 6 4 6 6 6 46 17

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−3

10
−2

10
−1

10
0

tol=1e−6

scaling

ac
cu

ra
cy

scheme I
scheme II
scheme III

Figure 5: Accuracy of results obtained for tol � 10�6

tolerance value increases for all three schemes, espe-
cially considering the substantial increase in computa-
tional cost. Overall, although it seems that scheme I
provides the most accurate results, scheme III is much
more efficient.

5 CONCLUSIONS

The key to the success of the ATC process lies in the
coordination. It is advantageous to have a language
that enables precise and compact specification of the
ATC coordination. The χ language has been used to
specify and implement alternative coordination strate-
gies of the ATC process. Top-level, intermediate-level,
and bottom-level processes have been identified for
this purpose. Once a specific coordination strategy was
implemented, only limited modifications (confined to
the intermediate-level process) were required to de-
fine additional coordinations. Moreover, larger prob-
lems can be treated readily by simply adding neces-
sary instantiations of the defined processes. The ex-
ample demonstrated that the χ language is well-suited

10
American Institute of Aeronautics and Astronautics



10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

20

40

60

80

100

120

140
tol=1e−6

scaling

co
st

scheme I
scheme II
scheme III

Figure 6: Computational cost for tol � 10�6

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−3

10
−2

10
−1

10
0

tol=1e−10

scaling

ac
cu

ra
cy

scheme I
scheme II
scheme III

Figure 7: Accuracy of results obtained for tol � 10�10

to specify and implement the ATC coordination, and
enables rapid investigation of coordination strategies.
The reader should have in mind that the usefulness of
χ has been utilized in a small degree only due to the
simplicity of the example. The specification of ATC as
parallel processes may lead to new ways of thinking in
regard to ATC coordination schemes.

REFERENCES

Kim, H.M., Michelena, N.F., Papalambros, P.Y., and
Jiang, T., 2000, “Target cascading in optimal system
design”. Proceedings of the 26th Design Automation
Conference, Baltimore, MD, paper no. DAC-14265.

Kim, H.M., 2001, Target Cascading in Optimal Sys-
tem Design, PhD thesis, The University of Michi-
gan, Ann Arbor, Michigan.

Kim, H.M., Michelena, N.F., Papalambros, P.Y., and
Jiang, T., 2001, “Analytical target cascading in au-
tomotive vehicle design”. Proceedings of the 27th
Design Automation Conference, Pittsburgh, PA, pa-
per no. DAC-21079.

Kim, H.M., Kokkolaras, M., Louca, L.S., Delagram-
matikas, G.J., Michelena, N.F., Filipi, Z.S., Pa-
palambros, P.Y., Stein, J.L., and Assanis, D.N.,
2002, “Target cascading in vehicle redesign: A class

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

200

400

600

800

1000

1200

1400
tol=1e−10

scaling

co
st

scheme I
scheme II
scheme III

Figure 8: Computational cost for tol � 10�10

VI truck study”. International Journal of Vehicle
Design, 29(3):1-27.

Kokkolaras, M., Fellini, R., Kim, H.M., Michelena,
N.F., and Papalambros, P.Y., 2002, “Extension of the
target cascading formulation to the design of prod-
uct families”, Journal of Structural and Multidisci-
plinary Optimization, to appear.

Michelena, N.F., Kokkolaras, M., Louca, L.S., Lin
C.C., Jung D., Filipi, Z.S., Assanis, D.N., Papalam-
bros, P.Y., Peng, H, Stein, J.L., and Feury, M., 2001,
“Design of an advanced heavy tactical truck: a tar-
get cascading case study ”, SAE International Truck
& Bus Meeting and Exhibition, Chicago, IL, paper
no. 2001-01-2793.

Michelena, N., and Park, H., and Papalambros, P.,
2002, “Convergence properties of analytical target
cascading”, 9th AIAA/ISSMO Symposium on Mul-
tidisciplinary Analysis and Optimization, Atlanta,
GA, paper no. AIAA-2002-5506.

Etman, L.F.P., Hofkamp, A.T., Rooda, J.E., Kokko-
laras, M., and Papalambros, P.Y. 2002, “Coordina-
tion specification for distributed optimal system de-
sign”, 9th AIAA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, Atlanta, GA, pa-
per no. AIAA-2002-5410.

Hoare, C.A.R., 1985: Communicating Sequential Pro-
cesses, Prentice-Hall.

Kleijn, J.J.T., and Rooda. J.E. 2001, “χ Manual”, Sys-
tems Engineering Group, Eindhoven University of
Technology, http://se.wtb.tue.nl.

Rooda. J.E. 2000, “Modelling Industrial Sys-
tems”, lecture notes, Systems Engineering
Group, Eindhoven University of Technology,
http://se.wtb.tue.nl.

Hofkamp, A.T. 2001: “Python from χ”, note, Systems
Engineering Group, Eindhoven University of Tech-
nology, http://se.wtb.tue.nl.

11
American Institute of Aeronautics and Astronautics


