tlanta, Georgia

9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
4-6 September 2002,

COORDINATION SPECIFICATION OF THE ANALYTICAL TARGET
CASCADING PROCESS USING THE y LANGUAGE

L.F.P. Etman
Eindhoven University of Technology, Eindhoven, The Netherlands

and

M. Kokkolaras and PY. Papalambros
University of Michigan, Ann Arbor, Michigan

and

A.T. Hofkamp and J.E. Rooda
Eindhoven University of Technology, Eindhoven, The Netherlands

ABSTRACT

Optimal design problems of large-scale and complex
engineering systems are typically decomposed into a
number of smaller and tractable subproblems. Ana-
Iytical target cascading (ATC) is a methodology for
translating overall system design targets to individ-
ual specifications for the subsystems and components
that make up the system based on a hierarchical par-
tition. We propose to use the y language and soft-
ware tools to specify and implement the coordination
of the analytical target cascading process. ATC isim-
plemented as parallel processes that exchange datavia
channels, which represent the links between the sub-
problems. The process specifications define how indi-
vidual processes communicatewith other coupled pro-
cesses. We show the advantages of i for coordinating
the ATC process by means of an illustrative example,
and demonstrate that different coordination strategies
can be implemented and evaluated efficiently.

1

A key challenge in early product development stages
of complex products is to propagate desirable product
characteristics, defined by product’s specifications (or
targets), to the various subsystems and componentsin
a consistent and efficient manner. Consistency means
that al parts of the designed system should end up
working well together, while efficiency means that it-
erations at later product devel opment stages, which are
costly in time and resources, should be avoided.
Analytical target cascading is amethodol ogy for the
design of large engineering systems at the early prod-
uct development stages (Kim, 2001). First, the de-
sign problem is partitioned into a hierarchical set of
subproblems associated with systems, subsystems, and
components. Design specifications (or targets) are de-
fined at the top level of the multilevel design formula-

INTRODUCTION

1

tion and “ cascaded down” to lower levels. Design sub-
problems are formulated at each level so that compo-
nents, subsystems, and systems are designed to match
the cascaded targets consistent with the overall system
targets. The main benefits of target cascading are re-
ductionin design-cycletime, avoidance of designiter-
ations late in the development process, and increased
likelihood that physical prototypes will be closer to
production quality. Target cascading also facilitates
concurrency in system design, allowing the outsourc-
ing of subsystems and components to suppliers. Tar-
get cascading offers arobust framework for multilevel
design and has been demonstrated (Michelena et al.,
2002) to be convergent under standard convexity and
smoothness assumptions, whereas other similar prob-
lem formulations exhibit convergence difficulties.

The ATC process has been applied successfully to a
wide range of vehicle design applications (Kim et al.,
2000, Kim et al., 2001, Michelena et al., 2001, Kim
et al., 2002). It has also been extended to the design
of product families (Kokkolaraset al., 2002). The key
to the success of the ATC process lies in coordinat-
ing the solution process of the subproblems. Several
coordination strategies are presented in (Michelena et
al., 2002). They recursively solve one subset of two
coupled subproblems at atime. Although they do not
addressthis, their strategies allow the concurrent solu-
tion of subproblems (e.g., at the samelevel of the hier-
archy). For larger decompositions the implementation
of the ATC coordination may become complicated and
prone to errors, even if one refrains from the parallel
solutions of the subproblems.

A more precise description of the ATC coordination,
especialy in regard to concurrency, would be advan-
tageous. Etman et al. (2002) suggest to use a pro-
gramming language founded on concurrency theory
for this purpose. They adopt the x specification lan-

American Institute of Aeronautics and Astronautics

Copyright © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

AlAA 2002-5637

guage (Kleijn and Rooda, 2001; Rooda, 2000) that is
based on concepts of Communicating Sequential Pro-
cesses (CSP) (Hoare, 1985). They show that such a
language enables to model and implement the coordi-
nation of coupled subproblemsin multidisciplinary op-
timization (MDO) including the possibly parallel be-
havior of the subproblems.

This paper proposes the use of y to specify and im-
plement the coordination process of ATC. Our inten-
tion is to demonstrate the advantages of x by evaluat-
ing the performance of alternative coordination strate-
gies for a multilevel target cascading problem. The
paper is organized as follows. The mathematical for-
mulation of the analytical target cascading process is
given in the next section. The coordination specifi-
cation of ATC is put into the x perspective in Sec-
tion 3. An illustrative example is presented in Sec-
tion 4, where different coordination strategies are im-
plemented by means of y and evaluated. Conclusions
aredrawnin Section 5.

2 TARGET CASCADING FORMULATION
Theanalytical target cascading processis presented us-
ing agenera notation, from which the design problem
for each element (i.e., system, subsystem, or compo-
nent) can be recovered as a specia case. The formu-
lation allows for design specifications to be introduced
not only at thetop level for the overall product, but also
“locally” to account for individual system, subsystem,
and/or component requirements. To represent the hi-
erarchy of the partitioned design problem, the set E;
is defined at each level i, in which all the elements of
the level are included. For each element j in the set
Ei, the set of children Cj; is defined, which includes
the elements of the set E;_; that are children of the el-
ement. An illustrative example is presented on Figure
1. At level i = 1 of the partitioned problem we have
E1 = {B, C}, and for element “B” on that level we
haveC;g = {D, E}. There are two types of responses:

Elements j

Levels i

._.
Il
—

i=2 [j=p] [j=e] [i=F] [i=6]

Figure 1: Example of hierarchically partitioned design
problem

responses R linked to “local” targets (e.g., at the top
level), and responses R linked to “cascaded” targets,
i.e., linking two successive levels in the problem hi-

erarchy. The design problem P;j corresponding to the
j-th element at the i-th level is formulated as follows:

n;Jiijl’lllfiij —Tijll +[IRi; — R + [lyij — il

+ef} + 8]

subject to > IR nk— Rl < €}
keCij

> Vit Yl <8 (@)

keCij

gij (Rij,Xij,Yij) <0,

hij(Rij,Xij,Yij) =0,

~ ~ t ~ ~
where Rjj = [R}j,R}J} =Tij(Ritnky - R, »

Xij,Yij), Cij = {Ki,...Kg; }, and cij is the number of
child elements. Note that an element’s response de-
pends on the element’s design variables as well as on
its children’s responses. In the above problem formu-
lation,

Yoo — |yt oyt owt t t
= {X”’yii’y(i+1>k1"“>y(i+1>kqj’R(i+1)k17"'>
t
At R Y| i i
R(i+1)kcij ,eij,eij} is the vector of all optimiza-
tion variables,

e Xij isthe vector of local design variables, that is,
variables exclusively associated with the element,

e Yij is the vector of linking design variables, that
is, variablesassociated with two or more el ements
that share the same parent,

e Rjj isthe vector of all responses,

e £} isthe tolerance optimization variable for coor-
dinating the responses of the children of the ele-
ment,

o & isthetolerance optimization variablefor coor-
dinating the linking design variables of the chil-
dren of the element,

e Tij isthe vector of local target values,

e RY is the vector of response values cascaded
down to the element fromits parent,

e yi} isthe vector of linking design variable values
cascaded down to the element from its parent,

. IQ'G Fk is the vector of response values cascaded

up to the element from its k-th child,

. ylﬁ+1)k isthevector of linking design variableval-
ues cascaded up to the element from itsk-th child,
e gij and h;j are vector functions representing in-

equality and equality design constraints, respec-
tively.

American Institute of Aeronautics and Astronautics

3 ATC COORDINATION SPECIFICATION

Analytical target cascading requires the iterative solu-
tion of the optimization subproblems according to the
hierarchical structure of the decomposed problem. In
this iterative coordination process the subproblem tar-
gets and design variables need to be found such that
they are consistent with respect to the top level objec-
tives and the coupling constraints of the subproblems.

Severa different iterative coordination strategies
may lead a consistent system design. Michelena et
al. (2002) proved that a class of ATC coordination
strategies are guaranteed to converge under standard
smoothness and convexity assumptions. However, it is
not known apriori which strategy is the most efficient.
This may even be problem dependent. In this respect
one may also want to distinguish between the number
of subproblemsthat can be solved in paralldl. 1t would
be advantageous to have a coordination language with
a clear concept of concurrency that enables rapid im-
plementation and investigation of alternative ATC co-
ordination strategies. The purpose of the present pa-
per isto demonstrate this by means of the specification
language x, (see Etman et al. (2002)).

This section explains how the ATC coordination can
be specified as a coupled system of x processes. A
process will be instantiated for each design problem
Pij. This process specifies the sequence of statements
to exchange data with its parents and children, and to
carry out a numerical optimization of subproblem Pj;.
In the general form of Section 2, such an ATC sub-
problem process receives target and constraint values
from its parent and children, respectively, and returns
updates after the associated optimization problem has
been solved. The exact process specification for prob-
lem P, depends on the coordination schemethat isem-
ployed to solve the overall ATC problem.

3.1 Downwards-only sequential coordination

Consider first a coordination scheme that solves op-
timization subproblems iteratively in a downwards
level-by-level sequence. That is, optimization sub-
problems are solved subsequently in increasing level
order: i =0,1,...,N,0,...,N etc., where i = 0 and
i = N represent top and bottom level, respectively.

In the downwards-only coordination, the top-level
process Ciop for problem Pg (index j is dropped at
the top level since there is only one element) starts
by carrying out an optimization to determine response
and linking variable targets that will be cascaded to its
children. At the first iteration, Ciop USES SOMeE USEr-
providedinitial guess of the response and linking vari-
ablevaluesregularly passed up fromits children. After
Ciop has cascaded its targets, it waits until it receives
updated values of children response and linking vari-
ables. It then carries out a new optimization, compares

3

the new vector of optimization variables to the previ-
ous one, examines convergence of the children pro-
cesses, and either converges or reiterates.

A second type of process is needed for the
intermediate-level subproblems Pj; that have both
a parent and one or more children, i.e, i €
1,..,N—1. For the downwards-only scheme, such an
intermediate-level process Cyig carries out the follow-
ing sequence of steps: Receive targets from the parent;
carry out an optimization (at the first iteration use an
initial guess for the children response and linking val-
ues); cascade determined targets to the children; wait
until all the children have sent updated response and
linking values; and finally pass updated values to the
parent.

Thirdly, we need bottom-level processes Cyy; for the
bottom-level subproblemsPy;j. A bottom-level process
waitsuntil it receivestargetsfrom its parent, carriesout
an optimization, and returns updated values.

The downwards-only coordination scheme for a
decomposed problem as depicted in Figure 1 is
specified simply by coupling instances of top-level,
intermediate-level, and bottom-level processes. No ad-
ditional process is needed to control the overall coor-
dination. Initialy, all processes are waiting to receive
target data from their parents, except for the top-level
process. Thetop-level process carries out an optimiza-
tion and cascades targets down to its children. The
intermediate-level processes may carry out their opti-
mizations in parallel; all the other processes are wait-
ing to receive new data. The computed targets are cas-
caded down. This proceeds until the bottom-level pro-
cesses have been reached and have carried out their
optimizations. The bottom-level processes pass up up-
dated response and linking target values to their par-
ents, which update their parents without carrying out
any new optimizations. In this manner, updated target
values are rebalanced up level-by-level until the top-
level processisfinaly reached. If convergence has not
occurred, anew ATC iteration starts.

Note that the tree of processes does not need to
be symmetrical. The same coordination arises if one
branch has morelevel sthan another branch. In casethe
ATC partition consists of just two levels, the coordina-
tion specification contains only top-level and bottom-
level process instances.

Finally, arepository process Risintroduced to facil-
itate the monitoring of all processes during the ATC it-
erations. The subproblem processes send updated val-
ues of their optimization variables to this process R.
These optimization variable values will be stored by
R. After completion of the ATC, the complete itera-
tion history is available from R and may be used for
further analysis.

American Institute of Aeronautics and Astronautics

3.2 Déefinition of processes

The yx specifications of the processes in the
downwards-only sequential coordination scheme are
presented below. The following variable types are in-
troduced:

type VX =red™ (x-D)
,vr =real™
vy o =red™
Vys = vy'™
,VIS =vrms

,vxbtop = x.vx

X YS.VYS X IS.VIs

x epsr.real x epsy.real
,Vxbmid= x.vx x y.vy

X YS.VYSX IS.Vrs

x epsr.real x epsy.real
,vxbbot = X.vX x y.vy
, par = wr.real x wy.real

X ns.nat

X nx.nat x ny.nat

X nys.nat x nrs.nat

Herein, types vx, vr, and vy denote vector arrays of
reals of fixed (maximum) length mx, my, and nr, re-
spectively; yx is a strongly typed language requiring
that the dimensions of arraysare known at compilation
time (Etman et al., 2002). Types vys and vrs are ma-
trix arrays of sizesms x mr and ms x my, respectively.
Types vxbtop, vxbmid, and vxbbot are tuples contain-
ing two or more data-elements of typevx, vy, vys, vrs,
or real. These three tuple types match the optimiza-
tion variables of the top-level, intermediate-level, and
bottom-level design problems, respectively. The ele-
mentsin the tuples can be accessed through their iden-
tifiers defined before the dot operator. Finaly, type
par is defined as a tuple of reals and nats to store the
scaling values used in the optimization problem of the
process, the number of children of the process, and the
actual array dimensions used in the process.

Using this type definitions, the y specification of the
top-level processCyqp is:

4

proc Ctop(f : (vxbtop, vr,vrs,vys, par)
— vxbtop x vr
b (Ivr x vy)™s
,C 1 (vr x vy x boal)™
,e:lvxbtop, s :!void
, T2 vr,xb0: vxbtop, p: par
,tol : real)
[[r:vr,rLs:vrsylLs: vys
,Xb : vxbtop, cvrg : bool, cvrgs : bool ™
,i,n:na
| cvrg := false;rLs:= xb0.rs;yLs := xb0.ys
;n:=0
; (Xb,r) := f(xb0,T,rLs,yLs, p)
;%[CVrg A n < maxiter
—n:=n+1
;=0
;i < p.ns
— bl ((xb.rs).i, (xb.ys).i)
i=i+1
]

i:=0
;i < p.ns
— c.i?(rLs.i,yLs.i,cvrgs.i)
=i+l

(-2

]
; (Xb,r) := f(xb0, T,rLs,yLs, p)
;elxb
; cvrg := topnorm(xb0, xb, p) < tol
; cvrg := checkevrg(cvrg, cvrgs, p.ns)
;Xb0 = xb
]
;8!

]

The first element f of the parameter list of Ciop de-
fines the Matlab function that will carry out the opti-
mization. Parameters b and ¢ represent the send and
receive port arrays, respectively, through which data
is sent to and received from the children of Cyp. The
fourth parameter e is a send port to repository R to up-
date the coordination history; the fifth parameter sisa
synchronization port to R to notify when the ATC co-
ordination has been finished. The last four parameters
are the top-level response targets, the initial values of
the optimization variables, the subproblem parameter
values, and the convergencetolerance, respectively.
Thefollowing local variables are introduced in Cyop:
a response vector r, matrices rLs and yLs of response
target values and linking variabl e target values, respec-
tively, that have been passed up from the children, a
tuple of optimization variables xb, a boolean variable
cvrg, aboolean array cvrgs, and two natural variables
i and n. Cyop starts by carrying out an initial, one-time
only optimization. The following sequence of tasks
is then repeated:; cascading targets, receiving updated

American Institute of Aeronautics and Astronautics

target values, carrying out optimization, checking con-
vergence, and updating optimization variables.

Ciop isdeclaredlocally convergedif the square of the
norm of the difference between previousand current it-
eratesis smaller than some predefined valuetal, i.e., if
XtV — x("=1)]|2 < tol. Note that the vector of opti-
mization variables x has different instantiations for the
top, intermediate, and bottom levels. Cyqp is declared
globally converged if convergence has occurred for the
“local” optimization problem aswell asfor all the chil-
dren optimization problems. The function checkcvrg
returnstrue if thisisthe case. To thisend, the children
pass up their convergence status in addition to the up-
dated response and linking variable values. Cyop stores
the convergence status of its children in the boolean
array cvrgs. Thefunctionstopnormand checkevrg are
specified as y functions. The ATC process is termi-
nated when Cyop has converged or the maximum num-
ber of iterations has been reached. A synchronization
is sent to repository process R to acknowledge this.

The intermediate-level process Crig is specified in a
similar way:

proc Cmid(f : (vxbmid,vr,vy,vrs,vys, par)
— vxbmid x vr
,arNrx vy
b (lvr x vy)™
,C 1 (vr x vy x boal)™
,d:lvr x vy x bool
,e:lvxbmid, xb0 : vxbmid, p : par
,tol : real)
[r,rUS:vr,rLs: vrsyUS: vy,yLs: vys
,Xb : vxbmid, cvrg : bool, cvrgs: bool ™,i : nat
|rLs:= xb0.rs;yLs:= xb0.ys
;%[true
—a?(rusyus)
; (xb,r) := f(xb0,rUS yUSrLs,yLs, p)
;elxb
;1:=0
;x[i < p.ns
— bl ((xb.rs).i, (xb.ys).i)
ii=i+1
]

;1:=0
;x[i < p.ns
—> C.i?(rLs.i,yLs.,cvrgs.i)
ii=i+1
]

; evrg := midnorm(xb0, xb, p) < tol

; cvrg := checkevrg(cvrg, cvrgs, p.ns)
;xb0:=xb

;dl{r,xb.y,cvrg)

(x-3)

5

Cnig has four communication ports: a and d are
receive and sent ports coupled to the parent; b and
¢ are receive and sent port arrays (bundles), the el-
ements of which are coupled to the children through
channels. Cyq receives response and linking variable
targets through port a; cascades targets to its children
through ports b.i; receives updated response and link-
ing variable values as well as the status of conver-
gence of children-problems through ports c.i; and fi-
nally passes updated values and convergence status to
its parent through port d. This sequence is repeated
indefinitely. After Cqig has received the target values
cascaded down from its parent, it carries out the local
optimization defined by function f, using initial op-
timization variable values xb0 and subsystem param-
eters p. After the convergence status of the children
has been received, the local and overall convergence
of Ciig is determined as described for Cyop; however, a
modified norm function (midnorm) isused. T

The bottom-level process Cy; is specified next. Cpgt
receives targets through port a, carries out the opti-
mization defined by f, and passes up updated values
and convergence status through port d:

proc Chbot(f : (vxbbot, vr,vy, par)

— vxbbot x vr
,a:rxvy.d:lvrx vy x bool
,e:lvxbbot
,Xb0: vxbbot, p: par,tol : real) =

[r,rUS: vr,yUS: vy,xb : vxbbot, cvrg : bool
| %[true
—a?(rusyus

L (xb,r) = f(xb0,rUS yUS p)

;elxb

; cvrg := botnorm(xb0, xb, p) < tol

;Xb0:=xb

;dl(r,xb.y, cvrg)

(x-4)

Finally, there is a repository process R that collects
optimization results every time a problem is solved,
and storesthem in lists:

American Institute of Aeronautics and Astronautics

proc R(t :vxbtop
,m: (vxbmid)"™ b : (2vxbbot)™
,S:?void,tol,sca: rea)=
[vt : vxbtop,td : vxbtop*
,vm: vxbmid,md : (vxbmid*)"™
,Vb : vxbbot, bd : (vxbbot*)™ b : bool
|td:=[];md := ini_mid(); bd := ini_bot()
;[true;tvt
—td:=td+ + [vi]
[lj:nat<« O0..nm: true;m.jvm
—smd.j :=md.j + + [vm|
[lj:nat<« O.nb:true;b.jb
—bd.j:=bd.j + + [vb]
[true;s?
— b :=pp(td, md, bd, tol, sca)
]
I

R has ports to all subproblem processes in the coor-
dination. R has three different port parameters since
the optimization variables tuple differs for the top-
level, intermediate-level, and bottom-level processes,
respectively. Additionally we have a synchronization
port to the top-level proces for the acknowledgement
of the ATC finish. Thekey statement of Risarepetitive
selective waiting statement. The repetitive selective
waiting statement waits until a new iteration update is
received from one of the subproblem processes or until
a synchronization is received from the top-level pro-
cess. R stores the iteration updates of the subproblems
in seperate lists designated to each of the processes. If
the synchronization communication is carried out, the
lists of the subproblemsare post-processed by function
pp for inspection of the ATC iteration history.

(x-5)

3.3 Alternative coordination schemes

Additional coordination schemes can be obtained by
modifying dlightly the specifications of the subprob-
lem processes. For example, a downwards-upwards
sequential coordination scheme (i = 0,1,...,N —
ILN,N—1,...,10, etc.) is obtained by simply insert-
ing theline

;(xb,ry := f(xb0,rUS yUSrLs yLs, p)
after the statement

*[i < p.ns

— C.i?(rLs.i,yLs.i,cvrgs.i)
=i+l
]

in the Cig process specification (y-3). By doing this,
intermediate-level processes carry out an additional

optimization every time updated values are rebalanced
up.

Michelena et al. (2002) consider nested coordina-
tion schemes. For example, the nested coordination
that correspondsto the scheme depicted in Figure 2, is

Supersystem

Subsystem

Figure 2: Top-down nested coordination.

obtained by simply inserting an iteration loop between
the receive and send statements with respect to the
parent-related communication. In this manner, com-
munications with the children are nested with respect
to communications with the parent. The repetition
statement isinserted into (y-3) asfollows.

;%[true
—a?(rusyus
;%[CVrgA n < maxiter
—n:=n+1
; (Xb,r) 1=
f(xb0,rUS yUSrLs,yLs, p)

:xXb0:=xb

]
;dl(r,xb.y,cvrg)

4 EXAMPLE

We will now demonstrate the implementation of dif-
ferent coordination strategies using the ¢ language on
a simple but illustrative analytical optimization prob-
lem.

American Institute of Aeronautics and Astronautics

4.1 Mathematical formulation of example problem

Our example is based on the geometric programming
problem presented in Kim (2001):

min Z+2
-2 —2
sit. 232;2:2‘2‘—1§0; Zg+2226 —-1<0
7
Z+% Z°+ %o
-1<0; =—5——-1<0 (2
Z Z
—2
Z§1+212 1<0, Z§l+2%2_1go

The solution of problem (2) isknown to be equal toz =
[2.843.092.360.76 0.87 2.810.94 0.97 0.87 0.80 1.30
0.84 1.76 1.55]. Kim (2001) decomposed this problem
using the equality constraints as responses within a bi-
level hierarchical structure and demonstrated the ap-
plication of the ATC process. Here, we decomposethe
original problem into three levels as shown in Figure
3; z5 is the linking variable that couples the subprob-
lems of the intermediate level. Note that z11 is alink-

Problem 0

Problem 11 Problem 12
U L U L
R21 RZ] R22 Rzz

Problem 21 Problem 22

Figure 3: Hierarchica structure of decomposed prob-
lem

ing variable coupling the two problems of the bottom
level. The ATC formulation does not allow subprob-
lems to share variables unless they are children of the
same parent. Since the purpose of this exampleis to
illustrate the % implementation of alternative coordi-
nation strategies, we treat z;1 as a parameter using its
known optimal value.

The subproblems are formulated in the next subsec-
tions following the notation presented in Section 2; the
index j isdroppedfor thetop-level problem sincethere
isonly one element.

7

Top-level problem Problem Py isformulated as

min

Ro— Toll +&8+¢6
R11,R12,Y0,€0,6R H H 00

subjectto [lyo— Yl + lyo— Yol <ef (3
IR11 — REy|| + [|R12 — RE,|| < &6,
where Ry = z1, Ri2 '= 2, Yo := 2, Ro =

ro(Ri1,R12) = Z% + Z%, and To = 0. Note that z1, 2,
and zs, correspond to the formulation of the original
problem, and that zs is a linking variable computed at
the problems of the intermediate level and coordinated
at thetop level.

Intermediate-level problems There are two prob-
lems at the intermediate level. Problem Py; is formu-
lated as

min - _ IR11— RY ||+ [lyin—yo || + €5
R21,Y11,X11,€Ty
subject to IRz1—R5 [l <efy, (@)
011(R21,X11,¥11) <0
where Rp1 = 73, Xu = z, Yu = 7z,

Ri1 rir(Ro1,X11,Y11) \/ B+7°+2, ad

gll(R21,x11,y11) = (29:2 + 2421)2.32 — 1. Problem P2 is
stated as

min [[R12 — RE,|| + [ly12 — Yo Il + €55
Ro2.Y12. X125,
subject to IRz2—R5[<efy, (5)
012(R22,X12,¥12) <0
where Ry = 7, Xwi = 77, Y = 7,
Rz = ri(Ro,X12,Y12) = \/Z§+Z§+ZZ' and

012(Ra2,X12,Y12) = (Z+ 259752 — 1.

Bottom-level problems There are two problems at
the bottom level. Problem P,; is given by

min ||Rz—RY)]|
X21

subjectto gz1(X21) <0 (6)
where Xo1 = [23,29,210], p = 1.3(= z11), Ra1 =
ro1(Xo1) = \/Zizg +25%+ ;¢ + p?, and

(Z+B)p2-1
Z+Z)p2-1

O21(X21) = [(

The formulation of problem Py, is
min IR22 — R, ||
X22

subject to gz2(x22) <0

)

American Institute of Aeronautics and Astronautics

where Xo2 := [Z12,213,214], P = 1.3(= z11), Rz =

r22(X22) = \/Zﬁz + 25+ 22, + p?, and

(P+25)75 -1)
(P+Z)zs -1

4.2 Implementation of coordination using

The y implementation of the three-level ATC exam-
ple requires a number of processes as specified in
Section 3. We assign the following constant values
first:

O22(X22) = [

const mx ‘nat =3 (x-6)

,mr ‘nat =1

,my ‘nat =1

,ms ‘nat =2

,hm ‘nat =2

,nb ‘nat =2

,maxiter: nat = 1000

,nan :rea = —9.9e99

where mx is the maximum length of design variable ar-
rays (there are maximum three local design variables
in any of the subproblems), mr isthe maximum length
of response variable arrays, my is the maximum length
of linking variable arrays, ms is the maximum num-
ber of children in any subproblem (2 in the top-level
problem), nmis the number of intermediate-level pro-
cesses (P11 and Pp2), and nb is the number of bottom-
level processes (P.; and P,2). Moreover, we define the
maximum number of iterations maxiter and a “not-a-
number” value nan that is used for empty entriesin the
fixed-length arrays.

The system that couples the processes is instanti-
ated according to Figure 4. The top-level problem

Figure 4: Processes and channels in the three-level
ATC example.

Po requires a process instantiation of Cyop. Each of
the two children of Pg requires an instantiation of the
intermediate-level processCyig, representing problems
P13 and P12. Thebottom-level subproblemsP,1 and Py

8

are represented by two process instantiations of Cpt.
Finally, repository process R needs to be instantiated.

These six processes have to be coupled to each other
by channels of appropriate data type. The channel
names are defined in Figure 4. For example, Cyop Sends
data of type vr x vy to each of its children via channel
array a, and receives data of type vr x vy x bool from
its children via channel array b. Ciop shares two ad-
ditional synchronization send channelswith repository
R: one to send iteration updates, and one to acknow!-
edge the completion of the ATC coordination. The
intermediate-level process Cpg representing design
problem Py; receives data of type vr x vy from Cyop via
channel a.0 and sends data of type vr x vy x bool via
channel b.0. The Cp,iq process representing Py1 also
communicates through channels ¢.0 and d.0 with the
Chot process that representsits child P,1. Problems Py;
and P, are represented in a similar fashion. The two
Cmig processes and the two Cyy; processes send updates
to repository R through channel arraysh and k, respec-
tively.

Note that channelsa to f are channel arrays of size
ns = 2. However, P11 has only one child, and there-
fore only the first elements of the channel arrays c and
d are used, i.e. ¢.0 and d.0. The same holds for Py,
and channel arrays e and f. The constant ns cannot be
defined as a separate parameter in the process defini-
tion; isastrongly typed language and does not allow
(channel) array type specifications of variable size. At
present, . aso does not allow to specify the actual ar-
ray sizes used in a process upon instantiation of the
processin a system.

The subproblem optimizations are carried out using
the Matlab optimization toolbox function fmincon,
whichis animplementation of the sequential quadratic
programming (SQP) algorithm. We use the square of
the 12-norm as the metric of the deviation terms in the
objective and constraints of Problem (1). The func-
tion calls are realized by means of a y-python inter-
face (Hofkamp, 2001), developed such that can call
Python functions like native , functions. Python is a
scripting language designed to glue pieces of software
to each other. This interface can be used to link ¢ with
any other desired software package. In our case, we
have used pymat to coupley through Python with Mat-
lab (see Etman et al., 2002).

The system specification is given below:

American Institute of Aeronautics and Astronautics

syst S(tol,sca: real) =

[a,c,e: (—vrxvy)™

,b,d, f: (—vrx vy x boal)™
,g: —vxbtop,h: (—vxbmid)"™
.k : (—vxbbot)™,s: —void

| Ctop(PO, a,b,g,s,(0.0)

,{{nan, nan, nan)
((10),(1.0))
,((1.0),(1.0)),0.0,0.0)

) <$a7 g:a7 27 07 07 17 1> 7t0|)

|| Cmid(P11,a.0,c,d,b.0,h.0

,{(1.0,nan,nany , (1.0)

((nan) , (nan))
{(1.0), (nan)),0.0,0.0)

) <$a'7 $a7 17 17 17 07 1> 7t0|)

[[Cmid(P12,a.1,e,f,b.1 h.1

,{(1.0,nan,nany , (1.0)
((nan) , (nan))

{((1.0), (nan)),0.0,0.0)

) <$a'7 $a7 17 17 17 07 1> 7t0|)

|| Cbot(P21,c.0,d.0,k.0

,{(1.0,1.0,1.0) , (nan))

,{(nan,nan,0,3,0,0,0),tol)

|| Cbot(P22,e.0, f.0,k.1

,{(1.0,1.0,1.0) , (nan))

,{(nan,nan,0,3,0,0,0),tol)

[|R(g,h,k, s, tol, sca)
[

All processes in system Sare instantiated with the ap-
propriate channels and parameters. All optimization
variables in the tuple xb0 of processes Ciqp, Ciid, and
Chot aregiven aninitial value of one, except for the e ﬁ
and siyj variables which areinitialized at zero. The pa-
rameter array p containsthe scaling parameter valuew
for the € terms in the objective function of problems
Py, P11, and Py, and the number of children, local de-
sign variables, linking variables, and children response
and linking variable target values (assumed equal for
all children) for each process Ciop, Cig, and Cyot . The
¥, specification ends with:

x-7)

xper (tol,sca: rea) = [S(tol,sca)] (%-8)
denoting that after compilation a system execution of
S can be carried with tolerance tol and scaling w as
input.

4.3 Results

We have implemented three coordination schemes for
our three-level target cascading problem. Denoting
top, intermediate, and bottom levels with O, 1, and 2,
respectively, the sequences are

9

Scheme | (downwardsonly): 0 -1—2—0
Schemell (downwards/upwards): 0 +1—2—1—0
Schemelll (nested): 0 -1—-2—+1—2...0

It has been observed that scaling the € terms in
the objective of problems 3 - 5 has an effect on the
convergence behavior of the ATC process. Therefore,
numerical experiments have been performed with
different values for the termination criterion tolerance
and scaling parameter sca (same for al € terms). The
results are summarized in Tables 1 - 3. There are two
rows for each scaling parameter value; in the top row
we report accuracy of obtained results, represented by
the sgquare of the I>-norm of the difference between
obtained and exact solution. In the bottom row, and
for schemes| and I1, we report the number of required
target cascading iterations. The computational cost
can then be determined for each scheme according
to the following considerations. For scheme |, the
top-level problem is solved n+ 1 times, where n is
the number of target cascading iterations, and each
intermediate-level and bottom-level problemis solved
n times. Since intermediate-level and bottom-level
problems are solved in parallel, the tota computa-
tional cost in terms of solved optimization problems
is thereforen+1+n+n=3n+ 1 For scheme Il,
the top level problem is solved n+ 1 times, each
intermediate-level problem is solved 2n times, and
each bottom-level problem is solved n times; total
cost equals to 4n+ 1. For scheme Il1, the bottom
row includes three numbers: starting from the left,
these are the number of times n; that the top-level
problem has been solved, and the numbers of times
n; and n; that the left and right intermediate-level and
bottom-level problems have been solved, respectively.
Note that for each side of the tree (Ieft and right), the
number of intermediate-level problemsis equal to the
number of solved bottom-level problems. The total
cost is then given by nt + 2max(ny, ny).

The variation of accuracy and computational cost
(as defined above) for each coordination schemeis de-
picted in Figures 5 and 6, respectively, for the termi-
nation tolerance value of 10~°. These plots ook quite
similar for tol = 10-8. However, for tol = 10~ the
behavior is quite different, as can be seen in Figures 7
and 8.

Although this example is quite smple and serves,,
we can draw some interesting conclusions: For low
tolerance values, the scaling parameter yielding the
highest accuracy differs between scheme | (1e4) and
schemes I and Il (1e6). For high tolerance values,
the scaling parameter yielding the highest accuracy is
the same for al schemes (1e4). The accuracy of the
obtained results does not improve dramatically as the

American Institute of Aeronautics and Astronautics

Table 1: Results for coordination scheme |

| sca | Termination tolerance
1le-6 1le-8 1le-10
1le2 | 0.87526 | 0.87532 | 0.87565
9 10 17
1e3 | 0.03840 | 0.03773 | 0.03720
20 31 98
1le4 | 0.00597 | 0.00196 | 0.00151
45 129 295
1e5 | 0.02541 | 0.02486 | 0.02442
8 16 76
1e6 | 0.02602 | 0.02597 | 0.02596
8 12 15
le7 | 0.02567 | 0.02564 | 0.02563
9 11 14
1e8 | 0.02595 | 0.02595 | 0.02592
9 10 16

Table 2: Results for coordination schemell|

| sca | Termination tolerance
1le-6 1e-8 1e-10
1e2 | 0.87513 | 0.87543 | 0.87541
6 9 15
1e3 | 0.03825 | 0.03772 | 0.03725
21 32 149
le4 | 0.03204 | 0.03204 | 0.00150
6 6 313
1e5 | 0.03371 | 0.03326 | 0.03246
9 17 70
1e6 | 0.00863 | 0.00839 | 0.00838
11 16 20
le7 | 0.01105 | 0.00849 | 0.00849
7 18 20
1e8 | 0.04686 | 0.04686 | 0.00870
3 3 18

10

Table 3: Results for coordination scheme 1
| sca | Termination tolerance |
le-6 le-8 1e-10
1e2 | 0.87507 0.87559 0.87552
71112 112023 12 45 46
1e3 | 0.03825 0.03798 0.03780
224142 | 265149 | 2710556
le4 | 0.03205 | 0.03205 0.00712
71212 | 4919197 61112
1e5 | 0.01770 0.00932 0.03418
61112 101222 1492 39
1e6 | 0.00998 0.00839 0.03131
111320 | 182036 618517
1le7 | 0.03014 | 0.03102 0.03394
91417 133325 | 1412146
1e8 | 0.04686 | 0.04686 0.02650
466 466 64617

Figure 5: Accuracy of results obtained for tol = 10—

tolerance value increases for al three schemes, espe-
cially considering the substantial increase in computa-
tional cost. Overall, although it seems that scheme |
provides the most accurate results, scheme 111 is much
more efficient.

5 CONCLUSIONS

The key to the success of the ATC process lies in the
coordination. It is advantageous to have a language
that enables precise and compact specification of the
ATC coordination. The ¢ language has been used to
specify and implement alternative coordination strate-
giesof the ATC process. Top-level, intermediate-level,
and bottom-level processes have been identified for
this purpose. Once a specific coordination strategy was
implemented, only limited modifications (confined to
the intermediate-level process) were required to de-
fine additional coordinations. Moreover, larger prob-
lems can be treated readily by simply adding neces-
sary instantiations of the defined processes. The ex-
ample demonstrated that the % language is well-suited

American Institute of Aeronautics and Astronautics

Figure 7: Accuracy of results obtained for tol = 10~%°

to specify and implement the ATC coordination, and
enables rapid investigation of coordination strategies.
The reader should have in mind that the usefulness of
. has been utilized in a small degree only due to the
simplicity of the example. The specification of ATC as
parallel processes may lead to new ways of thinkingin
regard to ATC coordination schemes.

REFERENCES
Kim, H.M., Michelena, N.F,, Papalambros, PY., and
Jiang, T., 2000, “ Target cascading in optimal system
design”. Proceedings of the 26th Design Automation
Conference, Baltimore, MD, paper no. DAC-14265.

Kim, H.M., 2001, Target Cascading in Optimal Sys-
tem Design, PhD thesis, The University of Michi-
gan, Ann Arbor, Michigan.

Kim, H.M., Michelena, N.F., Papalambros, PY., and
Jiang, T., 2001, “Analytical target cascading in au-
tomotive vehicle design”. Proceedings of the 27th
Design Automation Conference, Pittsburgh, PA, pa
per no. DAC-21079.

Kim, H.M., Kokkolaras, M., Louca, L.S., Delagram-
matikas, G.J., Michelena, N.F, Filipi, Z.S., Pa
paambros, PY., Stein, JL., and Assanis, D.N.,
2002, “ Target cascading in vehicleredesign: A class

11

tol=1e-10

12001

1000

Figure 8: Computational cost for tol = 1010

VI truck study”. International Journal of \ehicle
Design, 29(3):1-27.

Kokkolaras, M., Fellini, R., Kim, H.M., Michelena,
N.F., and Papalambros, PY., 2002, “ Extension of the
target cascading formulation to the design of prod-
uct families’, Journal of Sructural and Multidisci-
plinary Optimization, to appear.

Michelena, N.F.,, Kokkolaras, M., Louca, L.S., Lin
C.C., Jung D., Filipi, Z.S., Assanis, D.N., Papalam-
bros, PY., Peng, H, Stein, J.L., and Feury, M., 2001,
“Design of an advanced heavy tactical truck: atar-
get cascading case study ", SAE International Truck
& Bus Meeting and Exhibition, Chicago, IL, paper
no. 2001-01-2793.

Michelena, N., and Park, H., and Papalambros, P,
2002, “Convergence properties of analytical target
cascading”, 9th AIAA/ISSMO Symposium on Mul-
tidisciplinary Analysis and Optimization, Atlanta,
GA, paper no. AIAA-2002-5506.

Etman, L.F.P, Hofkamp, A.T., Rooda, J.E., Kokko-
laras, M., and Papalambros, PY. 2002, “ Coordina-
tion specification for distributed optimal system de-
sign”, 9th AIAA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, Atlanta, GA, pa-
per no. AIAA-2002-5410.

Hoare, C.A.R., 1985: Communicating Sequential Pro-
cesses, Prentice-Hall.

Kleijn, JJ.T., and Rooda. J.E. 2001, “x Manua”, Sys-
tems Engineering Group, Eindhoven University of
Technology, http://se.wth.tue.nl.

Rooda. JE. 2000, “Modeling Industria Sys
tems’, lecture notes, Systems Engineering
Group, Eindhoven University of Technology,
http://se.wtb.tue.nl.

Hofkamp, A.T. 2001: “Python from %", note, Systems
Engineering Group, Eindhoven University of Tech-
nology, http://se.wtb.tue.nl.

American Institute of Aeronautics and Astronautics

