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Localized Vibrations of Disordered Multispan Beams:
Theory and Experiment
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University of Michigan, Ann Arbor, Michigan

and
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The localization of the free modes of vibration of disordered multispan beams is investigated, both
theoretically and experimentally. It is shown that small deviations of the span lengths from an ideal value may
have drastic effects on the dynamics of the system. Emphasis is placed on the development of a perturbation
method that allows one to obtain the strongly localized modes of vibration of the disordered system without a
global eigenvalue analysis of the entire system. Such a perturbation analysis is cost-effective and accurate. More
importantly, it provides physical insight into the localization phenomenon, and allows one to formulate a
criterion that predicts the occurrence of strongly localized modes. Also, an experiment is described which has
been carried out to verify the existence of localized modes for disordered two-span beams. Theoretical and ex-
perimental results are compared in detail and excellent agreement is found, thus confirming the existence of
localized modes for such weakly coupled, weakly disordered structural systems.
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Nomenclature
generalized coordinate
/th modal amplitude
peak deflection ratio
torsional spring constant
2cl/EI
unit imaginary complex number
length of beam
number of component modes of Rayleigh-Ritz
procedure
Landau notation, "of the order of"
pass-band width of tuned system foryth group
of modes

spread in natural frequencies for jib. group of
modes

kinetic energy
strain energy
transverse deflection
space dependent part of transverse deflection
distance along beam
x/l
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Lagrange multipliers
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first order perturbation of 0
length deviation
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= angular deflection of torsional spring
= V2//M/ sinQVx//), /th component mode
= (iir)2\/El/ml4, /th single-span beam frequency
= w//V'El/ml4 = (/V)2

= natural frequency of two-span beam
= Q/\I El/ml*
= unperturbed value of 0
= first and second natural frequencies of yth group

of modes
= d/df
= d/dx

I. Introduction

T HE presence of irregularities in nominally periodic
structures may localize the modes of free vibration and

inhibit the propagation of vibration within the structure.
This phenomenon, referred to as normal mode localization,
was first predicted by Anderson in a famous paper1 and has
excited considerable interest in solid-state physics.2'4 Also,
research studies in the field of structural dynamics5'13 have
shown that some nearly periodic structures are highly sen-
sitive to irregularities and may exhibit localized modes of
vibration. These studies determined two categories of struc-
tural systems susceptible to localization:

1) Systems consisting of coupled, similar but slightly dis-
ordered subsystems. Typical examples include chains of
coupled pendula5'8 and jet engine rotors,9 for which the
physical properties vary slightly from pendulum to pendulum
and from blade to blade, respectively. It was shown that
strong localization occurs when the coupling between sub-
systems is small and that localization becomes more pro-
nounced as the coupling decreases.

2) Structures with irregularly spaced constraints. Ex-
amples include a vibrating string with irregularly spaced
masses attached6 and a beam or plate constrained at ir-
regular intervals.7

When strong localization occurs, small irregularities usually
due to manufacturing and material tolerances result in
dramatic changes in the dynamics of the system. Since
neglecting these irregularities may lead to completely er-
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roneous results, it is particularly important to establish
criteria capable of predicting the occurrence of localization.

In this paper, the strong localization of the modes of
vibration of multispan beams is investigated theoretically
and experimentally. Beams constrained at supposedly regular
intervals are frequently encountered in structural analysis.
Among numerous applications, aircraft fuselages and wings
can be modeled by periodic beams. Other examples are
building frames and bridges. These "periodic" structures are
usually investigated by assuming ideal regularity, even
though small deviations of the span lengths from an ideal
value may have important effects on the free and forced
response of the system.

The modes of vibration of beams simply supported at
regular intervals have been studied extensively in the research
literature.14'17 Particularly, one of the first and most impor-
tant contributions was made in a well-known paper by
Miles.14 Moreover, Lin and Yang18 investigated the effect of
random deviations of the span lengths on the free modes of
a multispan beam resting on simple supports, and showed
that irregularities had a significant effect on the mode
shapes. Nevertheless, their work was not concerned with the
study of localization. Miles14 showed that the natural fre-
quencies of periodic multispan beams are clustered in an in-
finite number of groups, or bands, with n frequencies in
each band, where n is the number of spans. If, in addition to
a zero deflection, torsional springs exert restoring moments
at the n— 1 intermediate constraint locations, then the width
of the frequency bands diminishes as the spring constant in-
creases. In the limit as the spring constant c goes to infinity,
the beam becomes clamped at the constraint locations, and
the width of the frequency bands goes to zero.

The inverse of the torsional spring constant may be viewed
as a coupling parameter between spans. As l/c-*0, the spans
are "decoupled" because no moment can be transmitted
from one span to another. For c = 0, the beam is simply sup-
ported at the constraint locations, and the spans are strongly
"coupled," since no restoring moment is exerted. Hence,
depending on the value of c, the ft-span beam can be regarded
as a strongly or weakly coupled set of ^-component systems.
Moreover, the multispan beam is ordered if all the spans
have the same length, and can be rendered disordered by
considering slightly irregular constraint locations. Hence for
large values of the spring constant and irregular spacing be-
tween supports, a multispan beam can be regarded as a
disordered chain of weakly coupled subsystems, where each
subsystem is a span. From the theory of the mode localiza-
tion phenomenon,5'8'11 the free modes of vibration of such a
system are susceptible to becoming strongly localized.

In Sec. II of the present paper, the modes of transverse
vibration of a disordered two-span beam are investigated
theoretically. It is shown that, under certain conditions,
strong localization occurs. The degree of localization is
dependent upon two parameters: 1) the deviation of the con-
straint location from the middle of the beam and 2) the value
of the stiffness constant of the spring which exerts a restor-
ing moment at the constraint location. The modes are deter-
mined by using a Rayleigh-Ritz formulation with the con-
straints conditions enforced by means of Lagrange
multipliers.19 The method is described in subsection A. In
subsection B, classical and modified perturbation methods
are presented for the analysis of nonlocalized and localized
modes, respectively. These perturbation methods provide
physical insight into the mechanisms of mode localization. In
subsection C results are presented and discussed. These
results can be readily extended to fl-span beams.

Section III presents an experiment which has been carried
out to verify the existence of localized modes for disordered
two-span beams. The experiment was the primary respon-
sibility of the second author. Both free vibration natural fre-
quencies and spatial mode shapes were measured. The ex-
perimental apparatus is described in detail in subsection A.

Subsection B presents the corresponding experimental
results, along with a detailed comparison with theoretical
results derived in the first part of the paper. Excellent agree-
ment between theory and experiment is observed.

II. Theory
A. Free Vibration of a Disordered Two-Span Beam

Consider the uniform two-span beam of length / shown in
Fig. 1. The beam is simply supported at both ends, and is
constrained to have zero deflection at x-x{. Moreover, a
torsional spring of stiffness constant c exerts a restoring mo-
ment at x = x{. If xl =1/2, the beam is said to be tuned, or
ordered; otherwise, it is mistuned, or disordered.

The equations of free bending motion are derived from
Hamilton's principle, and a Rayleigh-Ritz procedure with the
constraint conditions enforced by means of Lagrange
multipliers is chosen.19 The transverse deflection w(x,t) of
the two-span beam is expanded in terms of the free modes of
a single-span beam of length / pinned at both ends:

(1)

where al are the generalized coordinates, and w/ and </>, (x) are
the natural frequencies and normalized mode shapes of the
single-span beam, respectively, defined in the nomenclature.
The strain and kinetic energies of the two-span beam are

(2)

(3)
NM

In addition, the beam is constrained at x = xl9 and the two
constraint equations are given by

NM

i=\

NM

Thus the Lagrangian of the system is

/i= L MO<M*i) = 0 (4)

(5)

(6)

where ftl and /32 are the two Lagrange multipliers corre-
sponding to the constraints in Eqs. (4) and (5).

Applying Hamilton's principle, the equations of free mo-
tion are found to be

(7)

(8)

/ i=0 /2 = 0 (9)

Assuming simple harmonic motion of natural frequency, 12,
one has

0|. = <j|.e'a', /=!,...,ATM; Pk = ffkeiQt
9 A: =1,2 (10)

For Q^w/ , Eq. (7) may be written as

" * ••• - (n)
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Substituting the above expression of dt into Eqs. (8) and (9)
yields, for 12 ^co,-

r Y *?<*i) 1 , R \ r frfriwwiL & •spod +/H & ^-g J =

r y? frty.WWi , ., f l• L & <o?-Q> J +/3z L—
Nonzero solutions are obtained for /^ and /32 if and only if
the determinant of the system [Eqs. (12) and (13)] is equal
to zero, yielding

SX sin2(/7r^)1 f J_ CS (/V)2 cos2(/7r^)1
fe "2-«2 J L c £ o>2-Q2 J

f ̂  (nr) sinQV*!) oos(/«1)p_A

L ̂  o>?-<22 J -°
(14)

where a>/ and Q are dimensionless frequencies^ is the dimen-
sionless spring constant, and xl = xl/l = 1A -A/ is the_dimen-
sionless location of the intermediate support, where A/ is the
dimensionless deviation from the middle of the beam.

Recall that Eq. (14) presupposes S^cb,. It is an eigenvalue
equation whose solutions are the free vibration natural fre-
quencies fi of the two-span beam. For each value of Q solu-
tion of Eq. (14), the corresponding ratio &\/$i is obtained
from either Eq. (12) or Eq. (13), and the generalized coor-
dinates amplitudes df are given by Eq. (11), from which the
expression of the spatial mode shape w is readily obtained
from Eq. (1).

Tuned Beam
In this case A/=0. The natural frequencies of a tuned

beam simply supported at its middle are

A: odd

k even

(15)

(16)

These natural frequencies have a pass-band character, and
are placed in groups of two along the frequency axis.14 As c
increases, the first frequency of the group increases, while
the second remains unchanged. For a beam clamped in the
middle, the two natural frequencies of each group are equal,
leading to twofold multiple eigenvalues. Hence the width of
the frequency bands decreases and goes to zero as c goes to
infinity. As will be shown later, this bandwidth is one of two
key parameters in determining the occurrence of localized
modes.

Mistuned Beam
If, for a given value of c, a mistuning A/ is introduced, the

two frequencies of a group move apart: the width of the fre-
quency bands increases with A/. This behavior is shown in
Fig. 2, which represents the first and second natural frequen-
cies (first group of modes) in terms of A/ for various values
of c. It should be noted that, for relatively large values of A/
such as 0.07, the band character of the natural frequencies is
lost.

Convergence
The convergence of the Rayleigh-Ritz procedure with the

number of component modes NM has been checked by con-
sidering a mistuned beam clamped at xl9 hence defined by
A/5*0 and c-*oo. In this case the natural modes are thosejxf
the two hinged-clamped spans of lengths Vi - A/ and 1A + A/,
and thus the exact mode shapes should have exactly a zero

deflection over one of the spans. It was found that a large
number of component modes must be considered in order to
achieve good convergence. Typically, the mode shapes were
almost perfectly flat over one of the spans if NM> 1000. In
the subsequent calculations, 1000 component modes were
used. Convergence was also checked for higher modes: until
the 25th mode at least, nearly zero deflection in one of the
spans was obtained if 1000 or more component modes were
used.

This rather slow convergence can be explained by noticing
that the series E^f(l//4) and E£?f (1/i2) are involved in the
eigenvalue Eq. (14). Although the former series quickly con-
verges, the latter is slowly convergent, thus the Rayleigh-Ritz
expansion adopted here slowly converges to the exact solu-
tion. However, since this is a linear calculation, the com-
puter cost remains reasonably low. Moreover, if the number
of component modes is large enough, very accurate results
are obtained, and higher modes can be calculated as easily
and accurately as lower ones.

B. Perturbation Analyses
It is much easier to calculate the modes of a tuned two-

span beam than of a mistuned one, because the eigenvalue
equation is significantly simpler in the former case. This is
characteristic of nearly periodic structures with small ir-
regularities: when the structure is disordered, its periodicity
properties are lost, and investigating its modes of vibration
requires a computational effort much greater than for the
associated periodic system. Hence the idea, for small ir-
regularities, of performing a perturbation analysis.

Classical Perturbation Analysis
The unperturbed system consists of the tuned beam. It is

perturbed by moving the constraint by a distance A/. A per-
turbation analysis can be readily defined from Eq. (14)^by
expanding the terms sirX/Tr;^) and cosOVjC}) in terms of A/ to
the first or second order, hence obtaining the corresponding
natural frequency perturbations 6Q and 62Q. This perturba-

E,I,m

K1/2-AT) K1/2 + AT)

Fig. 1 Geometry of disordered two-span beam.

IOO.T Second Mode
First Mode

"0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
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Fig. 2 Natural frequencies of the first group of mode vs mistuning
A/, for various values of c.
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tion analysis is straightforward and will not be presented in
detail. The method has been previously used by Lin and
Yang18 for a beam on simple supports. Note that this ap-
proach presupposes that the term 1/c in Eq. (14) is not
small, but has a finite or large value. For 1/c finite, the
modes of vibration of the mistuned system are perturbations
of (hence are very similar to) the modes of the tuned system,
and are certainly not localized. Thus this case is not of great
interest to the present study.

Modified Perturbation Analysis
Herein, small values of_l/c are considered. If, when the

system is mistuned, only A/ is considered as a perturbation,
then one can expect qualitatively erroneous results: all the
small parameters (not only A/, but also 1/c) must be treated
as perturbations ̂ _The unperturbed system would then be
characterized by A/ = 0 and l/c = 0, defining a beam clamped
at its middle. The perturbations would consist of A/ and 1/c,
leading to a mistuned, "almost" clamped beam. The natural
frequencies of the unperturbed system are then repeated,
with one twofold multiple eigenvalue in each group. The cor-
responding mode shapes are defined by any linear combina-
tion of a left-span hinged-clamped mode and of a right-span
clamped-hinged mode, since the eigenfunctions associated
with each double natural frequency span a space of dimen-
sion two. In order to perform a perturbation analysis, one
must first determine the unique set of two unperturbed mode
shapes from which the modes of the perturbed system are
continuously obtained. It can be shown20 that this is
equivalent to solving the eigenvalue problem for the modes
of interest, hence rendering this perturbation procedure inef-
fective. The conclusion is that one must avoid multiple eigen-
values for the unperturbed system.

This is achieved by introducing some mistuning in the
unperturbed system. Thejanperturbed state is then defined
by l/c = 0 and xl = l/2 — Al. It consists of a mistuned two-
span beam clamped at the constraint location. The only per-
turbation parameter is 1/c. This perturbation method is
referred to as modified perturbation method (MPM), and is
similar to the one developed in Ref. 8 for a disordered chain
of weakly coupled pendula. Since the unperturbed beam is
mistuned, its eigenvalues are simple. Also, since it is clamped
at x = xl9 its natural modes are the_ones of hinged-clamped
beams of lengths Vi - A/ and Vi + A/. Note that these unper-
turbed modes are decoupled', that is, they have a zero deflec-
tion over one of the two spans, depending on the mode
number. When the system is perturbed by 1/c, the modes
cease to be decoupled in the left or right spans, and have
nonzero deflection in both spans. However, since 1/c is
small, they are perturbations of the decoupled modes, hence
are characterized by a deflection which is much larger in one
span than in the other one: the modes are strongly localized.
It is remarkable that one is able to predict whether the
modes are localized or not, just by considering perturbations
of the eigenvalue Eq. (14).

Let Q0 be a natural frequency of the unperturbed system.
The system is perturbed by replacing the clamped condition
by a spring of high stiffness c, and the natural frequencies Q
of the perturbed system are such that

(17)

where SQ is a first order perturbation in 1/c. Substituting
this first order expansion into Eq. (14) and expanding to the
first order yields

where

( Sin2 ( (/7T)2

(/7T)2

/=! L W / - M O J - /=! CO,- -MO

^̂ ^ - 2 o2 ^̂ ^ r - 2 o6J • — ASA • i I (jO • — \ti=\ wi *"0 ;=1 L w /

(18b)

6fi=-L -1 NM sin2(/?rx1) (18a)

The corresponding perturbed mode shape is readily cal-
culated by substituting the perturbed value of fl into Eqs. (1)
and (11-13). Note that a second-order perturbation analysis
can also be easily developed. Two important characteristics
of perturbation methods are retained by the present analysis.
First, the method is cost effective. Second, strongly localized
modes are predicted for small values of 1/c if the beam is
mistuned: perturbation methods provide physical insight into
mode localization.

C. Results and Discussion
Results

For given values of A/ and c, the eigenvalue equation [Eq.
(14)] is solved by a standard bisection technique. The bisec-
tion process converges rapidly. Typically, 20 to 35 iterations
are necessary to obtain natural frequencies converged up to
the 10th decimal place. This kind of accuracy is required
because very small variations in the natural frequencies may
result in significant variations in the mode shapes, since a
large number of component modes are considered. The ac-
curacy of the Rayleigh-Ritz procedure and of the bisection
process was checked against known results, and in all cases
excellent agreement was observed. Even though the number
of component modes considered is very large, the CPU time
necessary was not excessive. Unless otherwise stated, the
following results were obtained by solving directly Eq. (14),
not by perturbation analysis.
^Figure 3 shows the lower two modes of a tuned beam

(A/ = 0) such that c= 1000. One observes that the modes are
collective, as opposed to localized: the magnitude of the
deflection is the same in each span. Figure 4_displays the
lower two modes of a mistuned beam such that A/ = 0.01, for
the same c= 1000. One clearly sees that the peak deflection is
much larger in one span than in the other one: slight mistun-
ing is sufficient to localize strongly the natural modes. The
localized modes are perturbations of the * 'decoupled'' modes
corresponding to l/c = 0. Since the system is mistuned, these
decoupled modes correspond to simple eigenvalues. On the
other hand, the modes of the tuned system such that l/c = 0
correspond to twofold multiple eigenvalues, and perturbed
modes for small 1/c do not vary continuously from in-
dividual decoupled modes, giving rise to collective modes.
The results shown in Fig. 4 were obtained by both the exact
method and the modified perturbation method. The agree-
ment is excellent, confirming the fact that the MPM is
suitable for the analysis of strongly localized modes. If the
spring constant c increases, the mode shapes become even
more strongly localized. This is observed in Fig. 5, which
displays the lower two_modes for c = 5000, and for the same
mistuning parameter A/= 0.01. In the limit c^oo, the modes
of the mistuned beam tend to become decoupled. On the
other hand, for larger values of 1/c, the modes are only par-
tially localized, and to the limit c—0, the modes of the
(simply supported) mistuned beam are not localized. For
A/ = 0.01 and c = 0, it was found that there is only a slight
difference between the peak deflections in each span. In this
case, the mode shapes are no longer perturbations of
decoupled modes, but are perturbations of the collective
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Fig. 3 Lower two mode shapes for a tuned two-span beam (A/=0)
for c = 1000.

Exact Solution

0.0 \
0.49 - 1.0

Modified Perturbation Method

Mode 1

Modified Perturbation Method

Exact Solution

Fig. 4 Lower two mode shapes for a mistuned two-span beam, for
A/ =0.01 and c = 1000, by exact method and modified perturbation
method.

modes of the tuned beam, which are shown in Fig. 3. Hence
the classical perturbation method (defined for large values of
1/c) would be suitable for this analysis.

In order to investigate systematically the effect of the
mistuning parameter A/ and of the spring constant c, it is
suitable to adopt a compact representation of the modes.
The degree of localization of a mode can be characterized by
the ratio A of the peak deflection in one span to the peak
deflection in the other span, such that the numerator of this
ratio corresponds to the span with the smaller peak
deflection

A=AS/A, (19)

where As and At are the peak deflections in each span, such
that AS<A{. Note that the ratio A takes values ranging be-

Fig. 5 Lower two mode shapes for a mistuned two-span beam, for
A/=0.01 and c = 5000.
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Fig. 6 Values of \A I in the (c,A/) plane, for the first group of
modes.

tween - 1 and + 1. The smaller the absolute value of A, the
more localized the corresponding mode. For decoupled
modes, A-Q. For a tuned beam, no matter how large c is,
A= ±1, depending on the mode number. _

Figure 6 displays values of \A I in the (c,A/) plane, for the
first group of modes. To fix ideas, localization is said to oc-
cur if the absolute value of the peak ratio A Js less than
10%. Note that for a given c, A decreases as A/ increases,
hence the mode localization becomes more pronounced as
the amount of mistuning is increased. In the limit c— oo, the
modes are localized for an arbitrarily small^but nonzero,
mistuning. Also, for a given mistuning A/, localization
becomes more pronounced as c increases. The larger A/, the
smaller the threshold value of c necessary to give rise to
localized modes. However, strong localization does not oc-
cur for c< 110, even for relatively large values of mistuning
A/ such as 0.07. In particular, the lower modes of a beam
simply supported at the constraint location do not become
strongly localized. Even if the value 0.07 seems to be small,
the reader should bear in mind that this study is conducted
within the context of small perturbations, and that A/= 0.07
corresponds to a 14% deviation of the length of the in-
dividual spans, a fairly large value.
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Fig. 8 Variation of \A I in terms of mode number.

An approximate boundary of localization, corresponding
to 141 =10%, is represented on Fig. 6 by a dotted line.
From numerical results, one can show that, fqr_various small
values of 1/c and A/ such that the product cA/ is the same,
the peak ratio A remains approximately constant. This can
be seen in Fig. 6, as the localization boundary is similar to a
hyperbola of equation c = const/A/. The product cA/ is in
fact a disorder to coupling ratio A//(1/c), and the degree of
localization seems to depend only on the value of this ratio.
This result is similar to the one obtained in Refs. 5 and 8 for
a chain of coupled pendula. Nevertheless, in Ref. 8, this was
shown analytically, whereas in the present study, one is re-
quired to investigate numerically the dependence of A upon
A/ and c.

Discussion
There is a strong analogy between the two-span beam and

the system of two coupled pendula studied in Ref. 8. The
two pendulum system consists of two coupled single DOF
oscillators, each of them being characterized by an individual
natural frequency. The amount of coupling is governed by
the value of the spring constant &, and mistuning is achieved
by changing slightly the individual natural frequencies of the
pendula. Similarly, for the two-span beam, the coupling be-
tween spans is determined by the inverse of the torsional
spring constant. If l/c = 0, the spans are "decoupled," the
same way the two pendula are decoupled for £ = 0. Each of
the individual spans possesses an infinity of natural frequen-
cies, which are for hinged-clamped boundary conditions.
Hence if the beam is tuned (respectively mistuned), the two
spans have identical (respectively different) individual

Fig. 9 Experimental apparatus.

Fig. 10 Natural frequencies of the first group of modes vs c, for a
tuned two-span beam: theoretical and experimental results.

natural frequencies. It should also be noted that the two-
span beam is a system of two coupled, infinite number of
DOF oscillators, whereas the pendulum system is constituted
of single DOF oscillators. However, recall that the natural
frequencies of a two-span beam are distributed by groups of
two, and each of these groups can be regarded as
corresponding to a two-pendulum system.

It has been shown in Refs. 5 and 8 that the modes of the
pendulum system are strongly localized for small values of
mistuning and coupling. Similarly, for the two-span beam,
strong localization occurs for small values of A/ and 1/c. For
the pendulum system, localized modes are perturbations of
decoupled oscillations; for the two-span beam, they are per-
turbations of "decoupled" hinged-clamped modes. It has
also been shown in Ref. 8 that strong localization does not
occur for strong coupling between pendula. Similarly, the
modes of a two-span beam are not localized for finite or
large values of 1/c. In particular, strong localization does
not occur for c = 0, even for relatively large values of A/ such
as 0.07. Moreover, it is clearly seen in Fig. 6 that the effect
of mistuning on the peak rations not drastic for c = 0, but
rather slowly increasing with A/. On the other hand,_for
larger values of c, a rapid change of A in terms of A/ is
observed: strong localization occurs. To conclude, the theory
of the mode localization phenomenon is for small departure
from ideal regularity. However, for larger values of mistun-
ing, even though the modes do not become strongly local-
ized, significant changes can also be observed. For instance,
in the case c = 0 and A/= 0.07, one observes from Fig. 6 that
the peak ratio A of the first group of modes is 0.4,
significantly different from the tuned case. Although not
relevant to the study of strongly localized modes, these
changes may be of interest and of potential importance to
the designer. It should also be mentioned that the analogy
between the two-pendulum system and the two-span beam
can be readily generalized to an H-pendulum system and an
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«-span beam, for any n, suggesting that localized vibrations
also occur for multispan beams.

In order to understand thoroughly the physical mech-
anisms of localization for multispan beams, the criterion for-
mulated in Ref. 8 is now considered. This criterion states
that a disordered chain of coupled oscillators is susceptible
to having strongly localized modes if the natural frequencies
of the corresponding tuned, or periodic, system are distri-
buted in groups, and if the widths of these pass-bands are
small relative to the values of the frequencies belonging to
the pass-bands. Localization may occur for such systems if a
characteristic spread (due to mistuning) in the individual fre-
quencies of the component subsystems is small, and of the
order of, or larger than the pass-band width of the ordered
system

PBW<Q(SNF) (20)

of the corresponding tuned, or periodic, system are distrib-
uted in groups, and if the widths of these pass-bands are
quencies. Note that for a tuned, or periodic system, S7VF=0.

As mentioned previously, the natural frequencies of a tuned
multispan beam have a pass-band character.14 Denoting the
pass-band width of theyth pair of modes, which contains the
(2y- l)th and 2yth modes, by PBW^ one can write

PBWj(c)=.
El

ml4 [02/-02/_1(c)] (21)

where the natural frequency of the 2/th mode is given by Eq.
(16). Since S2 y-_i(c) increases with cf PBWj(c) decreases as
c increases. For 1/c small, PBWj(c) is approximately a
linear function of 1/c, and in the limit 1/c—>0, PBWj goes to
zero. Hence, small values of the "coupling" 1/c mean small
pass-band width of the ordered system.

The other variable that needs to be defined is the SNF. As
previously stated, the beam is decoupled if l/c = 0, its
natural frequencies being the ones of the two individual
hinged-clamped spans. The spread resulting from mistuning
can be written as

.-.. El ,
(1±2A/)2 I

__
——-Q 4 I A / Iml4 2j

(22)

Hence, for small mistuning, SNFj is proportional to the
amount of mistuning.

The following discussion investigates the ability of the
criterion [Eq. (20)] to predict localized modes. This para-
graph is concerned with the first group of modes, correspond-
ing to j = 1. Figure 7 displays the absolute value of the peak
ratio \A I in the (PBW}9SNF}) plane, for the first group of
modes. Note that PBWl and SNFl have been nondimen-
sionalized by 02, as defined in the nomenclature. It is
observed that localization occurs when SNF{ and PBW{ are
both small. Moreover, with the definition of localization
14 I < 10%, the modes are localized in the region approx-

imately defined by PBWl <0.42 SNFl9 the localization
boundary being given by PBWl -0.42 SNF^. Note that this
boundary is dependent upon the definition chosen for
localization: stronger or weaker requirements for localization
to occur would result in a quantitatively different, but
qualitatively similar boundary. It should also be noted that,
from numerical results, the degree of localization \A I seems
to be only dependent upon the ratio PB Wl /SNFl. Since the
localization region shown in Fig. 7 is consistent with the
criterion [Eq. (20)], the latter has the ability to predict the
occurrence of localization for the first group of modes.

Finally, it is of interest to investigate the localization of
higher groups of modes. From Eq. (22), it is clear that SNFj
remains constant when j increases. Also, for a given c,

j decreases as j increases, and goes to zero in the limit
y—oo [for example this can be seen from Eqs. (15) and (16)
for c = 0]. Thus for any given c (even small), and a given A/,
there exists a group number y* such that PBWj is smaller
than SNFJ9 for anyy>y*. According to Eq. (20), this would
mean that, for any c and A/, no matter how small, there
always exists a threshold value j * such that higher groups of
modes are localized. However, preliminary results do not
seem to confirm this hypothesis.

Figure 8 shows the variation of the peak ratio \A I _in
terms of the mode_number, for various values of c and A/.
For c = 1000 and A/= 0.01, localization occurs in the first
group of modes. Higher modes are still localized, but no
more strongly than the first two modes. As a matter of fact,
the peak ratio remains almost constant when the mode
number increases. For c — 110 and A/=0.019, the first group
of modes is not localized, and the peak ratio decreases only
slightly in the higher modes, from 0.33 for the first group to
a plateau value of 0.26 for the sixth group. Finally, for c = 0
and A/= 0.03, the peak ratio decreases significantly from
0.64 for the first group to 0.42 for the fifth group. However,
the modes do not become localized. Moreover, after the 10th
mode, \A I increases to reach 0.93 in the eighth group of
modes, and goes back to 0.49 for the 20th mode. In this
case, PBWj decreases monotonically and one can show that
according to Eq. (20) localization ought to occur in the
eighth or ninth group of modes. However, it does not. Two
hypotheses can be formulated from the study of these few
representative cases:

1) If the modes of the first group are not localized, it
seems that localization will not occur for the modes of
higher groups either.

2) If the first two modes are localized, then higher modes
are also localized, but no more strongly than in the first
group.

This suggests that higher modes do not behave significant-
ly differently than lower modes with respect to localization.
Hypothesis 2 is a reassuring result, since it states that
localization does not disappear in higher modes. Hypothesis
1 is, of course, in a sense disappointing. These preliminary
results suggest that the criterion [Eq. (20)] cannot be used
independently of the physical system to which it applies: the
most important condition for strong localization to occur is
to have a weakly coupled system, that is to have 1/c small.
If this requirement is met, then the criterion [Eq. (20)] can
be applied effectively to determine the minimum value of
mistuning A/ necessary to obtain strongly localized modes.
Finally, one ought to mention that, even though the higher
modes do not become strongly localized fo£c = 0, mistuning
may have a significant effect, since for A/= 0.03 the peak
ratio of the seventh mode is 0.40.

III. Experiment
Few experimental studies of localized vibrations have been

conducted to date. Hodges and Woodhouse6 carried out an
experiment to demonstrate localization, and found satisfac-
tory agreement with the theoretical predictions. The system
used in the experiment was a stretched string with irregularly
spaced masses attached to it. Also, the research study by
Craig et al.13 evidenced strong discrepancies between ex-
perimental and analytical results for a system of two weakly
coupled beams. It was shown in Ref. 13 that these discrepan-
cies were due to small physical dissimilarities between the
two beams. The present authors believe that the system
studied in Ref. 13 did indeed exhibit strongly localized
modes.

A. Experimental Apparatus
The modes of free vibration of a two-span beam were in-

vestigated experimentally. The vibration tests were performed
on a spring steel beam resting on three supports. The beam
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was pinned at both ends. In addition, a third support with
variable torsional stiffness was located near the middle of the
beam, but could be moved to various locations. The ex-
perimental apparatus is shown in Fig. 9. The geometric
dimensions of the specimen beam were 53 cm (length) and
0.0635x1.015 cm2 (cross section). The variable torsional
stiffness of the intermediate support was created by a
pinned-clamped beam, the distance between the pinned point
and the clamped one being varied to adjust the torsional stiff-
ness. The torsional beam was parallel to the specimen beam
(see Fig. 9).

The possibility of dynamic interaction between the
specimen and torsional beams had to be considered. The fre-
quency range of the first and second modes of the specimen
beam was 19-40 Hz. The dynamic torsional stiffness of the
torsional beam was measured near the pinned point when
removing the specimen beam. It was found that the torsional
stiffness remained essentially constant in the frequency range
of interest (19-40 Hz). In general, when the fundamental
natural frequency of the torsional beam is two to three times
higher than the one of the specimen beam, the dynamic tor-
sional stiffness does not vary significantly, and thus can be
considered to be constant. In our experimental apparatus,
the torsional beam frequency was more than ten times higher
than the specimen beam frequency.

The major equipment components for the vibration test
were as follows:

1) A sine generator provided a sweeping sinusoidal signal.
2) A minishaker (B&K 4810) and a power amplifier (B&K

2706) were used to excite the beam. In order to reduce the ef-
fect of the additional mass of the joint components between
the shaker and the beam on the vibration characteristics of
the specimen beam, the driving point was located near the
pinned end of the torsional beam (see Fig. 9). Thus a pure
excitation torque was applied to the specimen beam near its
intermediate support, without inducing any appreciable added
mass effect. Because of the small mass of the specimen
beam, this effect could have been potentially very important.

3) A force transducer (B&K 8200) and two rotary-
variable-differential transformers (R30D) were used to
measure the exciting force and transverse beam displace-
ment, respectively. The displacement transducers had only a
small added mass.

4) The charge amplifier was a portable conditioning
amplifier (B&K 2635) which provided high-voltage output
sensitivity of the force. Digital voltage meters were used to
record all signals and to analyze natural frequencies and
mode shapes.

In addition to the effect of added mass, there were two
other important considerations in the design of the experi-
ment. The first one was concerned with minimizing the effect
of the additional constraint due to jointing the R30D
transformers with the specimen beam. In order to avoid ad-
ditional stiffness constraint when large-amplitude vibration
occurs, the contact between the needle and the beam had to
be sufficiently flexible. This requirement was met by using a
flexible needle with a pinned end.

The second consideration concerned the design of the pin-
ned end supports of the specimen beam. From a transient
decay test, the critical damping ratio of the beam was found
to be approximately 0.001. Thus, large amplitudes occurred
near the resonance frequencies. If the horizontal displace-
ment of the end supports were constrained, the measured
frequency was found to be dependent upon the level of the
excitation torque, which is characteristic of a nonlinear
system. Thus, in the experimental apparatus, two degrees of
freedom, namely rotation and horizontal displacement, were
allowed at the pinned ends, in order to ensure the linearity of
the system. It was then found that the natural frequencies
were independent of the excitation torque level, and that
even when the response amplitude was very large, the system
behaved in a linear fashion.

ft(Hz)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Fig. 11 Comparison of experimental and theoretical natural fre-
quencies of the first group of modes, for c = 281.8.
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Fig. 12 Comparison of experimental and theoretical peak ratio A
for the first group of modes: a) c = 90.4 and b) c = 281.8.

B. Experimental Results: Comparison with Theory
The displacement mobility concept (response displace-

ment/excitation torque) was used to determine the natural
frequencies. Figure 10 shows the dependence of the lower
two natural frequencies upon torsional stiffness for a tuned
beam (A/ = 0), for both experimental and theoretical results.
The agreement between theory and experiment is observed to
be excellent. Note that the torsional stiffness was determined
from a static stiffness measurement.

Figure 11 displays the comparison between theoretical and
experimental natural frequencies versus mistuning A/, for a
coupling c = 281.8. Again, the agreement is found to be ex-
cellent. Lack of space precludes the authors from presenting
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Fig. 13a First mode shape of tuned two-span beam, for A/=0 and
c = 281.8, from measurements.

6) An immediate generalization of the present study is to
investigate the localization of vibrations for «-span beams,
where n>2. Since disorder is usually caused by uncertainties,
a statistical approach will be required. Future work is also in
order concerning localized vibrations of multispan beams
resting on elastic supports (leading to multicoupling between
spans) and two-dimensional structures.

Fig. 13b First mode shape of mistuned two-span beam, for
A/=0.02 and c = 281.8, from measurements.

results obtained for other values of the coupling c. Never-
theless, in all cases studied, the maximum discrepancy be-
tween theoretical and experimental results was always less
than 2.5%.

Very good agreement was also found between theoretical
and experimental results in terms of mode shapes. This can
be observed on Figs. 12a and 12b, which display the peak
ratio A for the lower two modes in terms of mistuning A/,
for values of the torsional spring constant c = 90.4 and
c = 281.8, respectively. Peak ratios were also compared for
other values of c, but these results are not presented here.
The maximum difference between theoretical and experimen-
tal data was always less than 15%. This error was mainly
due to inaccuracies in the measurement of the small response
amplitudes which were encountered for strongly localized
modes. For at very small amplitudes the signal to noise ratio
of the transducers R30D becomes smaller.

Finally, Fig. 13 shows the motion in the first mode for a
torsional spring constant c = 281.8. Figure 13a is for the tuned
system, whereas Fig. 13b is for a slightly mistuned beam
such that A/= 2%. Both are obtained from displacement
measurement. It is observed that the first mode of the
mistuned beam is strongly localized in the second span,
whereas the one of the tuned beam is collective, that is the
peak deflection is the same in both spans.

IV. Concluding Remarks
The modes of vibration of disordered two-span beams

subject to a restoring torsional spring moment at the in-
termediate support have been investigated theoretically and
experimentally. The following conclusions can be drawn:

1) For small mistuning and large torsional spring con-
stant, the modes of vibration become strongly localized in
one of the two spans.

2) A modified perturbation method has been developed. It
predicts strongly localized modes accurately and provides
physical insight into mode localization.

3) For the first group of modes, strong localization occurs
if the relative pass-band width of the tuned beam is of the
order of, or smaller than the relative spread in the frequen-
cies of the individual spans, and if these two quantities are
both small.

4) From preliminary results, it is suspected that if localiza-
tion does not occur in the lower two modes, then it does not
occur in the higher ones either. On the other hand, if the
first two modes are localized, then the higher ones are also
localized.

5) An experiment has been carried out to verify the ex-
istence of strongly localized modes for disordered two-span
beams. Excellent quantitative agreement has been found with
theoretical results.
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