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Retrospective cost adaptive control is applied to low Reynolds number aerodynamics
around an SD7003 airfoil with a dielectric barrier discharge (DBD) actuator located near
the leading edge. The adaptive control algorithm uses knowledge of Markov parameters to
capture information about any nonminimum-phase zeros in the dynamics. In this paper,
we explore the impact of the adaptive controller on the aerodynamics under the chord
Reynolds numbers of 300 and 60,000, and with both steady and unsteady free-stream
conditions. By varying the voltage to the DBD actuator, effective control of unsteady flow
structure can be performed to decrease drag and increase lift.

Nomenclature

E Electric field vector
Favg Quasi-steady body force from the DBD actuator
F1, F2 Body forces in the x1 and x2 directions
qi Electric charge of a species
ni Particle number density of a species
ρc Net charge density
qc Unit electric charge (= 1.6 × 10−19 C)
c Chord length of airfoil
U Free stream velocity
Cl Lift coefficient of an airfoil, which is the integral over the surface of the airfoil of

the normalized pressure force in the direction of lift
Cd Drag coefficient of an airfoil, which is the integral over the surface of the airfoil of

the normalized pressure force in the direction of drag
Vapp Voltage applied to the DBD actuator
Ut/c Normalized time in the flow simulation
Re Reynolds number

I. Introduction

Low Reynolds number flows, specifically flows with Reynolds numbers less than 105, are susceptible to
flow separation, laminar-turbulent transition, and reattachment, resulting in severe performance losses.1 In
particular, micro air vehicles (MAVs) with maximum dimension smaller than 15 cm and maximum flight
speeds of around 10 m/s are inherently vulnerable to gusty flight conditions,2 and thus require an effective
flow control strategy for practical operation. Closed-loop active flow control is an area of active research.
Huang et al. employ a closed-loop PID controller based on the variable structure model using dielectric
barrier discharge (DBD) actuators to increase the power efficiency in noise reduction.3 In Ref. 4, a linear
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quadratic regulator (LQR) controller augmented with an adaptive control input is applied to perform airfoil
maneuvers using symmetric synthetic jets at the trailing edge. Regarding model-based approaches in flow
control, control laws based on the proper orthogonal decomposition (POD) method are applied, for example,
to control 3D leading edge vorticity5 and flow over a shallow cavity.6 In addition, adaptive control techniques
have been applied to a variety of flow control problems.7–11 In particular, Ref. 7, 8 use extremum seeking
methods to control the drag on a bluff body. In Ref. 9–11, discrete-time adaptive control algorithms are
used to control the flow in a two-dimensional channel under a variety of flow conditions, including steady
and time-varying flow.

Adaptive control techniques have several characteristics that may make such methods well suited for active
flow control. In particular, adaptive controllers tune the feedback gains in response to the true plant dynamics
and exogenous signals such as commands and disturbances. In flow control, this is important since the plant
dynamics and exogenous signals may change significantly as the flow conditions vary. Furthermore, adaptive
controllers generally require limited model information, which is beneficial for flow control where developing
high-fidelity models for control purposes is difficult. However, adaptive control laws usually involve restrictive
assumptions, such as the plant being passive12 or minimum phase.13 In addition, sensitivity to unmodeled
dynamics and sensor noise14 as well as unfavorable transient performance15 are common issues related to
stability and performance in adaptive control.

In this paper, we use a discrete-time adaptive control method for flow control. In Ref. 13, a discrete-time
adaptive controller algorithm is presented for plants under a minimum-phase assumption. In Ref. 16, the
authors invoke the same minimum phase assumption to develop an adaptive control method for command
following and disturbance rejection of sinusoids where the command and disturbance are unmeasured and
the spectrum of those signals is unknown. A discrete-time adaptive control law that is known numerically
to be effective on nonminimum-phase plants is developed in Ref. 17.

In Ref. 18, the adaptive control method of Ref. 17 is used to control the lift in low Reynolds number
aerodynamics by using a DBD actuator. The results of Ref. 18 demonstrate the ability to modify the attached
or moderately separated flow over an SD7003 airfoil with minimal modeling information. More specifically,
the method requires some information on the Markov parameters of the plant, which are extracted by
parameter estimation from numerical simulations. The results of Ref. 18 use a Reynolds number based on
the airfoil chord length set at 60,000.

In the present paper, we extend the work of Ref. 18 by applying the adaptive control technique based on
retrospective cost optimization developed in Refs. 19,20. Retrospective cost adaptive control (RCAC) modi-
fies the sensor measurements using the difference between the actual past control inputs and the recomputed
past control inputs based on the current controller parameters. In Refs. 19,20, RCAC is shown to be effective
for unstable nonminimum-phase systems as long as a sufficient number of Markov parameters are available
(through modeling or parameter estimation) to approximate the location of the nonminumum-phase zeros
(if any) of the system.

The emphasis of this paper is to explore the interplay between the aerodynamics and the control strategy
presented in Ref. 19,20. Nevertheless, there are several issues with applying DBD actuators to low Reynolds
number flyers. In particular, DBD actuator performance is significantly impacted by the actuator location
and geometry,21 the actuator’s wave form and frequency,22 as well as the dielectric material.23 While these
issues are being explored through methods such as the use of surrogate models for DBD actuators,24 this
paper focuses on the implications of the adaptive flow control method and does not address these other
topics.

The contents of this paper are as follows. In Section II, we present the numerical flow model. Section III
introduces the adaptive controller used to control the free stream flow. In Section IV, we discuss identification
of the Markov parameters required by the adaptive controller. Simulation results are presented in Section
V.

II. Numerical Flow Model

In this paper, flow fields are analyzed by solving the Reynolds-averaged Navier-Stokes equations using the
pressure-based solver Loci-STREAM25 and adopting a parallelized unstructured finite volume code. Since
the ion and electron states are non-equilibrium and the ion temperature is comparable to the neutral fluid,
the neutral fluid is treated as being isothermal. Considering the time scale disparity between the flow and the
radio frequency (RF) actuator operation, the force acting on the neutral fluid is assumed to be a quasi-steady
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body force. The body force felt by the neutral flow is equivalent to the Lorentz force acting on the net charge
density. For the unsteady operation of the actuator only the amplitude variation of the operation voltage
with time scales much larger than the RF operation is considered. The relevant conservation equations are

2
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j=1

∂uj

∂xj
= 0, (1)

and for i = 1, 2,
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where, for i = 1, 2, Fi = Ei

∑

k qknk, u1 is the velocity in the x1 direction, u2 is the velocity in the x2

direction, ρ is air density, p is pressure, ν is the kinematic viscosity, νT is the eddy viscosity, E1 is the
electric field strength in the x1 direction, and E2 is the electric field strength in the x2 direction.

For the turbulence closure, Menter’s SST turbulence model is used.26 For simplicity, the laminar-
turbulent transition model is not applied in this paper. For i = 1, 2, Mentor’s SST turbulence model is
given by
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,

where k and ω are the turbulence kinetic energy and specific rate of dissipation of the turbulence kinetic
energy, respectively, and δi,j is the Kronecker delta. The values of the coefficients a1, β, β∗, γ∗, σk, σω , σω,2,
F̄1, and F̄2 as well as the boundary conditions for the turbulence model are given in Ref. 26.

Figure 1. Simplified DBD model geometry

The DBD actuator model is a simplified model with linear electric field and constant net charge den-
sity.27, 28 As presented in Figure 1, this model prescribes localized body forces in a triangular plasma region
bounded by two electrodes and dielectric surface. The electric field distribution inside the plasma region is
approximated by the spatially linear relations

E1 =
|E|k2

√

k2
1 + k2

2

, E2 =
|E|k1

√

k2
1 + k2

2

, (3)

where

|E| = E0 − k1x1 − k2x2, E0 =
Vapp

d
, (4)
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where d is the insulator thickness, and k1 and k2 are the linearized slopes of the electric field in the x1

and x2 directions, respectively. This is a solution of Gauss’ equation with the constant net charge density
assumption. In (4) the maximum electric field intensity E0 is defined based on the applied voltage amplitude,
and the slopes k1 and k2 of the electric field attenuation away from the exposed electrode and dielectric
surface, are set to allow the breakdown voltage at the boundary with the minimum electric field strength.
As shown in Ref. 28, this analytical-empirical model represents a time-averaged body force component acting
on the fluid, given by

Favg(x1, x2, t) = ρcqcδ(x1, x2)fv∆tE(x1, x2, t), (5)

where fv is the AC frequency of the voltage applied to the DBD actuator and ∆t is the discharge duty cycle.
Furthermore, since the constant charge density ρc with unit charge qc is present only inside the plasma
region, δ(x1, x2) is set to 0 or 1 depending on the position. The discharge duty cycle is the portion of
time during which effective force generation occurs in each operation cycle. For the purpose of the control
input the applied voltage to the electrode is changed depending on the controller command, resulting in a
time-varing body force. Since the simplified DBD model is based on the quasi-steady assumption using the
time scale disparity, the unsteady control input is meaningful when its timescale lies between those of low
Reynolds number flow and plasma operation. This simplified DBD model presents good agreement with
experimental data in terms of force generation28 and maximum induced flow velocity.29 In order to assess
the resultant performance of the DBD actuator and controller, a single co-flow directional DBD actuator
with voltage amplitude modulation according to the controller output is used.

III. Controller Construction

Consider the multi-input, multi-output linear discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (6)

y(k) = Cx(k) + D2w(k), (7)

z(k) = E1x(k) + E0w(k), (8)

where x(k) ∈ R
n is the state, y(k) ∈ R

ly is the measurement, z(k) ∈ R
lz , u(k) ∈ R

lu is the performance,
w(k) ∈ R

lw is the exogenous command and or disturbance signal, and k ≥ 0. We present an adaptive output
feedback controller under which the performance variable z is minimized in the presence of the exogenous
signal w, which could be a disturbance, command, or both. In this paper, we use an adaptive feedback
controller to minimize the drag force acting on the airfoil under both undisturbed inlet flow conditions and
in the presence of a sinusoidal disturbance to the inlet flow.

In this section, we summarize the adaptive control algorithm as presented in Ref. 20 for the general
control problem given by (6)–(8). We use a strictly proper time-series controller of order nc, such that the
control u(k) is given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (9)

where, for all i = 1, . . . , nc, Mi ∈ R
lu×lu and Ni ∈ R

lu×ly are given by the adaptive law presented below.
The control can be expressed as

u(k) = θ(k)φ(k), (10)

where

θ(k)
△
=

[

N1(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)
]
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is the controller parameter matrix, and the regressor vector φ(k) is given by
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




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∈ R
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For positive integers p and µ, we define the extended measurement vector Y (k), the extended performance

vector Z(k), and the extended control vector U(k) by
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
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...
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
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
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






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...
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
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
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△
=









u(k)
...

u(k − pc + 1)









, (12)

where pc
△
= µ + p.

From (10), it follows that the extended control vector U(k) can be written as

U(k)
△
=

pc
∑

i=1

Liθ(k − i + 1)φ(k − i + 1), (13)

where

Li
△
=







0(i−1)lu×lu

Ilu

0(pc−i)lu×lu






∈ R

pclu×lu . (14)

Next, define the retrospective performance vector

Ẑ(θ̂(k), k)
△
= Z(k) − B̄zu

(

U(k) − Û(k)
)

, (15)

where Û(k)
△
=

∑pc

i=1 Liθ̂(k)φ(k − i + 1), θ̂(k) ∈ R
lu×nc(lu+ly), and the block-Toeplitz control matrix B̄zu is

given by (31) below. Note that Ẑ(θ̂(k), k) is obtained by modifying the performance variable Z(k) based
on the difference between the actual past control inputs U(k) and the recomputed past control inputs Û(k)

assuming that the controller parameters θ̂(k) had been used in the past. Thus, Ẑ(θ̂(k), k) may be interpreted

as an approximation of the performance had the controller parameters θ̂(k) been used in the past.
Taking the vec of (15) yields

Ẑ(θ̂(k), k) = f(k) + D(k)vec θ̂(k), (16)

where

f(k)
△
= Z(k) − B̄zuU(k),

D(k)
△
=

pc
∑

i=1

φT(k − i + 1) ⊗ B̄zuLi.

Note that

Û(k) =

pc
∑

i=1

Liθ̂(k)φ(k − i + 1) = M(k)vec θ̂(k), (17)

where M(k)
△
=

∑pc

i=1 φT(k − i + 1) ⊗ Li.
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Now, consider the retrospective cost function

Ĵ(k)
△
= ẐT(θ̂(k), k)R1(k)Ẑ(θ̂(k), k) + ÛT(θ̂(k), k)R2(k)Û(θ̂(k), k)

+ tr

[

(

θ̂(k) − θ(k)
)T

R3(k)
(

θ̂(k) − θ(k)
)

]

, (18)

where R1(k) = RT
1 (k) > 0, R2(k) ≥ 0, and R3(k) = RT

3 (k) > 0. Substituting (16) and (17) into (18) yields

Ĵ(k) = c(k) + bT(k)vec θ̂(k) +
(

vec θ̂(k)
)T

A(k)vec θ̂(k),

where

A(k)
△
= DT(k)R1(k)D(k) + MT(k)R2(k)M(k) + R3(k) ⊗ Inc(lu+ly), (19)

b(k)
△
= 2DT(k)R1(k)f(k) − 2R3(k) ⊗ Inc(lu+ly)vec θ(k), (20)

c(k)
△
= fT(k)R1(k)f(k) + tr

[

θT(k)R3(k)θ(k)
]

. (21)

Since A(k) is positive definite, Ĵ(k) has the strict global minimizer

θ̂(k) = −
1

2
vec−1(A−1(k)b(k)). (22)

Thus, the update law is given by

θ(k + 1) = θ̂(k). (23)

For all future discussion, we specialize (19)–(21) with

R1(k)
△
= Iplz , R2(k)

△
= 0pclu , R3(k)

△
= α(k)Ilu ,

where the learning rate α(k) > 0 affects the transient performance and the convergence speed of the adaptive
control algorithm. In this case,

A(k) = DT(k)D(k) + α(k)I, (24)

b(k) = 2DT(k)f(k) − 2α(k)vec θ(k), (25)

c(k) = fT(k)f(k) + α(k)tr
[

θT(k)θ(k)
]

. (26)

The novel feature of the adaptive control algorithm (10) and (22)-(26) is the use of the retrospective
correction filter (RCF) (15). RCF provides an inner loop to the adaptive control law by modifying the
performance variable Z(k) based on the difference between the actual past control inputs U(k) and the

recomputed past control inputs Û(k) assuming that the current controller parameters θ̂(k) had been used in
the past.

The adaptive controller (10) and (22)-(26) requires limited model information of the plant (6)–(8); how-
ever, the controller does require knowledge of B̄zu. The B̄zu matrix is constructed from the plant’s Markov
parameters. Consider the µ-MARKOV model from u to z given by

z(k) = −

n
∑

i=1

αµ,iz(k − µ − i) +

µ
∑

i=d

Hiu(k − i) +

n
∑

i=1

βµ,iu(k − µ − i), (27)

where αµ,i ∈ R, βµ,i ∈ R
lz×lu , Hi ∈ R

lz×lu , and µ ≥ d. Equation (27) can be equivalently represented as
the µ-MARKOV transfer function

Gµ,zu(z) =
1

pµ(z)

(

Hdz
µ+n−d + · · · + Hµz

n
)

+
1

pµ(z)

(

βµ,1z
n−1 + · · · + βµ,n

)

, (28)

where pµ(z)
△
= z

µ+n + αµ,1z
n−1 + · · ·+ αµ,n. This system representation is nonminimal, overparameterized,

and has order n+µ. Note that the coefficients of the terms z
n+µ−1 through z

n in the denominator are zero.
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The Laurent series expansion of Gzu(z) about z = ∞ is

Gzu(z) =

∞
∑

i=d

z
−iHi. (29)

Truncating the numerator and denominator of (28) is equivalent to the truncated Laurent series expansion
of Gzu(z) about z = ∞. Thus, the truncated Laurent series expansion of Gzu(z) is

Ḡµ,zu(z)
△
=

µ
∑

i=d

z
−iHi. (30)

The resulting block-Toeplitz control matrix B̄zu ∈ R
plz×pclu is

B̄zu
△
=









0lz×dlu Hd · · · Hµ 0lz×lu(p−1)

...
. . .

. . .

0lz×dlu 0lz×lu(p−1) Hd · · · Hµ









. (31)

The leading zeros in the first row of B̄zu account for the nonzero relative degree d. The advantage in con-
structing B̄zu using the Markov parameters Hd, . . . , Hµ as opposed to using all of the numerator coefficients
of Gµ,zu is ease of identification. In the case with z = y, using the retrospective performance variable ẑ in
place of y in the regressor vector (11) results in faster convergence of the adaptive algorithm.

Note that for a single-input, single-output system, some of the roots of the polynomial

H(z)
△
= Hdz

µ−d + Hd+1z
µ−d−1 + · · · + Hµ−1z + Hµ (32)

can be shown to approximate the nonminimum-phase zeros from u to z that lie outside of a circle in the
complex plane centered at the origin with radius equal to the spectral radius of A. Thus, knowledge of
Hd, . . . , Hµ encompasses knowledge of the nonminimum-phase zeros from u to z that lie outside of the
spectral radius of A. In fact, if the transfer function from u to z is minimum phase, then we choose µ = d,
which requires knowledge of only a single Markov parameter, namely, Hd. The minimum-phase case with
z = y is considered in Ref. 16 using a gradient-based adaptive law rather than the adaptive law (22)-(26).
Under the minimum-phase assumption, Ref. 16 proves asymptotic convergence of z to zero.

IV. Flow Model Parameters and Identification of Markov Parameters

In this section, we describe the flow model parameters used in this paper and describe the estimation
method used to obtain the Markov parameters required by the adaptive controller (10) and (22)-(26). Flow
simulations are performed for the airfoil SD7003 with a Reynolds number of 300 and a 15-degree angle of
attack. Under these flow conditions, the flow on the upper surface of the airfoil is separated, as shown in
Figure 2. The DBD actuator is located at 20 percent of the chord length from the leading edge with the
co-flow orientation. The DBD actuator has a nominal voltage of 1 kV. This nominal voltage decreases the
size of separated flow region, but the the separated flow topology still exists under the nominal actuation,
as shown in Figure 3. It is known that there are multiple modes in atmospheric gas discharge,30 and the
transitions between these modes depend on various parameters,31 particularly the voltage applied to the
DBD actuator. However, typical DBD actuators use voltages up to 30 kV.21, 32 In this paper, we do not
implement bounds on the operational voltage of the DBD actuator.

To estimate the Markov parameters of the flow model, and thus obtain B̄zu, the DBD actuator is excited
by an impulse command and two system responses are measured, namely the form drag (i.e., the drag
coefficient Cd) and the form lift (i.e., the lift coefficient Cl). More specifically, the flow model is excited by a
3-kV impulse voltage applied to the DBD actuator; this impulse was numerically determined to sufficiently
excite the flow dynamics of interest.

The flow simulation is numerically discretized and run with a normalized time step of 0.05. In the
next section, we implement the adaptive controller (10) and (22)-(26) using a time step equal to ten flow
simulation time steps. Therefore, we measure the form drag and form lift impulse responses every ten flow
simulation time steps to estimate the Markov parameters of the system from the DBD actuator voltage to
the form drag and to the form lift, respectively.
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Figure 2. For a steady free-stream flow with Re = 300, the flow field without actuation shows separation on the upper
surface of the airfoil.

Figure 3. For a steady free-stream flow with Re = 300, a 1 kV nominal DBD actuator voltage decreases the size of the
separated flow region on the upper surface of the airfoil; however, the flow on the upper surface of the airfoil is still
separated.
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Figure 4 shows the impulse response of Cd. Furthermore, Figure 4 shows the Markov parameters esti-
mated from the impulse response of Cd. In particular, we estimate the first 50 Markov parameters from the
impulse response. These Markov parameters can be used to construct B̄zu when Cd is used as the perfor-
mance variable z(k) in the adaptive controller (10) and (22)-(26). Note that the impulse response decays to
zero because the open-loop flow dynamics are asymptotically stable. Figure 5 shows the roots of the Markov
parameter polynomial (32) with µ = 50. Note that all of the roots of (32) lie within the unit circle. Thus,
it can be inferred that the linearized discrete-time system from Vapp to Cd is minimum phase.
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Figure 4. The Markov parameters from Vapp to Cd are estimated from the response to a 3-kV impulse under a steady
free-stream flow with Re = 300.

Figure 6 shows the impulse response and estimated Markov parameters using Cl as the output. In
particular, we estimate the first 50 Markov parameters from the impulse response. These Markov parameters
can be used to construct B̄zu when Cl is used as the performance variable z(k) in the adaptive controller
(10) and (22)-(26). Note that the impulse response decays to zero because the open-loop flow dynamics are
asymptotically stable. Figure 5 shows the roots of the Markov parameter polynomial (32) with µ = 50. Note
that one root of (32) lies outside of the unit circle. Thus, it can be inferred that the linearized discrete-time
system from Vapp to Cl has one nonminimum-phase zero.

The aerodynamic forces acting on the airfoil are composed of a friction force and a pressure force. The
flow separation shown in Figure 3 for a high-angle-of-attack airfoil results in significant form drag. Therefore,
in the next section, we generally adopt the control objective of minimizing the drag coefficient, and thus
reattaching the flow on the upper side of the airfoil. More specifically, the drag coefficient is used in the next
section as the performance variable z(k) and the measurement variable y(k) unless otherwise noted.

V. Results and Discussion

V.A. Minimization of Cd without inlet disturbance

In this example, Cd is selected to be the performance variable and B̄zu is constructed using the 50 Markov
parameters identified in Figure 4. The learning rate α = 500 is selected to enforce slow adaptation. Slow
adaptation helps to prevent large transient behavior in the flow field; however, it also reduces the speed
with which the closed-loop converges to steady-state performance minimization. Decreasing α speeds up
adaptation but results in larger transient behavior. Figure 8 shows the closed-loop time histories for Cd, Cl,
and Vapp when the adaptive controller (10) and (22)-(26) is implemented in the feedback loop with nc = 10.
The nominal drag coefficient is approximately 0.16. The adaptive controller is turned on at Ut/c = 4 and
by Ut/c = 400, Cd converges to zero. At this steady-state condition, Cl = 1 and Vapp = 50 kV.

Figure 9 shows the same closed-loop response where a higher-order adaptive controller, that is nc = 50,
is implemented in the feedback loop. In this case, the closed-loop system converges to the same steady-
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Figure 5. For a steady free-stream flow with Re = 300, the roots of the Markov parameter polynomial (32) with µ = 50
and using the Markov parameters from Vapp to Cd are all contained within the unit circle.
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free-stream flow with Re = 300.
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Figure 7. For a steady free-stream flow with Re = 300, the Markov parameter polynomial (32) with µ = 50 and using
the Markov parameters from Vapp to Cl has one root outside of the unit circle. This root is an approximation of the
nonminimum-phase zero in the linearized transfer function from Vapp to Cl.
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Figure 8. For a steady free-stream flow with Re = 300, the adaptive controller (10) and (22)-(26) with nc = 10 and B̄zu

constructed using 50 Markov parameters achieves the control objective of minimizing Cd by Ut/c = 400.
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state performance; however, the closed-loop converges more quickly, by Ut/c = 250. Furthermore, the peak
transient performance is similar to the case where nc = 10.
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Figure 9. For a steady free-stream flow with Re = 300, the adaptive controller (10) and (22)-(26) with nc = 50 and B̄zu

constructed using 50 Markov parameters achieves the control objective of minimizing Cd by Ut/c = 250.

As we noted in the previous section, Figure 5 suggests that the linearized system from Vapp to Cd is
minimum phase. As shown in Ref. 16, it is possible to control minimum phase systems using only the first
non-zero Markov parameter. Figure 10 shows the closed-loop response with nc = 50 and B̄zu constructed
using only the first non-zero Markov parameter. In this case, the closed-loop system converges to the same
steady-state performance as shown in Figures 8 and 9; however, the closed-loop converges more quickly, by
Ut/c = 150. Furthermore, the peak transient performance is similar to the cases shown in Figures 8 and 9.

V.B. Minimization of Cd with sinusoidal inlet disturbance

In this example, the control objective is to minimize the drag coefficient in the presence of an external
disturbance. More specifically, the inlet velocity is disturbed from its nominal value by a sinusoid with an
amplitude equal to 3 percent of the nominal free-stream speed and a period equal to 100 normalized time
units. Figure 11 shows the closed-loop response with the adaptive controller (10) and (22)-(26) implemented
in the feedback loop where nc = 50 and B̄zu is constructed using only the first non-zero Markov parameter
from Vapp to Cd. The system is allowed to run open loop until Ut/c = 100, then the adaptive controller is
turned on. After approximately one period of the disturbance or by Ut/c = 200, Cd converges to zero.

Figure 12 shows the flow field corresponding to the steady state flow condition that is achieved in Figure
11 after Ut/c = 200. As shown in Figure 12, the adaptive control reattaches the flow and the streamlines
behind the DBD actuator are flattened as compared to the nominal flow conditions shown in Figure 3.

It should be noted that while Cd is driven to zero, Cl displays steady-state oscillations. This result is
somewhat surprising because there is typically a strong correlation between Cl and Cd; however, the residual
oscillation in Cl can be explained by the steady-state oscillation in Vapp, which occur after Ut/c = 200. The
sinusoid control signal is required to cancel the impact of the sinusoidal inlet disturbance and drive Cd to
zero. However, this control signal amplifies the oscillations in Cl. To explain this physically, we examine the
pressure, drag, and lift coefficients at points along the surface of the airfoil at the normalized time instances
t1 and t2, as shown in Figure 11. Figure 13 shows the value of the pressure coefficients Cp along the surface
of the airfoil at t1 and t2. At t1, the control voltage Vapp is at its maximum steady-state value, whereas, at
t2, the control voltage Vapp is at its minimum steady-state value. As shown in Figure 13, when Vapp is at its
maximum at t1, the pressure on the upper surface of the airfoil near the leading edge is more negative than
at t2. Thus, the suction peak on the leading edge of the upper surface is larger at t1 than at t2. Similarly,
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Figure 10. For a steady free-stream flow with Re = 300, the adaptive controller (10) and (22)-(26) with nc = 50 and
B̄zu constructed using only the first non-zero Markov parameter achieves the control objective of minimizing Cd by
Ut/c = 150.
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Figure 11. For a flow with sinusoidal inlet disturbance and Re = 300, the adaptive controller (10) and (22)-(26) with
nc = 50 and B̄zu constructed using only the first non-zero Markov parameter is turned on at Ut/c = 100, and the
closed-loop system achieves the control objective of minimizing Cd by Ut/c = 200.
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Figure 12. For a flow with sinusoidal inlet disturbance and Re = 300, the adaptive controller (10) and (22)-(26) with
nc = 50 and B̄zu constructed using only the first non-zero Markov parameter is able to reattach the flow behind the
DBD actuator and flatten the streamlines.

the pressure peak located on the upper surface of the airfoil just downstream of the DBD actuator is larger
at t1 than at t2. Thus, at t1, the DBD actuator with its higher control voltage draws more flow from the
upstream and induces a faster wall jet downstream when compared to the condition at t2.
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Figure 13. The suction peak on the leading edge of the upper surface of the airfoil is larger at t1 than t2. Similarly,
the pressure peak on the upper surface of the airfoil just downstream of the DBD actuator is larger at t1 than at t2.
Note that the flow has a sinusoidal inlet disturbance and Re = 300.

The variation in the pressure distribution between t1 and t2 impacts the lift and drag forces in different
ways, and thus leads to different variations in the lift and drag forces along the surface of the airfoil. Let
Ĉd(t, s) and Ĉl(t, s) be the normalized pressure forces along the surface of the airfoil in the direction of drag
and lift, respectively, as a function of normalized time t and the position s along the surface of the airfoil.
Note that Cd(t) is the integral along the surface of the airfoil of Ĉd(t, s), and Cl(t) is the integral along the

surface of the airfoil of Ĉl(t, s). Next, define δĈd(s)
△
= Ĉd(t1, s)− Ĉd(t2, s) and δĈl(s)

△
= Ĉl(t1, s)− Ĉl(t2, s).

Figure 14 shows the value of δĈd along the surface of the airfoil. The change in the suction peak between t1
and t2 results in a value of δĈd that is negative at the leading edge and later becomes positive. The change
in the pressure peak between t1 and t2 causes δĈd to be negative. Integrating δĈd(s) along the surface
of the airfoil yields approximately zero because δĈd is negative then positive then negative again. Thus,
Cd(t1) ≈ Cd(t2).

In comparison, Figure 15 shows the value of δĈl along the surface of the airfoil. The change in the
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Figure 14. In the direction of the drag force, the change in the suction peak approximately cancels the change in
pressure peak between t1 and t2. Therefore, the integral of δĈd(s) along the surface of the airfoil is approximately zero,
and thus, Cd(t1) ≈ Cd(t2). Note that the flow has a sinusoidal inlet disturbance and Re = 300.

suction peak between t1 and t2 results in a value of δĈl that is positive. The change in the pressure peak
between t1 and t2 causes δĈl to be negative. However, integrating δĈd(s) along the surface of the airfoil
yields a positive number because the increase in the suction peaks exceeds the decrease in the pressure peak.
That is, the integral of the positive portion of δĈl exceeds the integral of the negative portion of δĈl. Thus,
Cd(t1) > Cd(t2), as shown in Figure 11. Additional numerical study is required to determine whether it
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Figure 15. In the direction of the lift force, the change in the suction peak exceeds the change in the pressure peak
between t1 and t2. Therefore, the integral of δĈl(s) along the surface of the airfoil is positive, and thus, Cd(t1) > Cd(t2).
Note that the flow has a sinusoidal inlet disturbance and Re = 300.

is possible to simultaneously stabilize both Cd and Cl in the presence of an inlet disturbance with a single
DBD actuator. The ability to simultaneously stabilize both Cd and Cl may depend on the airfoil geometry
as well as the position and orientation of the actuator.

V.C. Drive Cl to a commanded value without inlet disturbance

In this example, the performance variable z = Cl−0.8. Thus, the objective is to drive Cl from its nominal
value to the commanded value 0.8. The learning rate α = 500 is selected to enforce slow adaptation. Figure
16 shows the closed-loop response with nc = 50 and B̄zu constructed using the 50 Markov parameters
identified in Figure 6. Note that the time average of Cl converges to the commanded value 0.8; however, Cl
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oscillates with small amplitude about the commanded value. It is anticipated that these oscillations will die
out over time. Alternatively, adjusting the learning rate α may improve the convergence speed.
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Figure 16. For a steady free-stream flow with Re = 300, the adaptive controller (10) and (22)-(26) with nc = 10 and B̄zu

constructed using 50 Markov parameters drives the time average of Cl to the commanded value 0.8. However, there
are small amplitude residual oscillations in Cl.

As noted in the previous section, Figure 7 suggests that the linearized system from Vapp to Cl has a
single nonminimum-phase zero. Numerical evidence suggests that it is possible to control nonminimum-
phase systems using knowledge of only the first non-zero Markov parameter and the nonminimum-phase
zeros. More specifically, B̄zu is constructed from the polynomial (32) where µ equals d plus the number
of nonminimum-phase zeros, Hd is the first non-zero Markov parameter, and Hd+1, . . . , Hµ are selected so
that the roots of (32) are approximately the nonminimum-phase zeros. For this example, B̄zu is constructed
using the first non-zero Markov parameter and the approximation of the single nonminimum-phase zero
given by the root in Figure 7 that lies outside of the unit circle. Figure 17 shows the closed-loop response
with nc = 50. The time average of Cl converges to the commanded value 0.8. Furthermore, the residual
oscillations in Cl are improved over the case where all 50 Markov parameters are used.

V.D. Minimization of Cd with Re = 60, 000 and no inlet disturbance

In this example, the control objective is to minimize Cd or a flow condition with Re = 60, 000, the airfoil
angle of attack set to 11 degrees, and the DBD actuator is located at 5 percent of the cord length from
the leading edge of the airfoil. For this example, the time step is 0.005. We identify the first 50 Markov
parameters using the impulse response method described in Section IV. The Markov parameter polynomial
(32) with µ = 50 using the 50 identified Markov parameters has all of its roots within the unit circle. Thus, it
can be inferred that the linearized discrete-time system from Vapp to Cd is minimum phase, and we construct
B̄zu using only the first non-zero Markov parameter. The learning rate α = 300 is selected to enforce slow
adaptation. Figure 18 shows the closed-loop time histories for Cd, Cl, and Vapp when the adaptive controller
(10) and (22)-(26) is implemented in the feedback loop with nc = 50. The adaptive controller is turned on at
Ut/c = 10 and, by Ut/c = 20, Cd converges to zero. At this steady-state condition, Cl = 1.37 and Vapp = 6
kV. Note that the voltage required to minimize Cd in this case is significantly less than the voltage required
in the case Re = 300 because the nominal flow separation in the case Re = 60, 000 is more moderate, as
shown in Figure 19. The nominal flow is mostly attached; however, there is a separation bubble near the
trailing edge of the airfoil, which covers about 40 percent of the airfoil length. Figure 20 shows the flow
structure is reattached after the adaptive controller minimizes the drag coefficient.
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Figure 17. For a steady free-stream flow with Re = 300, the adaptive controller (10) and (22)-(26) with nc = 10 and B̄zu

constructed using only the first non-zero Markov parameter and the single nonminimum-phase zero drives the time
average of Cl to the commanded value 0.8. Furthermore, the amplitude of the residual oscillations in Cl is smaller than
in the case where all 50 Markov parameters are used (see Figure 16).
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Figure 18. For a steady free-stream flow with Re = 60, 000, the adaptive controller (10) and (22)-(26) with nc = 50 and
B̄zu constructed using only the first non-zero Markov parameter is turned on at Ut/c = 10 and achieves the control
objective of minimizing Cd by Ut/c = 20.
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Figure 19. For a steady free-stream flow with Re = 60, 000, a 1 kV nominal DBD actuator voltage results in a separation
bubble near the trailing edge of the airfoil.
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Figure 20. For a steady free-stream flow with Re = 60, 000, the adaptive controller (10) and (22)-(26) with nc = 50 and
B̄zu constructed using only the first non-zero Markov parameter is able to reattach the flow behind the DBD actuator.
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VI. Conclusions

In this paper, we used a discrete-time adaptive controller to control the aerodynamics around a SD 7003
airfoil with a DBD actuator located near the leading edge of the airfoil. More specifically, numerical flow
simulations demonstrated that the adaptive control is able to minimize the airfoil’s drag coefficient Cd for
both steady and sinusoidally disturbed free-stream flows with a Reynolds number of 300. In addition, the
adaptive controller was able to minimize Cd for steady free stream flows with a Reynolds number of 60,000.
In these cases, the adaptive controller was able to achieve the control objective using very limited information
of the aerodynamics. In particular, the adaptive controller requires only knowledge of the relative degree
d and the first non-zero Markov parameter Hd of the linearized plant dynamics from Vapp to Cd. The
adaptive algorithm is able to minimize Cd with limited plant information because, in part, the linearized
dynamics from Vapp to Cd appear to be minimum phase. However, the adaptive controller has been shown
numerically to work well on nonminimum-phase systems as well. In this paper, the adaptive control was
demonstrated on the dynamics from Vapp to Cl, which was shown to be nonminimum phase. In this case,
the adaptive controller successfully drove Cl to a positive commanded value using limited plant information,
namely knowledge of d, Hd, and the location of the single nonminimum-phase zero in the linearized transfer
function from Vapp to Cl. Future work will include more extensive numerical study of the adaptive controller’s
performance under different flow conditions, including a wider range of Reynolds numbers and free-stream
flow conditions. In addition, further work is required to determine if it is feasible for the adaptive controller
to simultaneous stabilize Cd and Cl under unsteady free-stream flow conditions.
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