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ABSTRACT

Information flow and processor usage in a multiple access computer
system is described by several Markovian queueing models. The performance
of the system under various loading conditions is analyzed using a computer
program designed to evaluate the equilibrium probability distributions of

large scale Markov processes.






INTRODUCTION

A numerical technique for determining the stationary distribution of
large-scale Markov processes has recently been developed at this laboratory. 1
The technique is used in this report to analyze Markov models of a typical
on-line multiple-access command and control computer system. 2 The
models incorporate the important queueing phenomena in the information
transfers among the high speed memory, the disc file and the user
communication consoles, and in the multiprogrammed operation of the
central computer. Performance parameters for the system are defined and
used to present the results of the analysis.

A model of the disc channel component of the system is also
analyzed to determine how the channel would perform under different loading
conditions with single or multiple block transfer capabilities.

The operation of the computer system is described in Section 1 and the
aims of the analysis in Section 2. Section 3 is a brief survey of the modeling
techniques and approximations used. Sections 4, 5, 6 and 7 describe the
actual models and results. Section 8 gives conclusions and suggests some

further work in analysis of this type of computer system.



1. System Description

This section describes the computer system in sufficient detail for
understanding of the modeling process. For further detail the reader should
consult Refs. 2 and 3.

1. 1. The On-Line Computer System

The major hardware sections of the on-line computer system are
shown in Fig. 1. A central computer, associated with a large core storage
module, executes all user task programs in the time-shared mode. The
hardware provides storage protection and I/O instruction traps so that the
central computer can be multi-programmed. Bulk storage for programs
and data files is provided by a large capacity disc memory unit. A disc
file control unit (DFCU), containing a core-storage buffer and the necessary
control logic, controls information transfers between the computer and the
disc memory unit. The query-response communication consoles (Q-RCC)
have several facilities - type keyboard, program selection keys, CRT
message display, message storage - for the operation to use in commu-
nicating on-line with his program or the control program. The console
I/0 buffer (CIOB) contains a core-storage buffer and control logic for
communication between the consoles and the computer. The magnetic
tape and paper tape units provide alternative media for storing and for
loading new programs and data into the system. The I/O channels operate
on an interrupt basis independently of the central processor, with the
main core memory access cycles being shared.

The storage protection features of the computer are such that the
-9-



914 9s!qg

Hun [o4u0)
3]14 - 9s1Q

*(wayshs peaayy a[3urs ayy)
waysds xandwiod ssadoe aydnnw aurf-uo uy 1 ‘81

young-apoay
9do]-1adoy

m_owco& 3josuo)

dSH

sjiun ado|
o1jaubopy

]

L

4944ng Or1
2]0su0)

S[auuoy) O/1

910D ¥ ¢¢

ndDd




core store may be completely used by one program or else divided into

two, four, or eight subsections (interlaces). Different programs can

reside in separate interlaces, some of which are in general used by the
executive control program (ECP). A user program executing within an
interlace can transfer control to another interlace only through modification
of registers by the ECP. Each interlace is subdivided into eight blocks,

and transfer of control outside of each block requires register modifications.
All 1/0 operations are executed under control of the ECP.

Under one executive control program modeled here (ECP-1), the core
is always operated in the eight-interlace mode. ECP-1 will be allocated
the lower 1024 locations of memory (constituting a small fraction of each
interlace), along with a variable number of interlaces, and it will have
the ability to vacate all except the 1024 low-core locations. However,
for normal operation it will occupy several interlaces, with its less
frequently executed sections being overlaid from the disc file.

Console operators will be concerned with special tasks which
require computer assistance for information storage and retrieval, report
generation, and particular computations. As users of the system they
will request the execution of sequences of programs by operating select
buttons. Each sequence will consist of standard task programs arranged
in order and designed to provide automatic control, as well as the proces-
sing requirements, for the operators' tasks of planning, analyzing, and
reporting.

Task programs and data files will be kept in the disc memory unit.
-4-



Upon a request for a particular sequence, the programs will be called, in the
desired order, to assigned interlace positions. During execution the task
programs will generate a series of query-response communications with
the console operator, and the responses will provide branching information
for the sequences. Other necessary information and utility programs
will be called from the disc memory unit.

1. 2. The Disc-File Channel

A schematic diagram of the disc-file channel (DFCU) is shown in
Fig. 2. It is designed to control information transfers among three
computers and three disc-memory units, and also disc-file searches.
Information is transferred in 512-word blocks, in two stages. After the
first stage the block is contained in a 512-word sector of the DFCU
core store., The second stage is to transfer the block either to the disc-
memory unit or to the computer core. The DFCU has seven buffer
sectors available and is capable of simultaneously controlling three data
transfers between buffer sectors and either computers or disc-memory
units. The limitation is that only two transfers involving any one disc-
memory unit or any one computer can be in operation at one time.

The computer system described in Section 1. 1. has only
one computer and one disc-memory unit. Consequently this configuration
would make possible a higher information-transfer rate per computer
than when three computers are competing for the channel facilities.
However, the flexibility in the ECP needed for executing more than one

block transfer simultaneously would have to be implemented. ECP-1,
-5-
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referred to in Section 1. 1, will execute only one block transfer at a time.

Information transfers are initiated from a computer by transmitting
an external function to the DFCU. The transfer operation is then carried
out independent of the computer except when core memory access cycles
must be shared between the computer and the I/O channel during one
stage of the transfer. Once the DFCU has acted on the external function,
the transfer time is determined by the positioning and latency time of the
disc arm plus the time taken for the two stages of the block transfer.

A disc-file search can also be requested. This involves positioning
followed by a maximum of eight disc revolutions during which the search
key is sought in all tracks of a given position. Since only the address of
the block containing the key is returned to the computer, the transfer
time is negligible.

The DFCU will attempt to execute three transfer requests
concurrently when required. Since each disc-memory unit has only two
positioning devices with their associated logic units only two operations
involving any one disc-memory unit can be executed concurrently. Therefore,
as requests are treated on a first-come/first-served basis, conflicts
could reduce the number of concurrent operations to two.

2. Aims of Analysis

2. 1. General Aims
For the proposed hardware and software configurations of the
given system we wish to determine:

-7-



(1) System capacity
(a) Response time to operator
(b) Program throughput
(c) Information transfer capacity
(2) Bottlenecks in information flow and processing
(3) Advantages to be obtained from possible hardware and
software alternatives to the present system
(4) Scheduling and priority algorithms which will optimize
system performance criteria
2. 2. Analysis of the On-Line Computer System
The on-line computer system, hereafter called the single thread system,
with its associated execution control program, ECP-1, is a pilot version of
larger multi-computer systems. Programs run on this system will be
essentially the same in the larger systems, as will be the mode of accessing
programs and data from the disc memory units and the mode of communication
among the consoles, user programs, and control programs. Therefore
results from this analysis will be important as a guide to the performance
of larger systems.
In multiple access operation a necessary feature is that those
programs which require only a moderate amount of processor* time do not

experience long waiting times so that the operator encounters no serious delay

*
Here processor is used in general sense to mean CPU, I/O channel, etc.

-8-



in his work outside the computer. Therefore an important result to be
obtained from the model solutions is a measure of the number of consoles
(operators) that the system can satisfactorily serve in parallel. Since

at this stage is difficult to define "serious delay" results must be presented
on a useful comparative scale.

To obtain any performance measure it is essential to have considerable
knowledge of the characteristics of the ECP and the task programs.
Important characteristics concern CPU execution times, disc-channel
usage, console communications, and operator response times when the
program is dependent on the operator's supplying data. Because of the
specific and repetitive nature of the tasks to be performed by operators,
it seems that if modes of operation are fixed the programs will have
reliable and therefore measurable statistics. In the absence of such
measurements, the present analysis is carried out for various ranges,
thought to be representative, of the important characteristics.

At the same time as the system's performance is measured, the use
of major system components is measured as well. This is necessary
in the case of the CPU and the disc channel, so that the effects of their
processing capacities can be determined.

Because of the number of indexing and validity checking tables to
be accessed during the loading of a task program, a design alternative
has been suggested in which these tables would be stored in a device
providing faster access (e.g., a fixed-head-per-track disc). Such an

-9-



alternative would considerably reduce the time of loading and of the loader's
occupying the disc channel. To provide a measure of the gain the costlier
equipment would give, we calculate herein the performance parameters for
the loading times estimated for both cases.

Algorithms for scheduling the use of system processors are an
important part of the ECP, for they may significantly affect the efficiency
and capacity of the system. Since heavy use of the disc channel is expected, two
possible disc-channel-scheduling algorithms are implemented in the
models and the system's performance under each is compared.

One of the main problems to be resolved in any multi-programming
system is the most desirable mode of sharing high-speed storage between
user and executive programs. By appropriately modifying the amount of
disc I/0 traffic generated by a program according to the amount of high-
speed storage space it receives, some comparisons are made.

2. 3. Analysis of the Disc Channel

As mentioned in Section 1, the disc channel is designed to serve up
to three computers and three disc-memory units. When only one computer
is using the channel, as in the single-thread system, it is possible for
two data transfers for that computer to be in execution concurrently.

Two input transfers or two output transfers between the core buffer of
the DFCU and the computer cannot be carried out simultaneously, but
the core-to-core transfer here is so much faster than the mechanical

access.used with the disc that in effect the channel has dual-transfer

-10-



capacity.

However, the I/O channel control of the computer is designed to
handle only one input transfer and one output transfer at any time; so some
additional software control is necessary to handle two transfers in parallel.
The improvement in information transfer capacity for this increase in
software complexity is measured by comparing the solutions obtained by
application of two different models.

In the larger systems proposed, the disc channel will service two
or three computers. It is also possible in these systems for the DFCU
to execute two data transfers concurrently for one computer, provided
that the additional software control is in effect. However, in the multi-
computer systems the limitation that the DFCU can concurrently control
only three transfer operations means that only one computer can have two
transfers in execution at any time. Hence transfer rate per computer
will not improve as much as in the single-computer system. Models
for multi-computer use of the disc channel are analyzed to make this

comparison.

-11-



%
3. Multi-Dimensional Continuous-Time Markov Queueing Models

We now briefly present some of the techniques used in producing
Markov queueing models of computer systems.

3. 1. Continuous-Time Markov Distributions

A given program will use the various processors of the system for
random intervals of time. These service intervals canbe described by a probability
law in the form of a continuous time distribution function Fx(t) = PX < t),
which gives the probability that the random interval X is not greater than t.
Some useful distributions which give the Markov property are now presented;

all of them are derived from the basic distribution.

(a) The Negative Exponential Distribution

X
For a discussion of the use of such models and techniques for

their analysis the reader is referred to Ref. 4. There it is shown that
the limiting state probabilities, p; (the probability of the system exist-

ing in state i under equilibrium conditions), can be found by solving
a set of linear operations

) u.p, = 0 i=0,1,..., M

Unless the model has the Markov property (either because of the probability
distributions'involved or the through expansion of the ‘state space) the

linear equations cannot be formed.

-12-



The mean X = 1/u. Such a distribution function, and its associated density
function, are plotted in Fig. 3. For use in explaining the derived distributions
we diagram schematically, in Fig. 4, a device with service time distributed
according to Eq. 3.1.

(b) The Erlang Distribution

This distribution is related to the negative exponential distribution in
the following manner. Consider the total service time required by a program
from a particular processor to be composed of n phases. The phases must
be executed in order, and one phase must be completed before the next
begins. If the service time in each phase is distributed according to a
negative exponential, the distribution of the complete service time gives
a model which has the Markov property. * This model describes the
general n-th order Erlang distribution; it is schematically represented

in Fig. 5.

The use of the Erlang distribution and other distributions derived
from the exponential is discussed by Morse (Ref. 4), who makes the
following important observation: '....only exponential facilities give rise
to simple linear equations for detailed balance of transitions between
states, independent of time. For other types of distributions we normally
have to solve much more complicated sets of equations. Yet many
operational situations correspond to service time distributions which are
appreciably different from exponential . ... a fair number of these can
be simulated by a suitable choosen set of exponential facilities, with
appropriate rules for transition. This is not to say that the service
facility in question necessarily has the actual structure corresponding
to the model which simulates its statistical behavior, all that is
necessary for our analysis is that the model does simulate this
behavior. "

-13-



10

P(x<t)

|/ dP/dt

Fig. 3. Distribution functions P(X< ut) and density functions 1/u dP/dt
derived from the negative exponential.
The mean of each distribution is 1/u.
(a) Negative exponential.
(b) Special second order Erlang.
(c) Special fifth order Erlang.

(d) Hyperexponential, p, = /2, ho = 2u.
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Fig. 4. A negative exponential service channel with mean
service time 1/p.

— K Bp —————dp, —

Fig. 5. An n-th order Erlang service channel.

-15-



If we constrain the parameters in Fig. 5 so that

Bo= By = By = ooen = @ (3.2)
we obtain the special n-th order Erlang distribution, for which
n-1 k
PX <t) =1 - ¢t 3 @b (3.3)
- K=0 k!

The meanX = 1/u .

(c) The Hyperexponential Distribution

In this distribution, the random service time for a particular processor
is determined by some one of n possible negative exponential distribution
functions. There is a discrete probability function which independently
determines, for each use of the processor, which distribution function is
in effect. An n-th order hyperexponential service channel is represented
schematically in Fig. 6. The quantities 2 define the discrete probability

function so that

n
) o =1 (3. 4)
i=1
N -u.it
PX <t) =1 - E a., e (3.5)
- : i
i=1
. n
The mean X = Z ai/ui. Again Morse's remarks, as quoted in the footnote,
i=1

are relevant.

-16-
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3. 2. Probability Branching

Figures 5 and 6 show how a set of service devices with negative
exponential characteristics can be made to simulate a service with a completely
different distribution. The probabilities associated with each of the service
distributions determine the resultant distribution; however, none of the individ-
ual service distributions need correspond to that of any physical device.

The same technique may be used in modeling a system in which the
service of only one of two or more different processors may be requested. The
difference here is that we are now concerned with distributions which represent
the service times of actual processors, and the use or probabilities to
determine which processor is selected requires the assumption that each
request for use of a processor is independent of all preceding requests.

For example, consider a program which has been in execution in
an on-line environment and has stopped because it requires some intermediate
set of data. The required data might be on a disc file or might need to be
supplied by a console operator in response to a query generated by the program.
Either way, the time required to supply the data will be random: the time
required for use of the disc channel, or human response time. The time
taken for either kind of data retrieval can be well modeled by some
exponentially derived distributions, although one would expect the means of
the distributions in the two cases to differ considerably. If the two types
of request occur independently with fixed frequency in all programs, the
use of the CPU, disc channel, and operator channel (including the operator)

-18-



could be very simply modeled as shown schematically in Fig. 7.

Here we have assumed that a single operator is using the system, so
that no queues for use of any of the processors can form. The program
executes in the CPU for a random length of time, exponentially distributed
with mean 1/ My Then, with probability p, it requests data from the disc file,
so that the retrieval time is exponentially distributed with mean 1/pu g5 OT
with probability 1 - p, it requests information from the operator, whose
response time is exponentially distributed with mean 1/ Mg It is assumed
that the program halts until the requested information is available, then
executes for another random interval of time, and so on.

This very simplified example (in which loading of programs is
completely ignored) illustrates the use of probability branching in a model
to take into account random requests for processors in a system. The resultant
model is a three state Markov process from which can be determined the steady-
state probability that each processor of the system is in use. If state 1 is
defined to be that the program is in execution, state 2 that the program is
awaiting disc-file retrieval, and state 3 that the program is awaiting the

console operator's response, the stationary probabilities p; are given by

Eq. 3.6.
"y Ho g ] Py
Pul "'U'z 0 . p2 = 9 (3'6)
_(1 'p)Lll 0 'Us_ __p3_4

The type of equations shown in Eq. 3.6 are efficiently solved by RQA1 when
-19-
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a -] Operator
Response

Fig. 7. A model of a simple on-line computer operation.

I-p

Fig. 8. Probability branching in a negative exponential
service channel. The result is equivalent to a
negative exponential service channel with mean

service time 1/p u.
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there is a large number of states.

A special application of probability branching is illustrated in Fig. 8.
With probability 1 - p, on completion of service the request being processed
returns for another complete processing operation. If the service time for
each processing operation has a negative exponential distribution with mean
1/u, it can be shown that the total processing time taken by each request
has a negative exponential distribution with mean 1 /p,ul. This modeling technique
is useful in the following type of example. Suppose that a particular processing
operation consists of a random number of identical phases--for example,
loading of a random number of independently located blocks from a disc file.
Suppose further that the completion of each phase generates a decision point;
for example, the arrival of a request for a disc-file operation that takes
precedence over block-loading will cause the block-loading to be interrupted,
but only after the block being processed is completely loaded. The decision
strategy involved here can be incorporated by using a model such as that
diagrammed in Fig. 8. If the loading time in the example had been modeled
by a single exponential distribution, there would have been no convenient
method of incorporating regular decision points.

Inherent in the inclusion of the probablility branching is a discrete
probability distribution on the number of times the processor is used in a
single request. It is immediately evident that the mean of this distribution

is 1/p. In fact, the distribution is geometric and has a variance of (1 - p) /pz.

-921-



4, Models of the Single-Thread System

The basic queueing model used for analysis of the single-thread system
is diagrammed in Fig. 9. The random service times associated with each
operation are modeled as in Section 3. Any point in the model at which a queue
for use of a service device may form is represented by a circle containing a
number equal to the maximum allowable queue length. The direction of
request flow is indicated. It is necessary to describe some service rules
before the model is complete, and these, together with variations of this model,
are given below.

4. 1. Service Rules

In all the models analyzed we consider that a fixed number N of
operators are continually requesting operational sequences to be executed.

One sequence is in execution for each operator at any time, and this sequence
is completed before the next is begun. It is assumed that the particular
interlace mode being used is sufficient to hold one task program of the current
sequence requested by each operator. These programs queue for use of the
CPU, and it is assumed that they execute for a random period of time
(distributed according to a negative exponential with mean 1/ ul) before they
stop for one of the following three reasons:

(a) With probability p the task program has called for a data block,

subroutine, or some other information block from the disc file and

requires that this block be loaded before execution can continue.

The time for accessing and transferring ring an information block

-929-
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Fig. 9. The basic model of the single-thread system.
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from disc file to computer core is modeled by a negative exponential
distribution whose mean is designated by 1/u 9 for the disc-memory unit
of this system it is about 150 msec.

It is possible for a queue of such transfer requests from some
or all of the N programs in the system to form. This queue is designated
Q2 in Fig. 9. After the requested block is transferred, the task
program is again eligible to execute. If the CPU is idle, the program
commences execution immediately; otherwise it enters queue Q1
to await execution.

(b) With probability q the task program has transmitted a message
to the console operator, and he must respond before execution can
continue. Normally he then interprets the message, determines
his response, and then responds by use of either the type keyboard
or a select button. The time involved for these operations is
random; it is modeled by a negative exponential distribution with
mean 1/u 3"

Besides the operator's response time, there is involved the
time for transferring information from the computer to the console
and back to the computer in the query-response cycle. This transfer
uses a single I/0 channel and the console 1/0 buffer, which serves
all consoles. Hence there could be some queueing in this channel,
but because the human response time involved in the total operation
is so much longer, this queue and transfer time is ignored. Thus,

-94-



in effect it is assumed that query-response cycles with all N operators
can be carried out in parallel.

When the operator's response is received, the program is
eligible to enter the queue Q1 to execute.

(c) With probability r (r = 1 - p - q) the task program has completed
execution and a call has been made to load the next task program of the
operational sequence.

Loading requires accessing of index tables, validity-checking
tables, and program and data blocks from the disc file. Many short
periods of execution of the program-loader section of the executive
program will be interspersed among the accessing of blocks from
the disc file. The relative times involved are such that the loading
time will be completely determined by the disc-acessing times;
in the basic model this time is assumed to have a negative exponential
distribution with mean 1/u 4

Requests for loading of task programs might come from
all operational sequences within a short period; this would give a
queue, Q3, of loading requests. Each task program must be completely
loaded before the next is begun. When loaded, the task program
enters queue Q1 for execution.

So far we have mentioned only the use of the processors by task programs.
But since the executive program is a major user of the CPU and the other
processors its requirements will affect the processing of task programs, and
must be allowed for. For simplicity in modeling, almost all executive-

program processor time will be modeled as an integral part of the processor
-95-



time taken by the task programs currently in execution. We will now consider
the use of each processor in detail.

Task-program use of the CPU has already been described as a series
of execution phases interrupted by 1/0 operations. The execution phases will
be assumed to be composed of

(a) Task-program CPU time

(b) Executive-program CPU time necessary to carry out the requests

of the current phase of the task program and general executive

control functions for the system
The total CPU time taken by both task program and executive program is described
by a negative exponential distribution, with a mean of 1/ Hys for each phase
of execution. As the probability branching in the model provides for a mean
number, 1/r, of execution phases per task program, we assume, in effect,
that the total CPU time per task program has a mean of 1/ Tty with negative
exponential distribution (see Sec. 3.2). A constant portion of this, dependent
on the values of p, q, r, and Ky is assumed to be used in executive-program
functions.

In all models the task program produces a random number of
independent requests for block transfers using the disc channel. No distinction
is made between input and output transfers, and it is assumed that the disc
channel can handle only one block transfer at a time (as under ECP-1).

The number of such requests per task program is geometrically distributed,

with mean p/r and variance p/rz. In general, any needs for swapping blocks
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of the executive program between computer and disc file are assumed to be
included in the quantities attributed to the task programs. If all the executive
program and its tables were kept in core, then there would be no such executive
disc traffic; however, if storage capacity is limited, the executive program
may contribute significantly to the disc I/O traffic. Any I/O traffic to the
consoles generated independently by the executive program is also modeled

as part of the random number of query responses generated by the user's

task program.

The one executive function which has been modeled separately is the
loading of a task program. The use of the CPU for this function is not
distinguished; rather, it is lumped with task program CPU time. However,
the function of the disc channel in loading is important in any model. The number
of blocks accessed during the loading of a task program is a random variable,
dependent on the program size and the number of tables to be accessed from
the disc file. However, the standard interlace size assigned to programs,
and the necessary validity-checking and index tables which have to be accessed,
do suggest that a distribution with less variance than the negative exponential,
as well as a low probability of very short loading times, would be required
to describe the loading time. This leads to some alternatives to the basic
model.

Since the operations of program-loading and disc I/O requested by task
programs cannot proceed concurrently, the executive control program must

incorporate a scheduling algorithm. Hence the sequence of block transfers
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which constitues a loading operation might be interrupted by a single block
transfer requested by some task program. However, in the basic model this
was not permitted; entries in Q3 were given priority over those in Q2° A
d:fferent priority scheme is outlined in the description of the alternative models.

4, 2. Variations of the Basic Model

We now identify the three models used in this analysis. Model 1 is
the basic one described above and represented in Fig. 9. In use of the disc
charnel, the program-loading operation is given priority so that, once loading
has begun no other disc I/O operation is carried out for any other program.
If a loading request arrives when a block is already being transferred for a task
program, this transfer is completed before the program loader assumes
control of the disc I/O channel. All requests for program loading in Q3 are
then served before any more entries in Q2 are served.

A schematic diagram of model 2 is shown in Fig. 10. Here a major

change is the representation of loading time by a second-order Erlang

distribution. The mean of each phase of the distribution is x Lz (for A < 1);
thus the mean loading time has been directly related to the mean block-transfer
time from the disc file 1 /“2' The priority rules for use of the disc channel
are the same as in model 1.

Model 3 is also represented by the schematic diagram of Fig. 10.
In this model, however, we have attempted a simulation of the case in
which preemptive priority is given to the use of the disc channel for block
transfers requested by task programs (entries in Qz). If a task program requests

a block transfer while a loading operation (from Q3) is in progress, the current

block transfer in the Q3 operation is completed, and then the use of the disc
-98-
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channel is given to the Q2 operation. Any additional requests for Q2 operations
are served before the loader is allowed to use the disc channel again. To
implement this strategy in the model, we have used the probability branching
in each phaSe of the Erlang channel. Each time an event in the model occurs
that corresponds to a completion in the exponential channel (mean service time
1/u 2) of the loader, a check is made to see if any entries are present in Q2.
If so, all these entries are serviced, preempting the loading operation. When
the loading process is allowed to resume, the service enters either the first
or the second phase of the Erlang channel, according to the branching probability
A. This, in an approximate fashion, corresponds to block transfer in program-
loading with preemption by task program I/0.

In no model has any attempt been made to represent the different use
of the disc file and data channel in the search operation. That use must
here be considered part of the normal disc 1/O operations. It is assumed that
an I/0O request causes a halt in the requesting program. All program and
operator characteristics are assumed to have identical distributions for
each operator.

5. Results from the Analysis of the Single-Thread System

5. 1. Normalizing

All service times used in obtaining solutions have been normalized to
the mean disc access and transfer time for a single block. Thus, in all cases
1/ ho = 1. The hardware of the single-thread system gives this mean block-
transfer time to be 150 msec. The absolute values of the mean service times
assumed for all other processor uses can be readily calculated from this figure.
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5. 2. Performance Measures

Since one of the prime purposes of this type of computer system is to
provide a satisfactory computation aid and automatic control facility for the
data-processing steps required by operators using Q-RCC consoles, the
system's response to operator inputs is an important measure of performance.
Task programs which make up the operational sequences requested by
operators will make varied use of the CPU, core storage, disc, and console
channels. Programs requiring a large amount of processor time would cause
the operator to experience delays, even if he were the sole user of the system.
On the other hand, programs requiring moderate amounts of processor
time and frequently interacting with the operator may give what the operator
will judge.as instantaneous response, especially if he is the sole user of the
system.

In the light of these comments, one useful measure of the system's
capacity is the reduction in service that an operator and his program
experience as more consoles are put into use. Two parameters evaluated from
the stationary distributions on the states of the models will give such a
measure. The first is the operator busy fraction which is that fraction of
the time the operator is using the system that he is actually engaged in
making responses to his task program. Obviously this parameter will depend
greatly on the relative mean values of the task-program processor times
and the individual operator's mental and physical response times. However,

it probably represents the average operator's subjective evaluation of the
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*
system. The second parameter is the task program response the average
fraction of the time a task program requires to use system processors that it

does actually use them. Defining,

B = operator busy fraction
M1 = the mean time a task program uses system processors
in its entire execution
M2 = the mean time an operator spends in response to his

task program
M,
We have task program response = »
1 B) M2

If there is only one task program in the system, it can use the CPU or I/O

channels whenever it requires, so that the task program response is 1.

The presence of more than one task program makes this parameter less than

1, and it is a measure of the overall queueing delays experienced by task

programs. It depends on operator's response time only insofar as programs

are not eligible to use system processors while waiting for operator response. **
Two more parameters give measures of processor usage: the probability

that the CPU is in use and the probability that the disc channel is in use.

Finally, the parameter program throughput is the mean number of task

programs completed per unit time. Program throughput can be derived

. . 5
This parameter is analogous to Scherr's™ response parameter.

* %
This restriction of the models will be true in most on-line operation,

except when I/O channel use is brought about by swapping programs.
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as a function N (the number of consoles in use by plotting either of the two

preceding parameters versus N.

Program throughput (N = n) _ Probability that CPU is in use (N
Program throughput (N = 1) ~ Probability that CPU is in use (N

(IR
[y
N’

5. 3. Results
Plots of the performance parameters defined in the preceding section
are given in Figs. 11 to 15. Important results from all three models are
given for a normalized range of task-program and operator response
characteristics. These are defined as follows, in terms of the model
parameters shown in Figs. 9 and 10.
l/ulr = mean CPU execution time per task program
(plus ECP overhead)
1 /u o = mean block -transfer time between disc file
and computer
1/ kg = mean operator response time
2/Au2 = mean task-program-loading time (models 2
and 3)
1/u 4 = mean task -program-loading time (model 1)
q/r = mean number of console query-response cycles
per task program
p/r = mean number of block transfers between disc
file and computer per task program (including
ECP overhead)

N = number of consoles in use
-33-



5. 3. 1. Processor Usage. In the next three sections all results
referred to will be from model 3. The same inferences could be obtained from
the other models.

Figure 11 shows how performance is limited as task programs make
increasing use of the disc channel. For these curves the mean task program
execution time is short (l/ulr = 1), and hence the CPU is idle most of the
time. When each task program makes only light use of the disc channel
(p/r = 5), we see that the operator busy fraction stays high for at least
three users. Nevertheless, the task programs experience significant
queueing delays in the system (note task-program response) since the
increase in the number of users causes the disc channel use to rise noticeably.
When disc-channel usage per task program increases to p/r = 20, the
disc channel becomes saturated. With five users it is in use 95%of the
time, and the operator busy fraction drops from 0. 73 to 0. 46. The task-
program response curve indicates the queueing delays in the disc channel.

The program throughput, plotted in Fig. 11 (b), curve 1, shows that,
for five users, programs are processed at 4.7 times the rate when there is
only one. The reason is that the dominant factor in program completion
rate is still the operator's response time, and operators can respond in
parallel. However, curve 3 shows that the program throughput is only
3.7 for five users; here queueing in the disc channel is causing significant
delays (shown by a task-program response of 0.31), and operator's response
time is no longer the dominant factor in the completion rate.

For the program characteristics used in Fig. 11, the CPU was
-34-



never in use more than 5%of the time. In Fig. 13 we have chosen a contrasting
set of characteristics, in which the CPU capacity is the performance limit.
Task program execution time is now relatively long: 1/ T = 75. Operator's
response time does not solely determine the completion rate, even when
there is only a single user of the system. Queueing delays for use of the
CPU become significant as soon as there is more than one user. Performance
is fairly insensitive to the range of disc-channel usage chosen. Owing to the
saturation of the CPU, the program throughput increases very little for more
than three users, and for five the operator busy fraction has dropped by 50%

Note that curve 3 gives slightly higher program throughput than curve
1. The higher frequency of block transfers for task programs in curve 3
increases the number of periods of CPU execution per program but reduces
the average duration of each period. The net result is to reduce queueing delays
and thus improve the program throughput.

5. 3. 2. Memory Sharing. In the final operating configuration of the
system, allocation of the core store to the executive control program and
to user programs will have to be carefully balanced. Reducing the allocation
to the ECP increases its contribution to the disc I/O traffic; by considering
this increase to be reflected in the number of disc I/O transfers per task
program in our model, we can reach some conclusions.

Reduction of ECP core storage will allow the use of core store to be
extended in two ways: additional task programs can be held in core con-
currently, and the number of interlaces pe}t task program can be increased.
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user program response
_____ operator busy fraction
——. — probability that disc channel isin use

SYSTEM RESPONSE AND
USAGE PARAMETERS

'/// (2)p/r=10

02'{/' (3)p/r =20

(b)

NORMALIZED
PROGRAM
THROUGHPUT

Fig. 11. System performance parameters from model 3 for l/ulr =1,
l/u2 =1, l/u3 = 20, 2/Au2 =15, q/r = 5.
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user program response

_____ user busy fraction

_____ user busy fraction (a dynamic curve)
—.——.— probability that disc channel is in use

1.0

SYSTEM RESPONSE AND
USAGE PARAMETERS

"~ (1)p/r=5
(2)p/r=10

(3)p/r=20
(4)p/r=40

NORMALIZED
PROGRAM
THROUGHPUT

Fig. 12, System performance parameters from model 3 for l/ulr =25
l/u2 =1, l/u3 = 20, 2/Au2 =15, q/r = 5.

’
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Fig. 13. System performance parameters from model 3 for l/ulr =75,
l/u2 =1, l/u3 = 20, 2/Ap.2 =15, q/r = 5.
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In constructing our models we have assumed that the number of concurrent
users of the system is small enough to allow a task program for each user to
be held in core at the same time. For two or three users this will often be
true; granted, for more users task programs will have to be swapped between
the core store and the disc file, but our present interest is in performance
for a small number of users.

Without detailed analysis of the ECP modules and complete statistics
on user programs, it is difficult to give anything but order-of-magnitude
estimates of how much disc-channel traffic will be generated by restricting
ECP core storage. In its entirety, ECP-1 will require more than four
interlaces, or half the core store. If allocated two interlaces, ECP-1 may
require more than ten block tranfers between core and disc for each task
program executed. (For example, some ECP blocks would have to be loaded
for each task-program-loading operation and each scheduling operation,
thus requiring - overlay and so on). If the allocation were even less, blocks
necessary for the control of I/0 operations would be restricted from core
storage; hence the total disc I/0O traffic would depend on the number of I/0
operations (with consoles and disc) requested by each task program. The
result would be an increase in disc 1/0 traffic so sharp that the useful
system output would probably decrease.

If a single user is operating with the task program and response
statistics of Fig. 12, curve 1, his operator busy fraction is 0.69. If the
ECP core allocation is now reduced so that a second user's task program
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can also be accommodated in core, then by changing the task program 1/0
statistics to account for the increased disc 1/0 traffic generated by the ECP
overlays, we can determine the resultant performance from the appropriate
curve at N = 2. Curve 2 would correspond to an increase of five blocks

of disc I/O per task program, and curves 3 and 4 to increases of 15 and

35, respectively. In this manner a dynamic operating characteristic could
be determined for the range of N. An example of a dynamic curve for user

busy fraction corresponding to the I/0 statistics of Table 1 is given in

Fig. 12.
Table 1
N 1 3 4 5
p/r 5 10 20 40

If the core allocation to the ECP is reduced to allow larger task
programs to be held in core, one is in effect, trading an increase in ECP disc
I/0 traffic for a reduction in task-program disc I/O traffic. Given sufficient
program statistics, comparisons similar to those above can be made.

In general, if the available core storage is insufficient to hold a task
program for each user, the scheduling algorithm must be incorporated into
the model. However, the algorithm for ECP-1 is simple enough that
interpretation from the results for the present models is possible. The
algorithm is as follows. No task program is swapped from core, and all
sequences progress towards completion at the same rate; that is, one task

program for each sequence is completed before another is attempted for
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any sequence. Therefore, if there are N users, and only n task programs can
be accommodated in core simultaneously (N > n), each user receives the
performance determined from the appropriate curve at the point N = n,
but only for a mean fraction n/N of the total time he is at the console. For
the rest of the time he receives no use of the system.

The effect of an alternative scheduling algorithm in which job programs
can be swapped during a wait for an operator's response can be estimated
as follows. If two users are operating with the task-program and response
statistics of Fig. 12, curve 1, the operator busy fraction is 0.66. If the
number of users increases to three, and one task program is always maintained
on the disc file, there is some probability that on reception of each operator's
response his task program will have to be swapped from the disc file. If
we assume this probability to be 1/3, we have a mean of 5/3 task program-
swapping operations induced during each task program execution. If the
number of blocks involved in each swap is 32 (two interlaces swapped),
the extra disc I/O traffic is 50 blocks per task program. Since more than
the average number of contigous blocks would be transferred in swapping
operations, we could choose curve 4 as indicative of the disc I/O traffic.
The operator busy fraction is now 0. 44, and the program throughput has
increased by 0. 4.

5. 3. 3. System Capacity. Sections 5. 3. 1. and 5. 3. 2. treated
the variations in system processor use, and therefore in the performance

obtained by each operator, with different program statistics and numbers
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of users. It is clear that the operator's response time to each query is a key
factor in determining how many consoles the system can service without
serious loss of performance.

The mean value of operator's response time used in Figs. 11, 12,
and 13, when transformed to an absolute time, is about 3 seconds. This
means that we expect most operator's responses to consist of single key
operations (and this has been suggested by the system planners). However,
if many responses were more involved we would have to assume a larger
mean response time. To illustrate the resultant effect, the curves of Fig. 14
have been plotted for 1/ Hg = 50, corresponding to an absolute mean
response time of 7.5 seconds. For similar program statistics we can
notice considerable improvement in the performance parameters defined.
However, it would not be advisable to extrapolate these curves past N = 5
without taking into account the necessary swapping and ECP overhead
involved.

5. 3. 4. Design Alternatives. In Fig. 15 the performance parameters
are plotted* as a function of the number of users for two sets of statistics.
Three curves for each parameter are given, to correspond to three design
features implemented in the models. Curves (1) apply to reduced loading

time for task programs (to be implemented by using a fixed-head-per-track

Note that in Fig. 15 parameter values have been computed only for
N =1, 3, and 5.
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Fig. 14. System performance parameters from model 3 for 1/“2 =1,
l/;.L3 = 50, IZ/ALL2 =15, q/r =5, p/r = 20.
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section of the disc file). Curves (2) apply to loading the same task programs and
associated tables from the main disc file. Since both these sets of curves

were obtained from model 3, they correspond to the strategy whereby task-
program-disc I/O requests are given preemptive priority over new task-
program-loading requests for use of the disc channel. Curves (3), obtained
from model 2, apply when program-loading requests have priority over task-
program-disc I/O requests for use of the disc channel.

The differences in the performance parameters illustrated in Fig. 15
were observed for a wide range of statistics. For more than one user the
order of preference for the alternatives based on the performance parameters
was always 1, 2, 3. Whenever considerable use of the disc file is made one
would expect similar differences in the performance parameters under the
three alternatives.

5. 3. 5. Sensitivity of Results to Loading-Time Distribution. Table
2 gives performance parameters for a range of statistics used in models 1
and 2. The scheduling and priority strategies are identical in these two
models, but the loading process has been modeled by an exponential
distribution in model 1 and by a second-order Erlang distribution in model 2.
The results are tabulated for equal mean values of these distributions, and
it is seen that the performance parameter values differ by no more than
about 1 percent. One could therefore conclude that the critical characteristic
of the loading-time distribution is its mean value, insofar as the distribution

affects the mean values of performance parameters.
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6. Models of the Disc File Channel

In this analysis we make the following assumptions on the use of the
disc-file channel and the disc-memory units:

(1) Each computer using the disc-file channel is permanently

assigned two buffer sectors in the core storage of the disc-

file-control unit. Thus the DFCU can accept two data-transfer

requests from each computer.

(2) The 1/0 control modules include the software needed to carry

out two input block transfers or two output block transfers

concurrently, when the facilities are available.

(3) The time required to transfer a block through the one I/O channel

between the computer and the DFCU is so short, in comparison with

the total transfer time, that the whole channel may be considered

as two parallel channels.

(4) Simultaneous requests for the transfer of blocks involving the

same disc of any disc-memory unit are infrequent, as are

simultaneous requests for the transfer of more than two blocks

from the same disc-memory unit.

(5) The time to transfer a single block in either direction between

the computer and the disc-memory unit can be modeled with a

negative exponential distribution.

Four models were used to make comparative performance estimates of

several disc-channel configurations. These are shown schematically in
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Figs. 16 to 19 and will be referred to as models D1(1), D1(2), D2, and D3.

Model D1(1) repre sents the operation of the disc channel in the single-
thread system with ECP-1. Only one computer is using the channel, and only
cne block transfer may be in operation at any time. We assume that the
ECP and task programs generate disc I1/0 requests according to a Poisson
distribution with rate A, and that each block transfer takes a mean time
1/ (with a negative exponential distribution). Further, we assume that
the maximum number of I/O requests which can be queued for use of the disc
channel is reached when all programs are delayed by disc 1/O. We denote by
n the number of I/O requests waiting or being processed. The arrival process
from a computer is discontinued once it has D ax requests queued or in
process.

In model D1(2) we are again concerned with only a single-computer
system, but the dual-transfer capacity of the disc channel is in use. Hence
when need arises two block transfers can be in execution at the same time.

Models D3 and D4 represent the use of the disc channel in multi-
computer systems. Model D3 has two arrival queues, corresponding to the
requests generated by each of two computers. It is assumed that each
computer can have at most two transfers in execution at any time, and
that the disc channel can have no more than three transfers in execution
at any time. Similarly, in Model D3 we consider three computers generating
I/O requests. Again, no more than three transfers may be in execution at

any time, and no more than two of these may be for any one computer. The
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Fig. 16. Queueing model D1(1) of the disc channel for single
computer use under ECP-1 strategy.

Fig. 17. Queueing model D1(2) of the disc channel for single
computer use under the dual-transfer strategy.
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Fig. 18. Queueing model D2 of the disc channel for two-computer
use under the dual-transfer strategy.
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Fig. 19. Queueing model D3 of the disc channel for three-computer
use under the dual-transfer strategy.
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arrival and service distributions and the restriction on queue length are the
same as for Model D1(1).

7. Results from the Disc-Channel Models

The performance of the disc channel in the various computer systems
which it serves can be measured by its capacity to transfer blocks between
the disc-memory units and the computers and by queueing delays experienced
by programs using the disc channel. We define two performance parameters
to measure these characteristics. The first parameter is throughput, the
normalized rate at which blocks are transferred. The normalization is with
respect to the mean transfer time 1/u for a single block located in semi-
random fashion (see Ref. 6, Appendix B). The second parameter E(n), is
the expected number of transfer requests waiting or in process per computer.

If the disc channel is not to be a bottleneck in the operation of the
system, one would expect E(n) to be little larger than the number of
simultaneous transfers allowedfor each computer. That is, the number
of 1/O requests queued should be small so that only short delays beyond the
transfer time will be induced. The maximum throughput, with no queueing
delay, could be obtained if an I/O request were to occur just at the
completion of each block transfer. The throughput per computer for
models D1(1), D1(2), D2, and D3 would then be 1, 2, 1.5, and 1 respectively.
However, the arrival proceés for 1/0 requests is random and mostly
independent of the transfer process. Therefore one cannot expect the

maximum throughput of the channel to be obtained in practice, and the actual
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throughput will depend on the mean rate of arrivals.
In Figs. 20(i) to 20(iii), throughput per computer and E(n) have been plotted
against the normalized arrival rate p, with constantn (the maximum

number of I/0 requests per computer).

_ mean arrival rate for I/O requests
~ mean transfer rate for I/O requests

=1

For each model, throughput is asymptotic to the maximum values quoted, as

p -~ . However, significant queues for most of the operating time have
formed well before the asymptote is neared. We now compare the performance
of the four configurations modeled.

Model D1(1) gives a standard for comparison. This is the performance
to be expected in the single-thread system with ECP-1. Only one transfer may
be in operation at any time. With p = 1, we expect half the programs to be
requiring use of the channel at any time (E(n) = nmax/z ); and for a typical
number of programs (nmax = 4) the channel is operating 80% of the time.

In model D1(2) we have implemented the dual-transfer capacity of
the disc channel and assigned it completely to one computer. For p = 1, the
curves show only small queueing delays and the use of the channel is about
50% of the total capacity. For twice that request rate (p = 2), queueing
delays and total channel usage are the same as in the single-transfer case
with p = 1. Correspondingly, throughput is almost doubled.

In the multi-computer system the results of model D1(1) would apply
on a per-computer basis if each computer were restricted to a single transfer

operation at all times (ECP-1 type strategies). The results of models D2
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(a) Normalized throughput per computer v p.
(b) Mean number of I1/0 requests per computer
(queued or in service) v p.
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Fig. 20(ii). (a) Normalized throughput per computer v p.
(b) Mean number of I/O requests per computer
(queued or in service) v p.
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Fig. 20(iii). (a) Normalized throughput per computer v p.
(b) Mean number of I/O requests per computer
(queued or in service) v p.
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and D3 show how performance is improved by sharing the total transfer facilities
according to the immediate requirements of each computer. Some improvement
could have been expected, because if random request rates for each computer

are allowed one computer may have two or more transfer requests while the other
computers have a total of one. In this case the DFCU can still execute the
maximum of three transfers.

In the two-computer system (Model D2), with p = 1 for each computer,
performanée is much better: both throughput and E(n) are close to the values
obtained when two transfers can be executed for each computer at all times
(Model D1(2)). In the three-computer system the improvement is not as good,
for Doax = 5 throughput and E(n) are little better than under the ECP-1
strategy (Model D1(1)). For higher arrival rates (p > 1) there is always
some advantage in implementing dual transfers for the two-computer system.
We would expect this because we are in effect increasing by a factor of 1.5
the amount of channel usage we can devote to each computer. For three
computers, however, higher arrival rates result in almost the same
performance as when each computer is restricted to a single transfer operation.
With a maximum of three transfers and queues of requests waiting in each
computer, only one transfer can be allocated to each computer.

8. Conclusions

The implication of the analysis of the disc-channel models is clear.
The advantage which could be obtained by the use of dual transfers for a

computer in the three-computer systems is small. Considering the increased
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complexity of the software and the further reduction in performance resulting
from conflicts for use of the same disc or disc-memory unit, it would not be
worth implementing. On the other hand, the advantage in a one- or two-computer
system subject to high usage is significant. One would conclude that, should
disc-channel capacity prove a bottleneck in the single-thread system under
ECP-1, consideration should be given to implementing the dual-transfer
capability of the disc channel in future one-/and two-computer systems.

Without user statistics it is difficult to draw absolute conclusions
from the analysis of the single-thread system. The discussion in the latter
part of Section 5. 3. 2. has shown how the performance characteristics
plotted may be considered as static operating curves. A dynamic operating
characteristic giving the amount of disc-channel usage per program (p/T)
as a function of the number of users is required to predict true performance.
With such data, and with the statistics necessary to determine the other
parameters of the model, we could draw definite conclusions from curves
such as those plotted. In Fig. 12(b), for example, if the dynamic operating
curve passed through the parameter values (N = 4, p/r = 20) and
(N = 5, p/r = 40) the program throughput would actually diminish between
N = 4and N = 5. This would provide strong argument that four consoles
would fully load the single-thread system.

We have noted that fixed-head-per-track disc accessing in the loading
operation improves the system's performance. Whether the improvement
is large enough to warrant the extra cost is uncertain. For the statistics
assumed in this report, the disc traffic other than loading traffic has been

more significant. This suggests that the fixed-head-per-track media should
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also be considered for use in task program swapping operations. In terms
of the model parameters this would have the effect of reducing the value of
l/u2°

Again the necessity for measurements of program and user characteristics
for effective use of modeling is emphasized. The models described in this
report were derived with much use of approximation and of assumption about
the operation of the corresponding systems. Only results from actual operation
of these systems can confirm the validity of the models. However, experience
to date has shown that, when one is interested in mean value performance,
liberal approximation and lumping of components in the modeling process
can be made without changing the significant results. We therefore believe
that this initial atiempt at large-scale Markov modeling of these computer
systems will provide some useful performance guides. However, there is
need for more accurate modeling; some obvious extensions are mentioned
below.

The most serious weakness of the models of the single-thread system
presented in Section 4 is that they do not provide for distinction between
the use of system processors by the ECP and their use by task programs.
If task programs are making heavy use of the system, then ECP
requirements on the CPU, high speed memory, and I/O channels by the ECP
can significantly affect performance. Also, ECP processor time will be
related to the number of users of the system. Hence it is very desirable
to have models in which certain parameters represent ECP characteristics only.
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The high speed memory sharing is the most distinctive property of
all time-sharing system designs. Closely associated with it is the ability
to transfer information between the low-speed, large-capacity memories
and the high speed memory. We therefore need more effective modeling
of the scheduling algorithms for assigning use of the high-speed memory
and the CPU, to incorporate the idea of fixed times rather than completely
random ones. Further, the direct effects of the limited capacity of the
high-speed memory must be taken into account by modeling parameters to
represent swapping.

The disc channels will be much used in search operations in some
applications. Since this operation is different and time-consuming, it will
be useful to model it so that it can be distinguished from the normal block-
transfer operations.

Finally, the large systems proposed involve multiple processors,
multiple core modules, etc. It is evident that modeling such systems in
full will produce unnecessarily large models. Exploration of useful

symmetrical properties of the models will produce more tractable ones.
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