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In this paper the H,control problem is investi- 
gated. It is well-known that for this problem, in general, 
we need controllers of the same dynamic order as the 
given system. However, in the case that the standard 
assumptions on two direct feedthrough matrices are not 
satisfied, we shown that one can find dynamic compen- 
sators of a lower dynamical order. This result can be 
derived by using the standard reduced order observer 
based controllers in the case that one or more states are 
measured without noise. 

1. INTRODUCTION 

The H ,  control problem attracted a lot of attention in 
the last decade. It started with the paper [all. After 
that several techniques were developed: 

e Interpolation approach: e.g. [IO] 

0 Frequency domain approach: e.g. [7] 

The subsystem from control to  the t o  be con- 
trolled output should not have invariant zeros on 
the imaginary axis and the direct feedthrough ma- 
trix of this system should be injective. 

The subsystem from disturbance to the measure- 
ment output should not have invariant zeros on 
the imaginary axis and the direct feed-through 
matrix of this system should be surjective. 

Note that identical conditions were assumed in the lin- 
ear quadratic Gaussian control problem. The above 
assumptions for the H, control problem were removed 
in [16], [17], [18], and [19]. In this paper we will as- 
sume that the conditions on the invariant zeros are still 
satisfied but we do not make assumptions on the direct 
feedthrough matrices. This will be called the singular 
case (contrary to the regular case). 

In general (even without any assumptions) it turns 
out that if we can find a stabilizing controller which 
makes the H,norm less than 1 (a so-called suitable 
controller) then we can always find a suitable controller 
of McMillan degree n (where n is the McMillan de- 
gree of our system). Moreover this controller has the 
standard form of an observer interconnected with a 
state feedback. However, in the regular case, the di- 
rect feedthrough matrix from the disturbance to  the 
measurement output is surjective and hence we cannot 
observe any states directly: the measurement of each 
state is perturbed by the disturbance. On the other 

e Polynomial approach: e.g. [9] 

0 J-spectral factorization approach: e.g. [SI 

e Time-domain approach: e.g. [6] 

The above list is far from complete. In our view the 
time-domain approach yielded the most intuitive re- 
sults. Moreover, the conditions were easily checkable: 
there exists a stabilizing compensator which makes the 
H,norm less than 1 if and only if there exist posi- 
tive semi-definite stabilizing solutions of two algebraic 
Riccati equations, which satisfy a coupling condition 
(the spectral radius of their product should be less than 
1). However, all the techniques mentioned above had 
one major drawback. The systems under consideration 
should satisfy a number of assumptions: 
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hand, in the singular case, we can measure, say p ,  states 
directly without any disturbances. In principle it then 
suffices to built a observer for the remaining n - p  states 
which would yield a controller of McMillan degree n - p .  
In this paper we will formalize the above. 

In section 2 we will give the problem formulation. 
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torization needed in the construction of the controller. 
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ROBLEM STATEMENT 

Consider the following system 

x = A x +  Bu + Ew,  

E :  y=C1z +DlW, (2.1) I z = c,x + DZU, 

where x E Rn is the state, u E Rm is the control input, 
w E @ is the unknown disturbance, y E R P  is the 
measured output and z E Rq is the controlled output. 
The following assumptions are made: 

(a) ( A ,  B ,  C2,02) has no invariant zeros on the j w  
axis, and 

(b )  ( A ,  E,C1, D1) has no invariant zeros on the j w  
axis. 

Remember that invariant zeros are points in the com- 
plex plane where the Rmenbrock system matrix loses 
rank. Throughout this paper we will assume that there 
exists a suitable controller, i.e. a stabilizing controller 
which makes the H,norm strictly less than 1.  The 
goal of this paper is to show existence of and design 
a reduced order observer based controller of order n - 
rank[Cl, 0 1 1  + rank(D1) using the measured output y 
such that the closed-loop system is internally stable and 
the closed-loop transfer function from the controlled 
output z to disturbance input w has H,-norm less 
than 1.  

3. PRELIMINARY FACTORIZATION§ 

In this section, we recall a result from [18,19]. Let the 
original system (2.1) be given. 
For P E Rnx" we define the following matrix: 

1 

1 

A T P  + P A  + C?C2 + P E E T P  P B  + CTD2 

[ B T P  + D,'C2 D2T D2 
F ( P )  := 

If F ( P )  2 0, we say that P is a solution of the quadratic 
matrix inequality. We also define a dual version of this 
quadratic matrix inequality. For any matrix Q E 72"'" 
we define the following matrix: 

AQ +QAT -t EET + QCTCzQ QCT + ED? 

[ CiQ + &ET Di 0: 
G(Q) := 

If G(Q) 2 0, we say that Q is a solution of the dual 
quadratic matrix inequality. In addition to these two 
matrices, we define two matrices pencils, which play 
dual roles: 

L(P,  S) := ( SI - A - E E T P  -B ) , 

Finally, we define the following two transfer matrices: 

GCi(s) := Cz (SI - A)-' B + Dz, 
Gdi (~ )  := C1 ( S I  - A)-' E + D1, 

Let p ( M )  denote the spectral radius of the matrix M .  
By rank,(,)M we denote the rank of M as a matrix 
with elements in the field of real rational functions 
R(s) .  We are now in a position to recall the main result 
from [19]: 

Theorem 3.1. Consider thesystem (2.1). Assume that 
both the system ( A ,  B ,  Cz, Dz) as well as the system 
( A ,  E ,  C1,Dl) have no invariant zeros on the imaginary 
axis. Then the following two statements are equivalent: 

1. For thesystem (2.1) there exists a time- invariant, 
finite-dimensional dynamic compensator Ecmp of 
the form (3.2) such that the resulting closed-loop 
system, with transfer matrix Gcmp, is internally 
stable and has H ,  norm less than 1, i.e. IJGcmpll, 
< 1. 

2. There exist positive semi-definite solutions P, Q of 
the quadratic matrix inequalities F ( P )  2 0 and 
G(Q) 2 0 satisfying p(PQ) < 1, such that the 
following rank conditions are satisfied 

(a) rank F ( P )  = rankR(,)Gei, 

(b) rank G(Q) = rankq,)Gdi, 

Note that the existence and determination of P and 
Q can be checked by investigating reduced order Riccati 
equations. 

Next, we construct a new system, 
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and for Note that in H, control we have, like in for 
instance Linear Quadratic Gaussian control, a separa, 
tion principle: the controllers have the structure of a 
state feedback interconnected with an observer. 

:= A + EETP + ( I  - QP)-1QC~pC2,p  
B , ,  := B + ( I  - Q P ) - l Q C ~ p D p  
EP,, := ( I  - &P)- lEQ 

CIBp := C1 + DlETP 
Without loss of generality but for simplicity of pre- 

sentation, we assume that the matrices q,p and DpsQ 
are transformed in the following form: 

and Dp,Q = [:] . (4.1) 

Thus, the system Cp,Q as in (3.1) can be partitioned as 

[ Ip-mo O cOzl 0 
It has been shown in [19] that this new system has thf: 
following properties: 

1. (Ap,Q , Bp,Q, C,,,, Dp) is right invertible and min- 

2. (Ap,, , Ep,Q , q,p , Dp,Q) is left invertible and min- 

Moreover, the following theorem has been proven in 

G,P = 

imum phase. 

imum phase. 

follows, 

[19]: 

Theorem 3.2. Let an arbitrary compensator Ccmp be 
given as, 

where [z:, x;IT = xp,Q and [yr, y;IT = yp,Q. First we 
recall a well known fact in the following observation. 

(3*2) Observa t ion  4.1. Given a matrix quadruple 
The following two statements are equivalent: 

(AP,Q 1 BP,Q 1 G,P, DP) 
(i) The compensator Ccmp applied to the original 

system C as in (2.1) is internally stabilizing and 
the resulting closed loop transfer function from 
w to z has H, norm less than 1. 

(ii) The compensator Ccmp applied to the new sys- 
tern E , ,  as in (3.1) is internally stabilizing and 

w to zP,, has H, norm less than 1. 

which is minimum phase and right invertible, then for 
any given E > 0, there exists a state feedback gain F, 
such that, Ap,Q - BPvQ F, is asymptotically stable and 

the resulting closed loop transfer function from ll[G,P - OP F,l[s'n - AP,Q + BP,Q FZ]-'lloO 

(4.3) 
E < 

311EP,Qll + '' We will show that there exists a time-invariant, finite- 
dimensional dynamic compensator Ccmp of the form 
(3.2) and with McMillan degree 

Methods for the construction of such a F, can be found 
by dualizing the results in the appendix. 

n - rank[G,  Dl] + rank(D1) This clearly shows that,  by using state feedback con- 
trol we can control the system arbitrarily well. Remains 
our main concern of building a reduced-order observer. 
The idea is that we only need to build a controller for 

for such that the resulting closed loop system is inter- 
nally stable and the closed loop transfer function from 
x to  w has H,norm less than 1. Moreover, we give 
an explicit construction of such a reduced order corn- '2. Our techniques are based on the method discussed 
pensator. More specific, we design a reduced order ob- in [I, section 7.21. The differential equation for 21 is 
server based control law for H ,  -optimization problem. 
By the above theorem we can devote all our attention 
to  our new system E , ,  and design controllers for this 
sys tem. 

given by 

&I = Azzzl+ [ Azl BZ ] [ y1 ] + EZW 
' P , Q  

where (yl, up,Q) are known. Observations of zz are 
4. REDUCED ORDER OBSERVER DE- made via Y1 and: 

SIGN 

In this section, we construct explicitly a reduced order 
observer based controller of order If we do not worry about the differentiation for the 

moment we note that we have to build an observer for 
n - rank[C1, Dl1 + rank(D1) 
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the following system: 

Note that a system is of minimum phase and left 
invertible if and only if the Rosenbrock system matrix 
is left-invertible for all s in the closed right half plane. 
Using the properties of it is then straightforward 
to show that the system defined by (4.5) satisfies the 
following properties: 

Lemma 4.1. 
system from w to (yo, 6) by Ere. Then we have 

For the system E,, we denote the sub- 

1. Cre is (non-) minimum phase iff 
(Ap,Q, Ep,Q,G,p, DpsQ) is(non-)minimumphase. 

2. Ere is detectable iff (Ap,Q , Ep,Q , G,p , Dp,Q) is de- 
tectable. 

3. Invariant zeros of E,, are the same as those of 

( 4 , q  1 EP,q, G,P 1 DP,Q > *  

4 .  Orders ofinfinite zeros of E,, are reduced by one 

5 .  E,, is left invertible iff (Ap,Q , Ep,Q, Cl,p , Dp,Q) is 
from those Of (AP,Ql EP,Q> G,Pl DP,Q)* 

left invertible. * 

Proof : See [4]. 
Next, we build a full-order observer for the system 

C, defined by (4.5). Using the results of the appendix 
we find that for all E > 0 there exists a matrix IC, such 
that: 

(4.6) 

Using (4.4) we find the following observer related to 
the observer gain I<, : 

L -  J 

We factorize IC, = [IC.,o KE1], compatible with the 
sizes of (yo, g). Then, using the change of variables 
w := 22  - IC,lp results in a proper observer. This yields 
the observer we are going to apply to the system Ep,Q. 
Finally, interconnection with the state feedback gain F, 

defined in observation 4.1 yields the following reduced 
order observer based controller for Ep,Q, 

Some standard algebraic manipulations show that the 
closed loop transfer matrix from w to 2p,Q - 9p,Q is 
equal to Gl(s) := [ 0 G&(s) 1' where, 

Note that Ge,, is the transfer matrix from w to 2 2  - 22 
when we apply the observer we designed for Cy to C,. 
Therefore, the above shows that our observer for Cp,Q 
is equally good as our observer for C, in any sense, in 
particular with respect to the H ,  norm from w to the 
error. We define Gz by 

By (4.3) and (4.6) we find H ,  norm bounds on G1 and 
Gz respectively. If we apply our reduced order con- 
troller Crcmp to C , ,  then the closed loop transfer ma- 
trix is equal to: 

Using the H ,  norm bounds on G1 and Gz we find that 
IIGelll, < E .  Moreover by writing down a state space 
realization with state space (q - 9 2 , ~ )  for the inter- 
connection Crcmp x E , ,  we immediately note that the 
closed loop system is asymptotically stable. 

Thus we have shown the following theorem: 

Theorem 4.1. Let C be given by (2.1) and define 
by (3.1) and factorize it in the form (4.2). Design feed- 
back and observer gains by (4.3) and (4.6) respectively 
for E < 1. Then the controller defined by (4.7) applied 
to C is internally stabilizing and the H ,  norm of the 
closed loop transfer matrix from w to z is strictly less 
than E < 1. 

Remark 4.1. In the case that the given system C is 
regular (i.e. in additions to the assumptions (a) and 
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(b), the feedthrough matrices D1 and D2 are surjective where Bo, B1, CG and C1 are the matrices of appro- 
and injective, respectively), then the controller (4.7) re- priate dimensions. First we have the following simple 
duced to the well-known' fu l l  order observer based con- observation. 
trol design for the regular H ,  -optimization of [6]. 

Observation A . l .  Assume that rank(B1) > 0 and let 

5. CONCLUSION 
A1 = A - B1C1. We have the following: 

1. (AI, B1, C1) is left invertible and of minimum 
phase ifF (A, B, C, D) is left invertible and of 
minimum phase. 

2. Invariant zeros of ( A I ,  B1, C1) are the same as 
those of ( A ,  B, C, D). 

In this paper we presented a technique of finding sta- 
bilizing controllers of a dynamical order lower than the 
dynamical order of the plant which make the H ,  norm 
of the closed loop system strictly less than 1. If p states 
of a system with McMillan degree n are measured with- 
out noise, then we find a compensator with McMillan 
degree n - p .  

We think that the technique presented in this paper 
is quite general and can for instance also be applied to 
the linear quadratic Gaussian control problem .in the 
case that states are measured without noise. 

Proof : See lemma 2.1 of [2]. 
In the following we present two design algorithms 

for the computation of K,(u). The first one is the 
cheap control approach or ARE-based design and the 
second one is the asymptotic time-scale and eigenstru- 
ture assignment (ATEA) design. In ARE-based de- 
sign the asymptotic behavior of the fast eigenvalues of 
A - K,(u)C are fixed by the infinite zero structure of 

Acknowledgement the system E,. However in ATEA design one can assign 
arbitrarily the asymptotic behavior of these eigenval- 
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Khargonekar for suggesting this problem to him. AREbased and ATEA design the interested readers are 

referred to [12]. 
Appendix: Design Algorithms 

The Cheap Control Approach 

Step 1 : Solving the following algebraic Riccati equa- 
tion, 

For economy of notation, in this appendix we will con- 
sider the following system E,, 

P = A E + B Q ,  

g =  CP+ DQ, 
( A 4  A1P + PAT - PCrCIP + u2B1B,T = 0 ,  (A.3) E,:{ 

for the positive solution P. 
Step 2 : Calculate where 3 E g2", u E ?Rm and y E 83'. The goal of this 

appendix is to introduce two algorithms of designing 

u > u* > 0, A - K,(u)C is asymptotically stable and 

[][.In - A + IC,(U)C]-~[B - I(c(~)D]11m < E 

a parameterized gain matrix Ii6(u) such that for all &(a) = PCT. 

Step : Let 

I(,(u) = [BO, r<l(u)]. (A.4) 

for any given E > 0, under the assumptions that C, 
is left invertible and of minimum phase. Without loss 
of generality but for simplicity of presentation, we as- 
sume that matrices [C, D] and [BT, DTIT are of maxi- 
mal rank and matrix D is in the form of 

D =  :], 
where mo is the rank of D. Thus, C, can be partitioned 
'as follows, 

We have the following lemma. 

Lemma A.1. Consider a system C, as in (A.l) which 
is left invertible and which is of minimum phase. Let 
I(,(u) be computed via the above algorithm. Then for 
any given E > 0, there exists a u* > 0 such that for all 
u > u*, A - I<,(u)C is asymptotically stable and 

11[sIn - A + I(,(u)C]-~[B - Kc(u)D]11, < E 

Proof : Since (AI, B1, C1) is of minimum phase and 
left invertible, it is shown in Doyle and Stein [5] that 
1<1(u) calculated in the above procedure has the fol- 
lowing properties : i ~ s  u + 00, 

[SI, - A1 + I(l(a)C1]-'B1 + 0 pointwise in s 
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and A1 - Kl(u)C1 is asymptotically stable. Hence, for 
any given E > 0 there exists u* > 0 such that for all 
CT > u*, A1 - Kl(a)C1 = A - K,(a)C is stable and 

Il[sIn -A1 + K I ( U ) C I ] - ~ B I / I ~  < E ,  

which implies 

ll[sIn - A + I ~ ~ ( u ) C ] - ~ [ B  - 1(c(~)D]11m < E .  

The ATEA ADDroach 
~ 

We recall the following theorem first. 

Theorem A. l .  Under the condition that (AI, E l ,  Cl) 
is ofminimum phase and left invertible, there exist non- 
singular transformations rl, r2 and r3 and integer in- 
dexes q j ,  j = 1 to m - mo, such that 

i = rlX, o1 = rZy1, iil = r3U1, 
T T z = [ x a ,  zz> $TI, zT2, * * * >  

~1 = [ ~ 1 1 1  '1112, . . . > Ulm-mo 1'1 

Y1 = [ Y T l  YIbTIT, Yf = [ Y h  Yf2, Y f m - m o l T  

and 

yfj =c f j z j ,  j =  1 , 2 , . . . , m - m o  . 
Moreover, X(Aa) E C- are the invariant zeros of (A1 , B1, 
C1); (Ab, cb) is observable and for j = 1 to m - mo, 

Proof : See Sannuti and Saberi [15]. 
Now we are ready to introduce the ATEA design 

algorithm. For the sake of simplicity, we only consider 
ATEA design with twc-time-scale structure assignment 
in this appendix while the details of ATEA design using 
multi-time-scale structure assignment can be found in 
Saberi and Sannuti [13]. 
Step 1 : Select a gain Icb such that - KbCb) are 
in the desired locations in C- . 
Step 2 : For each j = 1 to m - mo, select a gain 
K j j  such that X(Afj - K j j C f j )  are in the desired finite 
location in C- ,  where K f j  can be partitioned as 

Let 

where 

We have the following lemma which is analogous to 
lemms A. 1. 

Lemma A.2. Consider a system Ea as in (A.l) which 
is left invertible and which is of minimum phase. Let 
K,(u)  be computed via the above ATEA algorithm. 
Then for any given E > 0, there exists a u* > 0 such 
that for all u > u*, A-K,(a)C is asymptotically stable 
and 

ll[SIn - A  + K ~ ( u ) C ] - ~ [ B  - K c ( ~ ) D ] l l w  < E E 

Proof : The above algorithm is a special case of Saberi 
and Sannuti [14]. I t  is shown in [14] that K1(u)  calcu- 
ated in the above ATEA procedure has the following 
properties : as u -+ 00, 

[SI,, - A1 + K ~ ( U ) C ~ ] - ~ B ~  + 0 poitwise in s 

and A1 - Kl(u)C1 is asymptotically stable. Hence, for 
any given E > 0 there exists u* > 0 such that for all 
u > g*, A1 - Kl(u)C1 = A - K,(u)C is stable and 

which implies 

References 

B.D.O. Anderson and J.B. Moore, Optimal 
Control: Linear Quadratic Methods, Prentice- 
Hall, 1989. 

B. M. Chen, A. Saberi, S. Binguac and P. San- 
nuti, "Loop Transfer Recovery for Non-Strictly 
Proper Plants," Control-Theory and Advanced 
Technology, Vol. 6,  No. 4, pp. 573-594, Decem- 
ber 1990. 

721 



[3] B. M. Chen, A. Saberi and U. Ly, “Closed [14] A. Saberi and P. Sannuti, “Observer Design for 

141 

[51 

[71 

[91 

Loop Transfer Recovery with a Full Order and 
Reduced Order Observer,” To be presented in 
1991 AIAA Guidance, Navigation and Control 
Conference, New Orleans, Louisiana, August 
1991. 

B. M. Chen, A. Saberi and P. Sannuti, “Loop 
Transfer Recovery for General Nonminimum 
Phase Non-Strictly Proper Systems, Part 111: 
Reduced Order Observer,” Under preparation. 

J .  C. Doyle and G. Stein, “Robustness with Ob- 
servers,” IEEE Trans. Aut .  Contr., Vol. AC-24, 
pp. 607-611, 1979. 

J. Doyle, K. Glover, P.P. Khargonekar and B.A. 
Francis, “State space solutions to standard Hz 
and H ,  control problems” , IEEE Trans. Aut. 
Contr., Vol. 34, No. 8, 1989, pp. 831-847. 

B.A. Francis, A course in H ,  control theory, 
Lecture notes in control and information sci- 
ences, Vol 88, Springer Verlag, Berlin, 1987. 

H. Kimura, “Conjugation, interpolation and 
model-matching in H ,  ”, Int. J.  Contr., Vol. 
49, 1989, pp. 269-307. 

H. Kwakernaak, “A polynomial approach to 
minimax frequency domain optimization of 
multivariable feedback systems”, Int. J. Contr., 
Vol. 41, 1986, pp. 117-156. 

D.J.N. Limebeer and B.D.O. Anderson, “An in- 
terpolation theory approach to H ,  controller 
degree bounds”, Lin. Alg. Appl., Vol. 98, 1988, 
pp. 347-386. 

H. K .  Ozcetin, A. Saberi and Y. Shamash, 
“HM-Almost Disturbance Decoupling for Non- 
Strictly Proper Systems-A Singular Perturba- 
tion Approach,” Submitted for publication. 

A. Saberi, B. M. Chen and P. Sannuti, “The- 
ory of LTR for Non-minimum Phase Systems, 
Recoverable Target Loops, Recovery in A Sub- 
space, Part 2: Design,” To appear in Int. J .  
Con t rol. 

A. Saberi and P. Sannuti, “Time-Scale Struc- 
ture Assignment in Linear Multivariable Sys- 
tems Using High-Gain Feedback,” Int. J .  
Contr., Vol. 49, No. 6, pp. 2191-2213, 1989. 

Loop Transfer Recovery and for Uncertain Dy- 
namical Systems,” IEEE Trans. Aut. Contr., 
Vol. 35, NO. 8, pp. 878-897, 1990. 

[15] P. Sannuti and A. Saberi, “A Special Coor- 
dinate Basis of Multivariable Linear Systems 
- Finite and Infinite Zero Structure, Squar- 
ing Down and Decoupling,” Int. J .  Contr., Vol. 
45, No. 5, pp. 1655-1704, 1987. 

[16] C. Scherer, “H,  control by state feedback for 
plants with zeros on the imaginary axis”, Sub- 
mitted to  SIAM J. Contr. & Opt.. 

[17] C. Scherer, “H,  -optimization without as- 
sumptions on finite or infinite zeros”, Submit- 
ted to SIAM J.  Contr. & Opt.. 

[18] A.A. Stoorvogel and H.L. Trentelman, ‘(The 
quadratic matrix inequality in singular H ,  
control with state feedback”, SIAM J. Contr. 
€4 Opt., Vol. 28, No. 5, 1990, pp. 1190-1208. 

[19] A.A. Stoorvogel, “The singular H ,  control 
problem with dynamic measurement feedback” , 
SIAM J. Contr. & Opt., Vol. 29, No. 1, 1991, 
pp. 160-184. 

[20] A. A. Stoorvogel, The H ,  Control Problem 
: A State Space Approach, Ph.D. Thesis, De- 
partment of Mathematics and Computing Sci- 
ence, University of Technology, Eindhoven, The 
Netherlands, October 1990. 

[21] G. Zames, “Feedback and optimal sensitivity: 
model reference transformations, multiplicative 
seminorms, and approximate inverses” , IEEE 
Trans. Aut. Contr., Vol 26, 1981, pp. 301-320. 

722 


