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Reduction of sound transmitted through vehicle panels is increasingly important. A foam layer on vehicle panels is
often used to passively control sound and small amplitude vibrations; this can be modeled and analyzed using the FEM
only in 2D. This formulation assumes an isotropic structural member that couples with the elastic porous material. To
expand beyond isotropic structures, fibrous composite plate and shallow shell elements are presented which were
developed from the Mindlin plate assumptions extended to shear deformable and shallow shell composite laminates.
The governing equations for the elastic porous material are extended to 3D, and a procedure is described to convert
these equations into a solid FEM formulation. The 2D foam-structure coupling leads to a determination of the coupling
in the more general case. The development of this FEM formulation for elastic porous materials allows for designing
low weight sound absorption systems with maximum transmission loss. (Author)
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Abstract

Reduction of sound transmitted through vehicle
panels is increasingly important. A foam layer on
vehicle panels is often used to passively control sound
and small amplitude vibrations. Currently, this sound
absorption layer can be modeled and analyzed using
the finite element method only in two dimensions.
This formulation assumes an isotropic structural
member that couples with the elastic porous material.
To expand beyond isotropic structures, fibrous
composite plate and shallow shell elements are
presented. These were developed from the Mindlin
plate assumptions extended to shear deformable and
shallow shell composite laminates. The governing
equations for the elastic porous material are extended
to three dimensions, and a procedure is described to
convert these equations into a solid finite element
formulation. The two-dimensional foam-structure
coupling leads to a determination of the coupling in
the more general case. The development of this finite
element formulation for elastic porous materials
allows for designing low weight sound absorption
systems with maximum transmission loss.

Introduction

The object of study is vibration in plates and
shells connected to an absorptive medium.
Understanding these vibrations would allow for
*Graduate Student, Student Member AIAA.
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optimizing the structure for increased transmission
loss in sound propagation. Current analysis for such
a system is often completed using an analytic solution
in one spatial dimension.1 For large flat plates and
regular wall structures, this is a fairly good method for
determining plane wave characteristics, such as
reflection coefficient and transmission loss. However,
for reliable analysis of structures with a more complex
geometry, the finite element method is used.

Many sound absorptive materials resemble an
elastic foam. Such a foam is composed of an elastic
frame with fluid filled pores. It is the coupling
between the vibration of such a fluid and the elastic
frame that prevents the use of the typical structural
dynamic finite element Bolton, Shiau and Kang of
Purdue University2 modified the theory of Biot3 to
determine the equations that govern elastic wave
propagation in elastic porous material. A two
dimensional finite element of this foam has been
developed by Kang, Bolton, Tsoi and Mollo.4

In two dimensions, the general problem is set up
with three possible material regions: acoustic, elastic
porous, and structural. The fluid region is modeled
using finite elements based on the Helmholtz equation
with nodal values being pressures. The interface
conditions between the acoustic finite elements and
those developed by Bolton, et al. are determined by
energy methods to complete the relationship between
applied harmonic forces and nodal displacements or
pressures.2

The vibrations of the structural region ate
modeled using an Eider-Bernoulli beam vibration
formulation. This and the interface between the
structural panel and the elastic porous material is to be
covered in more detail.
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Fibrous composite laminates have an increasing
role in aircraft and automotive applications. Thus it
is important to model these structures as well.
Acoustic energy is transmitted through these solid
materials by vibration. For each element type, the
energy formulation is converted into the familiar
structural finite element equations of motion,
assuming no damping and a harmonic time
dependence. Shear deformation effects are included in
the response of the composite laminate. The element
derivation is from the Mindlin plate assumptions
extended to shear deformable composite laminates
composed of uniform orthotropic plies5-6. This
derivation is covered in more detail as well.

The analysis of the response due to dynamic
loading of the composite laminate/elastic porous
system requires combining all of these finite element
models in three dimensions. The plate elements of
the composite laminate combine with the brick
elements of the acoustic and elastic porous regions to
successfully model the system behavior to acoustic
excitation. A look at the basic procedure required to
derive these elastic porous elements is presented.

2-D Structural-Elastic Porous Formulation

Bolton, Shiau and Kang of the Ray W. Herrick
Laboratories at Purdue University2 developed the
governing equations for wave propagation in elastic
porous material. Based on the theory of Biot3, these
equations combine the dynamic equations of motion,
assuming harmonic time dependence, and the stress-
strain relations of both the solid and fluid phases of an
elastic porous material:

NV2u+V[(A+N)e,+Qe]=-co2(p,1u+p,2U)+i(ob(u-U)

V[Qe.+Re]=-o)2(pl2u+p22U)-ia>b(u-U)

In these equations, BS = V»u = the solid volumetric
strain, u = displacement vector for the structural
phase, e = V»U = volumetric strain for the fluid
phase, U = vector of fluid displacement, N = elastic
shear modulus, and A = first Lam6 constant. The
interaction between the volume change of the solid
and elastic phases is quantified by coefficients Q and
R. Pn, p12, and p22 = mass coefficients depending on
the porous tortuosity and representing the transferring
of momentum between the solid and the fluid phase.
The last term on the right hand side of both equations
represents viscous coupling between the two phases.
The two-dimensional finite element of this elastic

porous material developed by Kang, Bolton, Tsoi and
Mollo4 is based on these vector differential equations.

Combining the three material regions and their
coupling interface results in this two-dimensional
matrix form of equations:

[Kj [Kf] [K,f]

[K-] [K.r] [K.1J

{p}
M

{W}

{Q}
{F'}
{F'}

OT'
where [KJ, [KJ, and [Kr]. are the acoustic stiffness
and global dynamic stiffness matrix for the structure
and elastic porous body, respectively. The other
stiffness sub-matrices represent the coupling relations.
Acoustic sound pressure is p, and W is transverse
displacement of the structural panel while ux, uy, Ux,
and Uy are components of displacement for the elastic
porous material's solid and fluid phases, respectively
The right hand side sub-vectors are force vectors: {Q}
is the normal volume velocity flux vector, {F} is the
external loads applied to the structure, and {F,} is
related to the normal and shear stresses acting on the
solid and fluid phases of the elastic porous body.

The structural finite elements are based on the
bending vibration equation of motion for a one-
dimensional beam under pressure loading:

f--0'mpw, =/>

where w, is the transverse displacement, mp is the
mass per unit area, v is the Poisson's ratio and I is
the second moment of area per unit width.

Since the system dynamics of the panel are fully
included in the formulation of the panel finite
element, only the following two boundary condition
are required at the elastic porous material/structural
panel interface:

The transverse displacement of the panel, wt, matches
the x -component displacements of the solid and fluid
phases of the elastic porous material, u, and Ux, at the
interface.

The interaction between the structural panel and
the elastic porous body also depends on the strength of
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the connection. A numerical study was done to
determine the effect of a panel being bonded to the
elastic porous layer versus a panel loosely connected.
A one-dimensional transmission loss test section was
modeled. This section is set within two hard walls
with a harmonic excitation at one end of the channel,
and consists of an elastic porous layer (polyimide
foam, 5.4 cm thick) sandwiched by two isotropic
plates (aluminum, 0.762 mm thick), as shown in
Figure 1 for the bonded panel case. The unbonded
case is modeled by leaving a small gap of air (0.5 cm)
between the panel and the foam layer as shown in
Figure 2.

The results were computed by assuming no
lateral constraints on the panels. Figure 3 does show
that the two-dimensional finite element formulation
closely matched the one dimensional analytical
solution in determining transmission loss across the
foam-panel system. The large error found at high
frequencies is a result of the finite element mesh size
being too large to accurate model the vibrations.

Formulation of Composite Laminates

Acoustic energy is transmitted through fibrous
composite laminates by small amplitude vibrations.
The traditional structural finite element equations of
motion adequately model the dynamics of the
composite plate for acoustics. Assuming no damping
and a hannonic time dependence, this system of
equations is written7:

(-(02[M]+[K]){u}={F}

The structural degrees of freedom and the external
loads applied to the structure are represented by (u)
and {F}, respectively.

Classical laminate theory8 is used to compute
the constitutive matrix of the laminate. This assumes
that each layer of the laminate is orthotropic. After
transforming the constitutive relation for each layer to
an elemental coordinate system, these values are
integrated through the thickness to yield the elemental
constitutive relation:

In-plane force resultants and resultant moments are
represented by N and M, respectively. The mid-plane
strain vector is e°, and K is the mid-plane curvature
vector. The B sub-matrix clearly shows the coupling

between in-plane forces and out-of-plane curvature that
is not found in isotropic materials. The transverse
shear constitutive relation was computed by
integrating through the thickness while assuming each
ply is transversely isotropic:

'A4

A,

The Qi terms represent resultant transverse shearing
forces.

The derivation of the plate stiffness matrix
includes the newly formed laminate constitutive
matrix. Following energy principles as described by
Ochoa and Reddy,5 the stiffness relation of the element
is derived as follows:

K=JJA([D][Y])T[A B I B

The basic element derivation follows the Mindlin
plate assumptions extended to shear deformable
composite laminates.5'6'9 Therefore, five degrees of
freedom are needed: the in-plane translations (u and
v), the transverse translation (w), and the rotations
about the two in-plane axes (<j>, and <t>2 ). The strain-
displacement relations are expressed in matrix form:Si6

0 o o
0 a/3y 0 0

% & o o
0 0 0 %
0 0 0 0
0 0 0 ^ ,
0 0 3/fr 1
o o 3A, o

0
0
0
0

0
1

However, to be successful in determining the stiffness
for non-rectangular elements, an isoparametric
mapping to the double-unit square is used:

K4I,s,Tl)][V(i;,Tl)])T[A B I B D (til)]

The [A B I B D] matrix transforms by a simple
rotation. The material axis (x) is rotated by an angle
into the new axis (£). The shape functions are
developed for the double-unit square leaving only the
strain-displacement relations to be converted into the
new form. The Jacobian of the mapping determines
the changes required to map the material coordinate
derivatives into the isoparametric derivatives.
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The basic plate element uses four corner nodes.
Linear shape functions are used for each axis direction.
The final step is integration of the assembled system
of equations. Gaussian integration suggests using
four gauss points to most accurately integrate.
However, it has been determined that shear locking is
very likely for such elements. A fairly reliable way to
avoid shear locking is to use reduced integration.'0"12

One gauss integration point is thus used. This
reduces the accuracy of the integration, but the overall
accuracy is acceptable with a sufficient mesh. The
integration of the plate relations (omitting transverse
shear) creates a 5N x 5N stiffness matrix where N is
the number of nodes per element. To get a sense of
stiffness contribution, each stiffness matrix is

comutent

M0

0
0

0

0 0 Mt 0
M0 0 0 M,
0 M0 0 0
0 0 M2 0

Mj 0 0 M2 _

The M, terms are the rotatory inertia terms and ate
omitted due to their small magnitude compared to MO
andM2.

This procedure is then extended to a shallow
shell formulation using curvature relations:13t14

separated into 5x5 stiffness sub-matrices for each ki = ~^T
nodal combination

basic plate

(ij): d2z
k z = — ̂ T

Kn K12 0 K14 K15

K v o v \c
11 "-22 U *^24 "-25

0 0 0 0 0
K V f\ V "V

4, R42 U K.^ K4J

K51 K52 ° K54 K55.

oy

6 ~ dxdy

The strain-displacement relation thus becomes:

Integration of the stiffness formulation with the
transverse shear relations produces the following 5x5
sub-matrix for each nodal combination (ij):

Ktransv. shear =

" 0 0 0 0 0 "
0 0 0 0 0
0 0 K33 K34 K3S

0 0 K43 K^ K4s
0 0 K53 KM Kss_

s°'
e|
el
*i
K2

K6

el
£4.

. ——

'%, 0 k, 0 0 '
0 % k2 0 0
% %* 2k6 0 0
0 0 0 % 0
0 0 0 0 %
0 0 0 y^ 3/fr
o o 9/& i o
0 0 % 0 1

U

V

w
ft
*2.

Integration of the stiffness formulation with the
shallow shell curvature relations produces the
following additional 5x5 sub-matrix for each nodal
combination (ij):

Combining the basic plate and transverse shear
stiffness relations result hi a comprehensive plate
stiffness. This leads to the desired stiffness
formulation for the four-noded plate element. The
consistent mass is computed by integrating the
density distribution through the thickness:

-U
IV curvature —

" 0
0

^K

Ksi
0
0

0
0

K32

0
0

Kl3

K23

K33

K43

K53

0
0

K34

0
0

0 "
0

^^

Kss
0
0 _

Eight nodes are used for the shallow laminated
composite shell element The total stiffness
formulation for each nodal combination is:

The result is the 5x5 consistent mass sub-matrix for
each nodal combination (i,j): lv = "^basjc plate . (hear T K.. curvature
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A numerical verification of the above mentioned
four- and eight-noded elements has been computed.
This compares the natural frequencies of a fibrous
composite laminate with an analytical solution.

3-D Formulation

From the elastic porous material theory
developed by Bolton, et al.2 the stress-strain
relationships between fluid and solid strains and
stresses can be derived by writing the equilibrium
equations for the forces acting on a unit volume of
elastic porous material.

o\ = 2Ne* + Ae. + Qe
oy = 2Ney + Ae, + Qe
oz = 2NeI + Ae. + Qe

s = RE + Qe,

V = Tzy = Nyyr

where 6$ = solid volumetric strain, e = fluid
volumetric, N = elastic shear modulus, A = first Lame"
constant, Q = (l-h^Ez and R = h*Ej, where h =
porosity, Ej = bulk modulus of elasticity of the fluid
in the porous medium.

The differential equations of equilibrium for the
solid phase of the elastic porous material result in:

daf | dTy. [ <?Ta _
dx. dy dz

a y, T
dx. dy dz

where q2 = structure factor (approaches unity if pores
are straight and uniform), p, = bulk density of solid
phase, p2 = bulk density of the fluid phase, b =
viscous coupling factor associated to flow resistivity.
The left term represents the net force per unit volume.

From the three right terms, the first one represents the
acceleration of the solid, the second the momentum
transfer between solid and fluid from the pore
tortuosity, and the third the viscous coupling forces
associated with the flow resistivity. Similar
differential equations can be derived for the fluid phase:

The following steps can be followed to derive
the system of equations in matrix form:

1. Assume a harmonic time dependency of motion.

2. Develop the weak form of the differential equations
by multiplying each one by a weighting function and
integrating over the volume of an element

3. Express the stress in terms of displacements using
the stress strain relations, and use the Green's theorem
to lower the order of differentiation on the
displacement variables.

4. Utilize the weighted residual method to derive the
three dimensional finite element for a foam element:

[Ku] [K12] [K13] [KM] [KB] [K16[
[K21] [KB] [KB] [Kj,] [KB] [KB]
IV 1 \v 1 \v 1 fv 1 \v 1 IV 1|R.31J [R.J2J [R-33J [ft-34j [JS-35J [fc-jgj
ft/- 1 \°ir I fv 1 fy 1 fy 1 ff 1
[K.41J [K-42J l*»-43j l*»-44j lK'45j lli-4<J
Fif 1 Tif 1 \v 1 fir 1 \v 1 fir 1 JITlKSlJ 1K52J lK53j lKS4j lK55j 1K«J 1U.

The global system of equations for the elastic porous
material can be obtained by utilizing continuity of
primary variables (displacement components of the
elastic porous body) and the balance of secondary
variables at connecting nodes (normal and shear
stresses acting on the solid and shear face).

The coupling between the beam approximation
of the structural panel and the two-dimensional elastic
porous finite elements is the model by which the
composite shell elements are joined with the three-
dimensional elastic porous brick elements. In such a
way, a general sound absorption system using
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composite laminates and elastic porous materials is
successfully modeled.

Conclusions

The investigation into the two-dimensional form
of the elastic porous finite element indicates the
coupling inherent along the interface between the
foam and the structural panel. The vibrational
equations of motion are determined for a composite
laminate with shear deformation. In three dimensions,
the composite laminate formulation of vibrations
combines with the development of a brick type elastic
porous finite element. In such a way, the acoustic
vibration of the system is modeled to give an
indication of transmission loss. Future work includes
verifying the numerical solutions with experimental
data and implementing the formulations with an
existing general purpose acoustical finite element
analysis code, COMET/Acoustics.15

The development of the finite element
formulation for elastic porous materials has opened up
an area of designing low weight sound absorption
systems with maximum transmission loss. The
expected growth of the use of composite laminates in
transportation applications requires the ability to
reliably predict the response of these systems. The
three-dimensional finite element method for a
combined composite laminate and elastic porous panel
is this valuable tool for the sound absorption systems
of the future.
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Figure 1: Geometry of plates bonded to sandwiched
foam layer
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Figure 2: Geometry of plates not bonded to
sandwiched foam layer
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Figure 3: Comparison of frequency dependent transmission loss calculation for both finite element and analytical
methods for both bonded and not bonded geometries.
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