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ABSTRACT
Decomposition of large engineering design prob-

lems into smaller design subproblems enhances robust-
ness and speed of numerical solution algorithms. Design
subproblems can be solved in parallel, using the opti-
mization technique most suitable for the underlying sub-
problem. This also reflects the typical multidisciplinary
nature of system design problems and allows better in-
terpretation of results.

Hierarchical overlapping coordination (HOC) si-
multaneously uses two or more problem decomposi-
tions, each of them associated with different partitions
of the design variables and constraints. Coordination is
achieved by the exchange of information between de-
compositions.

This article presents the HOC algorithm and a suf-
ficient condition for convergence of the algorithm to the
optimum in the case of convex problems with nonlinear
constraints. The convergence condition involves the rank
of a matrix derived from the Jacobian of the constraints.
Computational results obtained by applying the HOC al-
gorithm to nonlinear convex programming problems of
various sizes are also presented.

1 Introduction
A typical approach to engineering design consists

of formulating an optimization problem using models to
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estimate design criteria and constraint functions, and ap-
plying formal optimization methods to search the design
space for an optimum.

In this article, we consider design problems that can
be formulated as convex optimization problems of the
form

find x e X such that
h(x) = 0, g(x) < 0 and /(x) is minimized, (1.1)

where X C ffi" is a nonempty open convex set, /: X -» E
and gj: X -> R are convex and differentiable functions
on X, and hi: X ->• M are affine functions on X.

Although optimization methods have been applied
with practical success to individual system components,
difficulties arise for system level design—a system being
a collection of connected components or processes. Ex-
ploiting the structure of the design problem by decom-
position of the problem into smaller subproblems may
be necessary in the case of systems that involves hun-
dreds of variables and constraints. The subproblems are
then solved in parallel, using the optimization technique
most suitable for the underlying submodel, gaining in ro-
bustness, speed and interpretation of results. Moreover,
system design problems are typically multidisciplinary
and/or involve subsystem design teams that effect one
or more explicit problem decompositions. Thus, coor-
dinated solution of design subproblems may be the only
way to address the overall system problem in a practical
and robust manner.

Hierarchical overlapping coordination (HOC) si-
multaneously uses two or more design problem decom-
positions, each of them associated with different par-
titions of the design variables and constraints. This
kind of problem decomposition may reflect, for example,
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matrix-type organizations structured according to prod-
uct lines or subsystems and the disciplines involved in
the design process. Coordination is achieved by the ex-
change of information between decompositions.

The mathematical formulation of HOC was first pro-
posed in [6], and several criteria for convergence of the
coordination algorithm under linear equality and inequal-
ity constraints were developed in [6] and [11]. Conver-
gence criteria developed in those articles are computa-
tionally difficult to check and possibly incorrect (see Re-
mark 4.4 in [10]). In order to remedy the situation, new
computationally efficient criteria for convergence of the
HOC algorithm under linear constraints were developed
in [10]. In the present article, we present an HOC algo-
rithm and a condition that ensure the convergence of the
algorithm for nonlinear constraints.

Several researchers have proposed coordination
strategies to exploit the structure of a problem asso-
ciated with its decomposition. Reviews of optimiza-
tion procedures that use decomposition are presented
by Wagner and Papalambros [14] and Sobieszczanski-
Sobieski and Haftka [13]. Recently, Nelson and Pa-
palambros [5] presented Sequentially Decomposed Pro-
gramming as a globally convergent coordination scheme
for hierarchic systems. Other promising coordination
algorithms, including concurrent subspace optimization
(CSSO) [12] and collaborative optimization (CO) [3]
for non-hierarchic systems, still require further in-depth
study of their robustness and convergence properties.

2 Hierarchical Overlapping Coordination
Dependence of design functions on variables can be

represented by a Boolean matrix termed the functional
dependence table (FDT). The (i, j)-th entry of the FDT
is one if the i-th function depends on the j'-th variable,
and zero otherwise.

Hypergraph-based model decomposition [8] can be
applied to the constraint functions of problem (1.1) to
obtain two or more distinct (say, a-, P-, y-, ...) decom-
positions. This involves generating a decomposition of
the functional dependence table (FDT) by reordering the
variables and constraints, as shown in Figure 1.

In Figure 1, xtt( is the vector of local variables asso-
ciated with block AUi, i.e., with subproblem a,; ya is the
vector of na linking variables for the cc-decomposition;
and pa denotes the number of subproblems in the oc-
decomposition (diagonal blocks in the figure).

Provided that the objective function / is a-additive

u«x

ha,

ga2

ha•pa

Figure 1. Block a-decomposition of functional dependence ta-
ble

separable1, problem (1.1) takes the following form:

Pa
Minx/ao(ya)-)-^/ai.(ya,Xa/) subject to (2.1)

1=1
ha,-(ya,Xa;) = 0, ga/(ya,xa/) < 0, i = 1,... ,pa.

For a given vector da € ffi"°, fixing the a-linking
variables ya = da in (2.1) results in the following Prob-
lem a:

Problem a:
For each i= l,...,pa,
Minx«, /a,-(da,Xa,) subject to
ha;(d<x>xa,-) = 0, ga,-(da,xa,.) < 0.

(2.2)

Problem a can be solved by solving pa independent un-
coupled subproblems. Similarly, Problem P can be de-
fined and solved for a p-decomposition after fixing the
P-linking variables.

The hierarchical overlapping coordination algorithm
can be described as follows, for the case of two decom-
positions (a and P):

Generic HOC Algorithm
Step 1. Fix linking variables ya, and solve Problem a by

solving the pa independent subproblems given
in (2.2).

Step 2. Fix linking variables yp to their values deter-
mined in Step 1, and solve Problem P by solving
/?p independent subproblems.

Step 3. Go to Step 1 with the fixed values of a-linking
variables determined in Step 2.

Step 4. Repeat these steps until convergence is achieved.

1 In general, HOC can be used if the objective function can be writ-
ten as monotonic functions of local objective functions derived from
the a- and p-decompositions.
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3 Convergence Under Linear Constraints
In general, the accumulation point achieved in

Step 4 of the Generic HOC Algorithm in Section 2 is not
necessarily an optimal solution of Problem 1.1. A condi-
tion that guarantees convergence of the HOC algorithm
to an optimal solution will be referred to as an HOC con-
vergence condition. For linearly constrained problems,
several equivalent HOC convergence conditions were de-
veloped in an earlier work [10], one of them being no-
tably efficient in a computational sense. This result for
the case of linear constraints is reviewed in this section.

Consider the following optimization problem under
linear equality and inequality constraints:

Minx /(x) subject to A7x < c7 and AE\ = c£ (3.1)

where / : R" -> E is convex and differentiable, A1 (AE,
resp.) is an m\ x n (WE x n, resp.) constraint matrix with
real entries, x € R" is the vector of optimization vari-
ables, and c7 e Mm' (c£ € W"E , resp.) is a constant vec-
tor. We assume that the problem has a nonempty solution
set.

The Generic HOC Algorithm described in Section 2
applied to Problem 3.1 results in two sequences
and {XP,}/II- For an accumulation point x* of
or {xpj^p define Ta to be the set of the indices corre-
sponding to the active inequality constraints, i.e.,

Tf l:={i | (ok,... ,<&)** = *[},

where Oy denotes the (z',j)-entry of the matrix A7. Let A7

be the submatrix of A7 consisting of the active inequality
constraints.

Define the cone C(A) by

C(A) := {x | x = vf , (H > 0},
1=1

where v| (vf, resp.) denotes the i-th row vector of A7

(AE, resp.). Also, define the induced cones C(Ka) and
as follows:

where e,- 6 W is the /-th standard row vector, and ct(z')
(P(z'), resp.) is the index for the *'-th a-linking (p-linking,
resp.) variable.

The Lagrange multiplier theorem for linear con-
straints [2, Proposition 3.4.1] states that x* € 1" is a so-
lution to Problem 3.1 if and only if there exists a nonneg-
ative vector K1 and a vector X£ such that

(3.2)

As in the case of only equality constraints, this result is
valid even when x* is not a regular point [2, page 292].

Condition 3.2 is equivalent to

-V/(x*) = > 0, (3.3)

which can be rephrased as

"-V/(x*) belongs to the cone C(A)."

Let Ha be the unique matrix such that Hax = ya.
Then, for fixed values of the cc-linking variables ya = da,
Problem a can be defined as

Minx /(x) subject to
A7x < c7, A£x = c£and Hax = da. (3.4)

Based on the above reasoning, x£ is a solution to
Problem a if and only if

"-v/(xa) belongs to the cone C(Ka)."

Analogously, xS is a solution to Problem P if and
only if

-V/(xp belongs to the cone

Theorem 3.1 Let x* be an accumulation point of

then x* is a solution to the optimization problem in (3.1).

C(ATa) := {x|x= £ajvf + J£&,-vf + Xs'ea(0'a'^ °}> Proof: As explained in [10, Section 2.3], x* solves both
ieTa i=i 1=1 Problem a and Problem p. Therefore,

:= {x | x = ̂  0,-v7 |j(0)a,- > 0}, -V/(x*) e C(Ka) and - V/(x*) € C(Ap).
702

American Institute of Aeronautics and Astronautics



Copyright© 1998, American Institute of Aeronautics and Astronautics, Inc.

Since C(A) = C(Ka) n C(£p), one gets -Vf (x*) e there exist yi, • • • ,Yr € R such that
C(A), which implies x* is a solution to the original opti-
mization problem in 3.1. D mp.

The HOC convergence condition stated in Theo-
rem 3.1 cannot be practically used because one has to
know a priori the accumulation point x* and the set Ta
of active constraints in order to compute the cones C(A),
C(Xa)andC(Ap).

Theorem 3.2 below fixes this problem and provides
a new sufficient condition for the convergence of HOC.
This condition does not rely on the accumulation point
x*.

a,--
i€Ta 1=1

Hence, (3.5) becomes

1=1

i=i i=i
0 = 0.

1=1

Since

Theorem 3.2 Let r be the rank of fee an

r x n submatrix o f [ . E \ with full rank. If the matrix
i A

has full rank, then C(A) = C(Ka) nC(/sTp).

Proof: Clearly, C(A) C C(Ka) and C(A) C C(Kp).
Therefore, C(A) C C(Ka) nC(^p).

To show the reverse inclusion, choose an arbitrary
v 6 C(Ka) H C(£p). Let vi , . . . , vr be the row vectors of
A, and e, 6 R" be the j'-th standard row vector. Since

no.
v =

and

v =

Therefore,

1=1
«,- > 0,

di>0.
1=1

1=1
"a

1=1 1=1

Since vi , . . . , vr form a basis for the row space of

has full rank, vi,...,vr,e<x(1),...,ea(na),ep(1),...,ep(np)
are linearly independent. Therefore,

Yi = 0, 5;- = 0, tk = 0

for all i= l,...,r, j= l,...,na, k= l , . . . ,np, and thus

a,>0.

is implies that v € C(A).

Theorem 3.2 combined with Theorem 3.1 immedi-
ately implies the following Corollary.

Corollary 3.3 Same notations as in Theorem 3.2. For
Problem 3.1, suppose a- and ^-decompositions are
given. Let {xa,};Li ana {xp;};Li be two sequences ob-
tained by applying HOC to these decompositions, and x*
be an accumulation point of {xaj^lj or{xpi.}^1. 7jf£ap
has full rank, then x* is a solution to the optimization
problem in (3.1).

4 Convergence Under Nonlinear Constraints
Consider a design problem that can be formulated as

a convex optimization problem of the form

Minx /(x) subject to h(x) = 0, g(x) < 0 (4.1)

where X C E" is a nonempty open convex set, /: X -> R
and gi : X -4 R are convex and differentiable functions
on X, and n;: X -> R are affine functions on X.
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The Jacobian of the constraint functions in Prob-
lem 4.1 plays a role similar to that of the matrix f .E I

in the linear problem (3.1). Let /(x) be the matrix

( r//x\ \
.•A < I where /7(x) and JE(x] are the Jacobians ofJ (x) J v ' v '

g(x) and h(x), respectively. This matrix function /(x)
will be simply referred to as the Jacobian of the Prob-
lem 4.1. Define the matrices Ka(x), ^Tp(x) and
by

:= Ha

For a fixed point p £ E", define ra(p) to be the set
of the indices corresponding to the active inequality con-
straints at p, i.e.,

r«(p) := {i I _?i(p) = 0},

where g; denotes the i-th inequality constraint.
be the submatrix of /7(p) consisting of the active in-
equality constraints at p.

The cones C(7) (p), C(Ka) (p) and C(/sTp) (p) can be
defined analogously as in the linear case. Define the cone
CC/)(p) by

C(/)(p):={ye y=

where v^(p) (vf (p), resp.) denotes the i-th row vector
of J7(p) (JE(p), resp.). Also, define the induced cones
C(£a)(p) and C(Xp)(p) as follows:

The Generic HOC Algorithm described in Section 2
applied to Problem 4.1 results in two sequences {xajjlj
and {xp;}?Lj. The Lagrange multiplier theorem for non-
linear constraints [2] states that a regular point x* € W
is a solution to Problem 4.1 if and only if there exists a
nonnegative vector X7 and a vector X£ such that

V/(x*) + /(x*)'X'

Condition 4.2 is equivalent to

-v/V) = 7V)'j

= 0. (4.2)

> 0, (4.3)

which can be rephrased as

"-V/(x*) belongs to the cone C(/(x*))."

For fixed values of the a-linking variables ya = da,
Problem a can be defined as

Minx /(x) subject to
h(x) = 0, g(x) < 0, and Hax = da. (4.4)

Based on the above reasoning, x£ is a solution to
Problem a if and only if

"-V/(x*) belongs to the cone C(/sTa)(x*)."

Analogously, x5 is a solution to Problem p if and
only if

-Vf (xp belongs to the cone C(Kp)(xp).
Now the following theorem is immediate.

Theorem 4.1 Let x* be an accumulation point of
{-tot,-} !̂ or {*p,.}jLi. Ifx* is a regular point and

= _£
«'6T«(p)

then x* is a solution to the optimization problem in (4. 1).

Proof: As in the linear case, x* solves both Problem a
and Problem p. Therefore,

C(/s_p)(p):={xe x=
) 6 C(£a)(x*) and - V/(x*) € C(Aj,)(x*).

Since C(/)(x*) = C(Ka)(x*) n C(ATp)(x*), one gets
-V/*(x*) e C(/)(x*), which implies x* is a solution to
the original optimization problem in (4. 1 ) . D
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Theorem 4.2 Same notations as in Theorem 4.1. Let r Since the matrix
be the rankofJ(\*) = I ,E\ 2 j andf(\*) beanrxn

submatrix ofJ(\*) with full rank. If the matrix

has full rank, then C(/)(x*) = C(^a)(x*) nC(%)(x*).

Proof: Clearly, C(/)(x*) C C(/sTa)(x*) and C(/)(x*) C
C(Afp)(x*). Therefore,

c(j)(x*)cc(Ay(x')nc(Aj,)OO-

To show the reverse inclusion, choose an arbitrary
v € C(£a)(x*) nC(£p)(x*). Let vi, . . . ,\r be the row
vectors of /(x*), and e, € E" be the i-th standard row
vector. Since v e C(#a)(x*) and v 6 C(£p)(x*),

v =
i€Ta 1=1

and
mE

V =
i€Ta 1=1

Therefore,

"a

E
(=1

Since vi , . . . , vr form a basis for the row space of /(x*),
there exist yi , . . . , yr 6 E such that

Hence, (4.5) becomes

1=1

r,ea(1),...,ea(n<l),ep(1),...,ep{np))'

has full rank, its row vectors vi,. . . ,v r , e<x(i))---!ea(/ia)>
and ep(!),... ,ep(n ) are linearly independent. Therefore,

ji = 0,sj = 0,tk = 0

for all i= l,...,r, j = l,...,na,k= l , . . . ,np, and thus

vf, at>0.

This implies that v € C(A). D

Theorem 4.2 combined with Theorem 4.1 immedi-
ately implies the following Corollary.

Corollary 4.3 Same notations as in Theorem 4.2. For
Problem 4.1, suppose a- and ^-decompositions are
given. Let {x^}^ and {xpj^lj be two sequences ob-
tained by applying HOC to these decompositions, and x*
be an accumulation point of {zuj}^! or {xpjjlj. If\*
is a regular point and £a$(\*) has full rank, then x* is a
solution to the optimization problem in (4.1).

Remark 4.4 £ap(x*) has full rank only if the sets of oc-
and p-linking variables are disjoint.

HOC Algorithm for Nonlinear Convex Problems
Step 1. Apply the Generic HOC Algorithm starting at a

point XQ for a- and p-decompositions that makes
/(XQ) full rank. Let x* be a resulting accumula-
tion point.

Step 2. If /(x*) has full rank, then (by Corollary 4.3)
conclude that x* is a solution to the original op-
timization problem in (4.1) and exit.

Step 3. If/(x*) fails to have full rank, then find new a-
and P-decompositions that make /(x*) full rank,
and go to Step 1 with x* as new starting point.
If it is not possible to find appropriate a- and
P-decompositions, then assume another starting
point and go to Step 1 or exit.

This process is repeated until we reach a point x*
such that /(x^) has full rank (or a maximum number
of iterations). Then this point x1' is, by Corollary 4.3,
a solution to the original optimization problem in (4.1).
Valid decompositions are generated using hypergraph-
based model decomposition techniques [8, 10] described
in Section 5.1.
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Remark 4.5 The HOC convergence condition stated in
Corollary 4.3 requires that one has to know the accumu-
lation point x* in order to compute £ap(x*). However, if
the matrix function

has full rank for every x in the feasible domain, then
ATap(x*) also has full rank, and HOC is convergent. The
method used in the proof [10, Theorem 3.5] can be used
to show that £ap(x) has full rank everywhere if and only
if there is no functional dependency exclusively among
the a- and P-linking variables. This situation can be de-
scribed in terms of Elimination Theory: In the case of
polynomial constraints, let K[;ti,... ,*„] be the ring of
polynomials in n variables, and let / be the ideal gen-
erated by the given constraints. Then the projection
of 7 onto the subring K[*a{1),... ,*«(««) ,*p(i), • • • ,*p(np)]
consisting of polynomials in a- and P-linking variables,
should be empty. The same argument can be made for
the case of analytic constraints.

In the case of polynomial constraints, it can be com-
putationally checked whether £ap(x) has full rank every-
where. Some symbolic computer algebra systems, e.g.
Macaulay [1] and Singular [4], are capable of computing
the projection of an ideal onto a subring.

5 Computational Results
5.1 Obtaining Two Distinct Decompositions

Recall that the functional dependence table (FDT) is
a Boolean matrix representing the dependence of design
functions on variables. The (J,./)-m entry of the FDT
is one if the i-th function depends on the j'-th variable
and zero otherwise. A decomposition of the given op-
timization problem can be achieved by reordering rows
and columns of the FDT corresponding to the constraints
and variables, respectively.

The sufficient condition for convergence of HOC
cannot easily be (and does not need to be) enforced at
every point of the feasible space. As explained before,
the condition will be enforced at the initial point and
verified at the accumulation point(s). To solve a nonlin-
ear optimization problem P by the HOC algorithm, two
distinct (a-, P-) decompositions of P satisfying the suf-
ficient condition for convergence of HOC at the initial
point xo (Corollary 4.3) can be found by the following
heuristic:

1. Apply the hypergraph-based model decomposition
algorithm developed in [8]2 to problem P to obtain
an a-decomposition.

2. In the process of obtaining a (3-decomposition, pe-
nalize3 the cc-linking variables so that the disjoint-
ness of the set of a-linking variables and the set of
p-linking variables is accomplished, as required by
the convergence condition in Corollary 4.3. If the
two sets of linking variables are not disjoint, then go
back to Step 1 and obtain a new a-decomposition
after penalizing the common linking variables.

3. Check if the resulting a- and p-decompositions sat-
isfy the convergence condition in Corollary 4.3. If
the convergence condition is not satisfied, then go
back to Step 1 and obtain a new a-decomposition
after penalizing one of the interdependent linking
variables.

5.2 Example Problems
The HOC algorithm developed in this article has

been applied to a family of nonlinear optimization prob-
lems of various sizes. The smallest problem P\ has 25
variables and 21 constraints (19 linear equalities and 2
nonlinear inequalities) with a strictly convex, additive
separable objective function. (Thus, the FDT of problem
PI constraints is a 21 x 25 table.) The largest problem Pg
has 500 variables and 420 constraints (380 linear equali-
ties and 40 nonlinear inequalities).

Figure 2 shows the reordered FDTs for the a- and P-
decompositions obtained by applying the above decom-
position heuristic to example problem PI . Maple [9] was
used to verify that these two decompositions do satisfy
the convergence condition in Corollary 4.3 for the ini-
tial point XQ. The a-decomposition in Figure 2 has two
subproblems and one linking variable (JCB), whereas the
P-decomposition has two subproblems and two linking
variables (*3 and xg). While each of the two decompo-
sitions for PI has two subproblems, each of the two de-
compositions for Pg has 40 subproblems.

Once the a- and P-decompositions are determined,
the subproblems have to be repeatedly solved, constr, the
MATLAB [7] implementation of the Sequential Quadratic
Programming algorithm (SQP), was used for this pur-
pose. The HOC iteration process stops if the relative
difference between the values of the objective function

2 An implementation of this decomposition algorithm can be found
at the URL: http://arc.engin.umich.edu/graph_part.html.

3 A variable is penalized when it is not desirable to have the vari-
able as a linking variable. This can be achieved by assigning a high
weight to the corresponding hyperedge in the hypergraph-based model
decomposition algorithm described in [8].
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prob

P\
PI
PI
Pt
Pi
P6

PI
PS
P->

no.
var
25

50
75
100
125
200
250
375
500

no.
constr

21
42
63
84
105
168
210
315
420

no.
subpr

2

4

6
8
10
16
20
30
40

All-At-Once
objective

3.34092
6.68185
10.0227
13.3637
16.7046
26.7274
33.4092
50.1139
66.8185

runtime*

1.847
6.067
16.85
29.59
59.03
333
1446
6904

20539

Hierarchical Overlapping Coordination
objective

3.34092
6.68185
10.0227
13.3637
16.7046
26.7274
33.4092
50.1139
66.8185

serial-
runtime^

3.045
5.997
9.032
12.03
15.07
24.13
30.18
45.22
60.77

parallel-
runtime*

2.820
2.790
2.800
2.812
2.827
2.832
2.835
2.832
2.890

no. HOC
iterations

3
3
3
3
3
3
3
3
3

tRuntime is measured in CPU seconds on a Sun UltraSparc 1.

Table 1. Comparison of CPU-runtimes for nonlinear optimization problems of various sizes. Initial point XQ = -0.1.

prob

PI
Pi
Pi
P4

PS
P*
PI
PS
/v

no.
var
25
50
75
100

125

200

250

375
500

no.
constr

21
42
63
84
105
168
210
315
420

no.
subpr

2
4
6
8
10
16
20
30
40 •

All-At-Once
objective

3.34092
6.68185
10.0227
13.3637
16.7046
26.7274
33.4092
50.1139
66.8187

runtime*

2.860
11.41
25.57
52.46
96.85
818
1701
10869
27662

Hierarchical Overlapping Coordination
objective

3.34092
6.68185
10.0227
13.3637
16.7046
26.7274
33.4092
50.1139
66.8185

serial-
runtime*

1.942
3.867
5.782
7.697
9.662
15.47
19.32
28.85
38.99

parallel-
runtime*

1.867
1.877
1.870
1.867
1.872
1.887
1.885
1.877
1.910

no. HOC
iterations

1

1
1

t Runtime is measured in CPU seconds on a Sun UltraSparc 1.

Table 2. Comparison of CPU-runtimes for nonlinear optimization problems of various sizes. Initial point XQ = 0.

for two consecutive iterations is less than a preset toler-
ance value. The tolerance value used for the computation
was 10~5.

To compare the effectiveness of the HOC algorithm
with the ordinary All-At-Once (AAO) algorithm (i.e. one
not using decompositions), the problems were solved in
both ways. The results for P\ and the other problems of
larger sizes are shown in Tables 1 and 2 for two different
initial points.

Runtime was measured in CPU seconds on a Sun
UltraSparc 1. Runtimes only include constr function
calls, excluding I/O and data transfer between a- and
p-decompositions. Each runtime represents the average
runtime for five separate runs of the algorithm; the times
of the five runs were consistently close. Serial-runtime
is measured for the HOC computation in which the
subproblems are solved sequentially, whereas parallel-
runtime is measured for the HOC computation in which

the subproblems are simulated to be solved in parallel.

5.3 Discussion
HOC has shorter parallel and serial runtimes than

AAO algorithm for all problems and initial points ex-
cept for problem Pj with initial point XQ = -0.1 :=
- (0.1,0.1,..., 0.1). Moreover, for all problem sizes and
initial points, the HOC algorithm did not require re-
partition of the model as dictated by Step 3 of the algo-
rithm. That is, the condition for convergence was satis-
fied both at the initial points and at the first-generated ac-
cumulation points. The AAO algorithm converges faster
when it is started with XQ = —0.1 as initial point, whereas
the HOC algorithm converges faster when it is started
with XG = 0 as initial point.

Note that HOC for Pg has parallel- and serial-
runtimes that are 7100- 14500 and 340-710 times
shorter than the AAO runtimes, respectively, depending
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Figure 2. Decompositions of example Problem PI: (a) a-
decomposition and (b) p-decomposition

on the initial point. Surprisingly, HOC terminates after
three and one iterations regardless of problem size. HOC
serial-runtimes vary linearly with the size of the problem,
whereas parallel-runtimes remain about constant. This is
expected since subproblem sizes are similar for all nine
problems. AAO runtimes seem to vary polynomially (3rd

or 4th order) with the size of the problem. HOC serial
wall-clock times, which include data transfer between
a- and p-decompositions, were significantly shorter than
their AAO counterpart for the larger problems. For ex-
ample, Pg was solved in less than 2 minutes by HOC,
while its AAO solution took over 1\ hours on the same
workstation. This clearly demonstrates the advantage of
using HOC for large scale problems with many loosely-
linked subproblems.
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